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ABSTRACT 

Insured population mortality estimation is essential to (re)insurers’ developing liability 
expectations and maintaining required solvency capital. In practice, insured mortality 
measurement needs to deal with a broad range of data and analytical challenges. In this paper, 
we introduce a logistic regression-based modeling approach for analyzing the U.S. insured 
mortality experience, including at advanced ages where less credible experience data are 
available. As a validation, we create a version of industry basic experience tables based on the 
model-estimated mortality and compare them to standard industry experience tables produced 
by the Society of Actuaries (SOA). The conclusion is that properly designed logistic modeling 
processes can more efficiently utilize available data to deliver solutions for multiple needs, 
including: a) testing mortality drivers’ statistical significances in explaining mortality variations; 
b) estimating normalized mortality slopes and mortality differentials such as how mortality 
increases by duration or varies between underwriting classes while product and attained-age 
distributions are controlled; and c) addressing analytical challenges such as extrapolating for 
ultimate mortality, smoothing between select and ultimate estimations, and constructing 
multidimensional basic experience tables.  
_____________________________________________________________________________________ 

 

1. INTRODUCTION               

The following three aspects are equally important in life insurance industry mortality studies.  
 

a) Mortality trend: how mortality improves or deteriorates over time  
b) Mortality slope: how mortality increases by age or duration    
c) Mortality differential: how mortality, mortality trend and/or mortality slope vary 

between insured segments such as males vs. females or preferred class vs. residual 
standard class 
 

Aspects a and b are related but not duplicative. Although the life insurance industry collects an 
enormous amount of data, the collections usually do not consistently cover sufficient time 
periods for credible trend analyses. Insured mortality trends are often approximated based on 
general population mortality-trend studies. This dependency on general population studies for 
insured mortality-trend understanding is likely to last at least until the life insurance industry 
establishes an adequate insured-experience data repository, similar to the Human Mortality 
Database for the general population, to support its own comprehensive and true-experience 
data-driven studies.  
 
As to understanding insured mortality slopes and mortality differentials, there are insured-
specific challenges unlikely to be addressed with the general population data: dynamic insured 
segmentation, high mortality disparity among the segments and the need for multidimensional 
normalization. First, compared to the general population, the U.S. insured population is highly 
unstable. Insurers constantly initiate risk selection efforts through improving underwriting, 
adjusting pricing strategies, expanding markets and developing new products, which not only 
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attracts various levels of risks but also causes current insureds’ antiselection reactions such as 
policy lapsation and conversion. These risk selection and antiselection activities form and 
reshape numerous insured cohorts. In addition to age, insured cohorts may be defined by 
smokers vs. nonsmokers, preferred class vs. standard class, permanent policyholders vs. term 
policyholders, groups vs. individuals, or a mix of these characteristics that usually are neither 
relevant to nor captured in any general population data. Second, by design, mortality and 
mortality-trend patterns differ significantly among these insured segments. Companies often 
compete on properly pricing by segment. Third, the insured segments often have relatively 
small sizes, short histories and multidimensional characteristics (e.g., male preferred smokers). 
Analyzing the true values of each of the characteristics in differentiating mortality and trend 
requires controlling the distributions by the others (normalization). As the demand for risk 
management and competition for market share increases, the demand for more thorough 
understanding of insured mortality increases.   
 
In this paper, we apply a logistic regression-based modeling approach to analyze the U.S. 
insured mortality experience based on a large amount of data collected by a major consulting 
firm and a global reinsurer. The adaption of the multiple-variable modeling approach 
(Advanced Analytics), the availability of a large amount of policy data (Big Data) and the use of 
modern computing technology provide many advantages over the conventional insured 
mortality study methods, including 
 

 Empirical data-driven models with multiple explanatory variables (drivers) 

 Projection of ultimate and advanced-age mortality by combining past experience and 
model extrapolation 

 Smooth bridging of select and ultimate mortality with the models’ link functions 

 Derivation of normalized mortality slopes and differentials between policy segments 
with model coefficients, which is difficult to do with conventional methods 

 Verification of reliability of the overall study with model fit statistics and not solely 
relying on the number of claims available for credibility verification 

 Construction of multidimensional industry experience tables by using the models as 
predictive models, overcoming some of the weaknesses of pivot tables  

 
In summary, a logistic regression modeling approach allows use of less but more relevant data 
to address multiple challenges in quantifying insured mortality. Examples and interpretations of 
findings from our modeling process are represented in section 3.  
 
The rest of the paper is organized as follows: Section 2 summarizes the data used for this study; 
section 3 describes logistic models and how to model mortality slopes and differentials; section 
4 reviews the issue of “death censorship by policy lapsation” and a logistic regression-based 
solution; and section 5 discusses the limitations and possible enhancements in using logistic 
regression models for industry experience studies.   
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2. THE DATA SOURCES 
 
The Human Mortality Database (HMD) is our source for U.S. general population mortality 
experience. At the time of our study, the database covered 1933 to 2010. The data is mainly 
used for comparison purpose, not for insured mortality approximation. 
 
The insured experience data used in this study were collected by a major consulting company 
and a global reinsurer. The data file consists of experiences from more than 60 insurers with 
exposure from 2000 to 2009. The included policies were issued as early as 1912. A total of 174 
million policy exposure years and 1.6 million death claims are available for study.  
 
Actuaries and analysts traditionally use as much experience data as they can get to perform 
insured mortality analyses, whether the purpose is to evaluate in-force blocks (policies issued in 
the past) or to price new business. This simple strategy can be a double-edged sword. While 
increased volume of data may benefit the credibility of analysis, it may also diminish the 
accuracy if less relevant data are included. Studies (e.g., Vaupel 2014) found that in some 
developed countries, life expectancy expands about 2.5 years per decade, which implies that 
using policies issued 50 years ago to estimate future policyholders’ mortality can result in 
significant bias. Instead of trusting or subjectively adjusting biased analysis finding, we explored 
using less but more relevant data to model and to extrapolate estimations. It achieved 
satisfactory model performance.  
 
For illustration purpose, we elected to apply the following data-selection criteria for estimating 
mortality that is more relevant to pricing future fully underwritten policies. Other filters may be 
applied for different purposes.  
 

 Policies issued since 1950  

 Face amount ≥ $50,000 
 

The following table summarizes the total and the filtered study data.  
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Table 2.1. Summary of the insured data  

 Total data Selected data 

Sex 
Attained  

age 
Claim 
count 

Exposed 
count 

q q/(1 − q) 
Claim 
count 

Exposed 
count 

q q/(1 − q) 

Fe
m

al
e

 

00–22 1,371 5,919,604 0.00023 0.00023 286 1,758,271 0.00016 0.00016 

23–27 1,096 3,194,034 0.00034 0.00034 291 1,425,257 0.00020 0.00020 

28–32 1,926 5,493,708 0.00035 0.00035 598 3,133,315 0.00019 0.00019 

33–37 3,442 8,419,013 0.00041 0.00041 1,240 5,186,770 0.00024 0.00024 

38–42 6,636 10,403,257 0.00064 0.00064 2,467 6,266,131 0.00039 0.00039 

43–47 11,571 11,203,952 0.00103 0.00103 3,888 6,323,438 0.00061 0.00062 

48–52 17,935 10,672,817 0.00168 0.00168 5,206 5,405,578 0.00096 0.00096 

53–57 24,972 9,073,003 0.00275 0.00276 5,947 3,975,759 0.00150 0.00150 

58–62 32,389 6,817,009 0.00475 0.00477 5,541 2,408,077 0.00230 0.00231 

63–67 39,066 4,673,083 0.00836 0.00843 4,668 1,204,946 0.00387 0.00389 

68–72 50,894 3,551,700 0.01433 0.01454 4,099 642,219 0.00638 0.00642 

73–77 74,868 3,116,261 0.02402 0.02462 4,552 413,902 0.01100 0.01112 

78–high 299,642 4,887,952 0.06130 0.06531 14,515 482,748 0.03007 0.03100 

M
al

e
 

00–22 3,525 6,303,991 0.00056 0.00056 768 1,827,197 0.00042 0.00042 

23–27 3,105 3,304,725 0.00094 0.00094 767 1,428,309 0.00054 0.00054 

28–32 4,175 5,964,346 0.00070 0.00070 1,354 3,463,059 0.00039 0.00039 

33–37 7,204 10,166,729 0.00071 0.00071 2,712 6,587,593 0.00041 0.00041 

38–42 13,114 13,884,778 0.00094 0.00095 5,144 8,933,857 0.00058 0.00058 

43–47 22,948 16,060,846 0.00143 0.00143 8,353 9,912,149 0.00084 0.00084 

48–52 36,977 16,212,737 0.00228 0.00229 12,003 9,305,648 0.00129 0.00129 

53–57 54,632 14,819,343 0.00369 0.00370 14,814 7,668,238 0.00193 0.00194 

58–62 73,629 12,072,373 0.00610 0.00614 16,423 5,396,172 0.00304 0.00305 

63–67 89,983 8,450,035 0.01065 0.01076 14,849 3,033,903 0.00489 0.00492 

68–72 109,391 5,993,105 0.01825 0.01859 12,866 1,584,710 0.00812 0.00819 

73–77 146,537 4,640,211 0.03158 0.03261 11,648 840,363 0.01386 0.01406 

78–high 490,630 6,539,738 0.07502 0.08111 19,897 586,764 0.03391 0.03510 

Notes: The q in the table is defined as the number of deaths divided by exposure. In this paper, mortality, mortality 
rate, death probability and death rate all refer to the same q, unless specified otherwise.  

The probability of death q and the odds of death q / (1 – q) are approximately equal for nearly all age groups 

because 1 – q  1. This implies that many of the odds ratio-based interpretations of the logistic q model can be 
reasonably interpreted in the terms of probability ratios or mortality differentials. See appendix A. 

 

The following two charts compare the five-year 2003–07 total mortality of the general and the 
insured experiences based on the data we have. Again, 
 

 The general population data source is the Human Mortality Database.  

 The insured population data source is our total study data. 

 The insured data are also split into two exclusive subgroups: permanent and term 
product. 

 These mortality rates are derived without normalization by any distributions such as 
duration, issue year and underwriting class. According to the charts, for any given age 
group, permanent policyholders have about 50 percent higher mortality than term 
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policyholders. Later, the differences after normalizing by nine study variables will be 
quantified with our models. 

 

       
 
 

3. MODELING INSURED MORTALITY WITH LOGISTIC q MODELS 
 
Researchers have long been using statistical models to study general population mortality. 
Since the introduction of Gompertz Law of Mortality (1825), the effort of modeling the human 
mortality trajectory by age has only accelerated. Thatcher (1999) provided an excellent 
description and comparison of four mortality-by-age models. With some simplifications in 
reducing the number of parameters and using force of mortality as the dependent variable, the 
four models are:  
 
(1.1) Gompertz (1825)     𝜇 ≈ 𝛼 ∗ exp⁡(𝛽 ∗ 𝑥) 

(1.2) Weibull (1951)       𝜇 = 𝛼 ∗ 𝑥𝛽 

(1.3) Heligman and Pollard (1980)    𝜇 ≈ 𝛼 −
1

2
𝛽 + 𝛽 ∗ 𝑥   

(1.4) Kannisto (1994)      𝜇 =
𝛼∗exp⁡(𝛽∗𝑥)

1+𝛼∗exp⁡(𝛽∗𝑥)
 

 
Of the four models, only the Kannisto model assumes that force of mortality has a finite 
asymptote. Thatcher’s conclusion was: “When these four models are fitted to actual (general 
population) data, they are all relatively close to the data at ages where most of the deaths are 
concentrated, and hence relatively close to each other.” It is not surprising he also confirmed 
with various population data (Thatcher, Kannisto and Vaupel 1998; Thatcher 1999) that the 
Kannisto model fits and approximates old-age mortality the best. 
 
We modify the Kannisto model in two ways for insured mortality study: use mortality rate q 
instead of force of mortality 𝜇 as the dependent variable and include not only age but also 
many other insured explanatory variables. Our logistic mortality model has a general form of  
 
 
(3.1)                                                                                                    or 
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(3.1a)  
 
 
where  

q is probability of death in an exposure year, given a policyholder survived to the 
beginning of the year   

xi are explanatory variables (e.g., age, sex, duration, product) 

 is the intercept, to be estimated with experience data and maximum likelihood method 

 are coefficients of the explanatory variables, to be estimated with experience data and 

 maximumlikelihood method (see appendix B). 
 

To distinguish from the logistic force-of-mortality model or logistic µ model (1.4) by Kannisto 
(1994) and Thatcher (1999), let us call our model (3.1) logistic q model. According to Thatcher’s 
illustration, a simplified Heligman and Pollard model (1.3) with only one explanatory variable, 
age, is a special form of our logistic q model.   
 
A logistic q model has many advantages for insured experience studies. 

 It models mortality q that is directly used in business operation and risk management. 

 It can be flexibly configured for estimating mortality levels, slopes and differentials that 
are key metrics used in business practices (see attachment A). 

 It performs many other analytical functions such as normalization, hypothesis test, risk 
scoring and experience table construction that are not simply to do with conventional 
experience study methods (Harrell 2001). 

 It can be developed with widely available commercial software systems such as SAS, 
SPSS and R.  

In addition to the dependent variable q, nine observable explanatory variables are selected as 
potential independent variables for our model development. 
 

 Gender:   male and female 

 Duration:     as continuous variable 

 Issue age (last birth):  1 through 99 as continuous variable  

 Smoker status:  smoker, nonsmoker, unknown 

 Product:      permanent, term 

 Underwriting class:  preferred, residual standard, aggregate (one class) 

 Exposure year:    2000 through 2009 as continuous variable 

 Underwriting era: Four eras defined by issue year to reflect key underwriting  
evolutions such as smoker and preferred ratings 

 Face category:    $50,000–$99,000; $100,000–$499,000; $500,000+ (inflation  
adjusted) 

...***)
1

ln(
,

, 


 ji
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i

i xxx
q

q
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These variables are selected because they have the least missing values and are the most 
frequently used for pricing decisions, underwriting adjustments and marketing strategies.  
 
Unlike in general population mortality studies, we chose policy issue age and policy duration 
instead of attained age and calendar year to represent age and time. The chosen pair has better 
reflection of insured characteristics and is the key dimension of insured mortality tables.  
  
Recall that our logistic q model has the general form of  
 
(3.1a) 
 

The right hand side of the model has three components: 1) the intercept the main effect 
component that is a weighted sum of individual explanatory variables, and 3) the interaction 
component that is a weighted sum of products of two or more explanatory variables.  

When interaction terms are omitted, models (3.1) or (3.1a) become 

(3.2)         

and  

(3.2a)           

In this model, the model coefficients  and  can simply be transformed as estimations for 

mortality level, slopes and ratios depending on how the corresponding variable is coded. 
Appendix A provides more details on this topic. 

Adding the interaction component to a model has the potential to improve model fit. It also 
adds complexity to interpreting the model coefficients. From our tests, we found that adding 
the interaction term improves our model fit slightly. For simple interpretation, in this paper we 
only present sample model (3.2) without interactions. 
 
For a better matched comparison with Society of Actuaries’ (SOA) studies, we split the selected 
study data into four subsets and fit each subset with its own model (3.2). The four subsets are 
male smoker, male nonsmoker, female smoker and female nonsmoker. This separate model 
design allows each model’s coefficients to be estimated independently from the other three 
models, which means that each of the four policy groups can have its own mortality level, 
slopes and differential factors without being constrained by the other three groups.  
 
We use SAS software for our data preparation and model development. In the upcoming 
sections, we highlight the interpretations and usefulness of the three types of outputs from the 
SAS modeling process.   
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3.1 Analysis of effects for the mortality driver significance test  
 

Of the nine explanatory variables, gender and smoking status are used to split the study data 
and seven are left to be included in the models. Table 3.1 summarizes the p-values of the 
significance tests of the seven explanatory variables on each of the four data sets.  
 
Table 3.1. Analysis of effects 

Pr > ChiSq 
(p-value) 

Degree 
of 

Freedom 

Female Male 

Nonsmoker Smoker Nonsmoker Smoker 

Duration1 1 <.0001 <.0001 <.0001 <.0001 

Issue age1 1 <.0001 <.0001 <.0001 <.0001 

Study year2 1 0.1714 0.4597 0.1719 0.0017 

Face band1 2 0.0051 0.0040 <.0001 <.0001 

Product3 1 0.0157 0.9533 0.1363 <.0001 

Issue year1 2 <.0001 0.0003 <.0001 <.0001 

Class1 2 <.0001 <.0001 <.0001 <.0001 

 
Several items should be noted. 
 

1. As expected, insured mortality varies significantly statistically by duration, issue age, 
underwriting class, underwriting era (issue year) and face band for all four subgroups. 
This confirms that these variables are among the most reliable mortality predictors.  
 

2. Study year, or exposure year, is included as a placeholder for mortality improvement in 
the 10-year period covered by the study data. The corresponding p-values from the four 
models imply that, after factoring out what have been explained by the other eight 
explanatory variables (including gender and smoker status), mortality variation 

explained by exposure year (or improvement) is statistically significant at  = 0.05 only 
for male smokers. This may imply that more male smokers ceased smoking and resulted 
in more mortality improvement during the studied period. 

 
3. Mortality differentiation by product (between permanent and term policyholders) is 

only statistically significant for female nonsmokers and male smokers, after controlling 
the other eight explanatory variables. 

 
4. At 95 percent confidence level, all seven tested variables have statistical significance in 

explaining mortality variation in at least one of the four policy groups. We decide to 
include them in all four logistic q models. Vinsonhaler et al. (2001) analyzed private 
pension plan experience data with similar logistic q models and only found one 
significant explanatory variable. Since mortality and longevity are the two sides of the 
same death-related “risk coin,” our finding may suggest that more potential longevity 
risk drivers are yet to be confirmed. 
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3.2 Odds ratio estimate for mortality slopes and differentials 
 

Of the nine studied explanatory variables, three (issue age, duration and study year) are treated 
as continuous for three reasons: 1) to estimate smoothed relationships between q and these 

variables, 2) to allow the coefficients  of these variables to be transformed as mortality slopes, 
and 3) to enable model-based mortality extrapolation for older ages and later durations where 
sparse or no experience data are available. The modeled extrapolation can be used as the 
ultimate mortality estimate.  
 
The values of the other six explanatory variables are categorized based on data credibility and 
recoded as binary variables as described in appendix A. Therefore, mortality differentials are 
obtained for these variables.  
 
Table 3.2 below contains the odds ratio estimations (point estimate columns) and their 95 
percent confidence intervals. For the three continuous variables, the odds ratios estimate 
average mortality increases per unit increase in the corresponding variables. For the 
categorized variables, odds ratios represent the mortality ratios as defined in the effect column. 
The 95 percent confidence intervals provide a means to verify the credibility of the 
corresponding slope or differential estimate.  
 
Table 3.2. Odds ratio estimates 

 Male nonsmoker Male smoker Female nonsmoker Female smoker 

Effect 
Point 

estimate 
95% Wald 

confidence limits 
Point 

estimate 

95% Wald 
confidence 

limits 

Point 
estimate 

95% Wald 
confidence 

limits 

Point 
estimate 

95% Wald 
confidence limits 

Duration 1.1411 1.139 1.143 1.118 1.114 1.122 1.157 1.153 1.160 1.133 1.126 1.139 

Issue age 1.1011 1.100 1.102 1.093 1.092 1.094 1.105 1.104 1.105 1.098 1.096 1.099 

Study year 0.9982 0.995 1.001 1.009 1.003 1.014 0.997 0.992 1.001 1.004 0.994 1.013 

Face $100k–
$499k vs. $500k+ 

1.1153 1.096 1.135 1.203 1.143 1.265 1.000 0.971 1.030 0.926 0.855 1.002 

Face $50k–$99k 
vs. $500k+ 

1.2843 1.258 1.311 1.407 1.335 1.484 1.037 1.003 1.071 0.988 0.911 1.072 

UnderW med vs. 
nonmed 

0.9204 0.902 0.939 1.018 0.986 1.050 0.950 0.921 0.981 1.044 0.992 1.099 

Product perm 
vs. term 

1.0135 0.996 1.030 0.923 0.890 0.958 1.033 1.006 1.060 0.998 0.939 1.061 

Class one-class 
vs. standard 

1.0426 1.027 1.057 0.930 0.893 0.967 1.038 1.014 1.062 0.938 0.881 0.999 

Class preferred 
vs. standard 

0.7306 0.719 0.741 0.748 0.717 0.781 0.740 0.722 0.758 0.767 0.715 0.823 

 

As described in appendix A, odds(death) = q/(1 − q)  q because q is usually very small. 
Therefore, odds ratios can be viewed as mortality ratios in this table. Also explained in appendix 
A is that logistic q model coefficients are estimated assuming the values of all other explanatory 
variables are the same (normalized). Therefore, they approximate normalized mortality 
differentials that may or may not appear to be consistent with results obtained from actual 
mortality studies.  
  
Let’s take the male nonsmokers model as an example and interpret some of the odds ratios. 
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1. Duration and age slopes: If everything else were equal, on average, mortality increases 
about 14 percent per duration and about 10 percent per issue age (odds ratio = 1.14 and 
1.10, respectively). The 10 percent per issue age increase is known to be also true for the 
general population (Thatcher 1999). 
 

2. If everything else were equal, there is a statistically insignificant 0.2 percent annual 
mortality improvement (odds ratio = 0.998, the 95 percent confidence interval including 1). 
This finding may seem to be inconsistent with the common thought of higher mortality 
improvement. There are three possible explanations. First, due to the short time period and 
inconsistent data contributions from insurers, the study data may have not captured the 
true insured mortality improvement. Second, in the past decade or so, U.S. population 
mortality improvement has been leveling off as shown in chart 3.2 (data are from the 
Human Mortality Database; 
the age range reflects the most 
commonly insured ages). This 
may also be true of the insured 
population. Third, insurance 
underwriting has specifically 
targeted high death rate 
causes, such as cardiovascular 
diseases and smoking, and 
excluded or discouraged these 
risks being insured, which may 
have resulted in less benefits 
for insureds from the 
advancement in medicine, 
treatment and public 
education. Fourth, unlike a 
univariate analysis that 
attributes all the mortality 
variation to the single study variable, a large portion of the insured mortality improvement 
over the studied years has been attributed by the model to other variables such as the 
introduction of preferred classes, term products, and flattened age or duration slopes that 
do explain many more mortality variations.  
 

3. If everything else were equal, compared to large policies with face amount at least 
$500,000, the polices sized between $50,000–$99,000 and $100,000–$499,000 would have 
28 percent and 12 percent higher mortality, respectively (odds ratio = 1.28 and 1.115).  

 
4. If everything else were equal, mortality of policies that had medical exams at issue is about 

8 percent lower than that of those without (odds ratio = 0.92, significant).  
 

5. If everything else were equal, permanent policy mortality would be about 1.3 percent 
higher than that of term policies (odds ratio = 1.013, insignificant). This may appear 
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inconsistent with what is shown in charts 2.1 and 2.2. Keep in mind that the descriptive 
measures in charts 2.1 and 2.2 are obtained without controlling any other variables. Most of 
the differences displayed in charts 2.1 and 2.2 may be caused by unmatched duration, issue 
year and underwriting class distributions. The logistic mortality model provides an effective 
means to perform normalization.  
 

6. If everything else were equal, the mortality of the preferred class would be about 27 
percent lower than that of the residual standard class while mortality of the aggregate class 
(one class plus unknown) is about 4 percent higher (odds ratio = 0.73 and 1.041).  

 
As mentioned before, normalized mortality information is essential in identifying underlying 
causes and avoiding miscounting the mortality differentiation values when setting pricing 
factors. Findings of this analysis can also be useful in validating industry tables split from an 
aggregated table, like the American Council of Life Insurers’ 2001 Commissioner’s Standard 
Ordinary (CSO) preferred class structure tables.  
 
3.3 Model fit for overall study reliability measurement 

 
Compared to health or property and casualty insurance claims, mortality claims occur at a much 
lower frequency and with a much more stable pattern. Relatively scarce claim counts and more 
consistent claim patterns led us to use all available data for model building, without setting 
aside data for over-fit verification.  
 
One commonly used model-fit measuring statistic is c-statistic, or area under the receiver 
operating characteristic (ROC) curve. Table 3.3 displays the c-statistics for the four models.  
 
Table 3.3. Model fit 

Association of predicted probabilities  
and observed responses 

Female Male 

Nonsmoker smoker Nonsmoker Smoker 

c 0.682 0.753 0.679 0.747 

 
Several items should be noted. 
 

 Vinsonhaler et al. (2001) analyzed private pension plan experience data with a similar 
but simpler logistic q model (only one explanatory variable). Their model had c-statistics 
in the range of 0.51–0.59 for most of the age groups. Though we are not measuring c-
statistic by age group, the comparison still gives a sense that our four models have 
reasonably high c-statistics and fit the corresponding data sets well.  

 

 An interesting observation is that the two nonsmoker models have lower c-statistics 
than the two smoker models. If c-statistic is used as a predictability measure, the 
predictability by the same set of explanatory variables for smokers is about 10 percent 
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higher than for nonsmokers. This 10 percent gain in death predictability is likely from 
knowing smoking status.  
 

4. IMPACT OF DEATH CENSORSHIP BY POLICY LAPSATION  
 
Along with the advantages mentioned before, the adaption of a statistical model for insured 
mortality study brings a new issue that the conventional descriptive methods do not need to 
deal with: “death censorship by lapsation.”  
 
Think of a group of 100 current policyholders. If 10 died in the next 12 months but only five 
generated claims and the other five died after termination of coverage, the death rate of the 
group would be 10 percent but claim rate would be only 5 percent. Insured mortality, or claim 
rate, is conditioned on policy in-force and only reflects claim risk. It is not equivalent to 
mortality measurement for a general population. When models like those in (1.1)–(1.4) or our 
logistic q model are used for estimating insured mortality, or claim rate, they do not recognize 
or discount policy lapse and tend to overestimate claim rate. This overestimation may not be a 
material issue for a mortality differential study because differential is usually measured in 
aggregate and by ratios. If overestimation occurs to both the numerator and the denominator 
by a same factor, the ratio will cancel out the overestimation and remains relatively accurate. 
However, when the model is used for individual policy or policy group mortality extrapolation, 
such as in experience table development, the overestimation can be significant. One solution is 
to modify logistic q model (3.1) and (3.2) to discount possible future policy lapse from 
contributing claim.  
 
Censoring-based adjustment: Let’s reserve q for death rate and assume that each insured 
policy has three observable statuses (and corresponding probabilities) at the end of an 
exposure year: lapse (𝑞𝑙), claim (𝑞𝑐) and in-force⁡(𝑞𝑖) so that 

 
𝑞𝑙 + 𝑞𝑐 + ⁡𝑞𝑖 = 100%. 
 

With the same explanatory variables xi as used in (3.2), we can use a multinomial logistic model 
to model the three probabilities as follows (see Hosmer, Lemeshow and Sturdivant 2013, 
chapter 8, for more descriptions). 
 
 
 
 
 
 
(4.1)                  
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Let us call this model a logistic 𝑞𝑐 model to emphasize claim-rate estimation. The added lapse 
component 𝑞𝑙 in (4.1) plays a role of estimating the to-be-lapsed portion of exposures and 
excluding them from contributing deaths to claim-rate 𝑞𝑐 estimation.  
 
Asymptotically, by comparing models (3.2) and (4.1), we have 
 
(4.2) lim

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛→∞
𝑞 = lim

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛→∞
(𝑞𝑐 +𝑞𝑙) = 1⁡⁡⁡⁡ 

 
which implies that (4.2) asymptotically splits the total death rate into a claimed portion and a 
lapsed portion. As to the asymptote of the claimed portion,  

(4.3)  lim
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛→∞

𝑞𝑐 = lim
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛→∞

=

{
 
 

 
 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⁡

⁡⁡

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

 

For projection purposes, l and c are usually related to initial lapse and claim levels; l1 and c1 
are related to lapse and claim slopes. A highly simplified interpretation of (4.3) is that, 
depending on if the death rate asymptotically increases faster than, slower than or equal to the 
lapse rate of a portfolio, the portfolio’s claim rate will approach 100 percent, 0 percent or 
something in between. 
 
It is understood that insured lapse rates are driven by many long- and short-term factors and do 
not necessarily have a relationship as regular with duration as claim rate or death rate. The 
lapse component of model (4.1) may not have as good a fit to insured lapse experience. 
However, it is reasonable to view the lapse component of model (4.1) as an empirical data-
driven adjustment for the unknown portion of the nonclaim-generating exposures. No matter 
which of the three asymptotes in (4.3) occur, the overall effect of (4.1) on qc is to flatten the 
modeled qc slope by duration and to result in lower modeled qc than modeled q by model (3.2), 
especially for advanced ages or later durations. Model (4.1) allows qc not to approach 100 
percent, which is not easily achievable with models (1.1)–(1.4).  
 
Model (4.1) is especially useful for estimating ultimate mortality. Due to a data-usage 
agreement issue, we do not have access to the policy-lapse detail for this study and are unable 
to demonstrate a real output for model (4.1). A follow-up study is planned.  
 
As an alternative, we applied some industry expert opinions on insured ultimate mortality to 
create a simplified version of model (4.1), used the model to produce model-estimated industry 
experience tables, and compared the tables with SOA’s 2001 and 2008 Valuation Basic Tables 
(VBTs). The result is very positive (see the following six charts). This supports a point we made 
earlier: Using less but more relevant data may achieve equal or better results than using more 
but less relevant data.  
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Because this alternative involves various subjective assumptions, it is not presented in detail 
here. However, we are open to inquiries and interested in discussion.  
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5. CONSTRAINTS AND POSSIBLE ENHANCEMENTS 
 
Among others, three types of biases can occur in an insured mortality experience study: 
parameter bias, sampling bias and data bias. A parameter bias is a systemic bias that reflects 
technical limitations of a study method (e.g., using a linear model to fit U-shaped experience). A 
sampling bias happens when a substitute dataset is used to represent a target population but 
the substitute does not have the same characteristics of the target (e.g., using a small sample to 
represent a large population, or using past experience to approximate future outcomes). A data 
bias is the discrepancy between data and actuality (e.g., misreported ages of deaths or 
unrecorded lapse).  
 
Some logistic models’ parameter bias (e.g., a logistic q model overestimates claim rate qc) and 
sampling bias (e.g., uncontrolled company contributions causing inconsistent representation of 
the industry) have been discussed in the previous sections. As in any other large database, 
insured experience data has plenty of data biases such as missing data and inconsistent data 
coding between companies, which may compromise the quality of logistic modeling or other 
experience studies. The following are a few more constraints of using logistic regression for 
insured experience studies.  
 

1. Logistic q or qc models may not fit infant and pre-marriage attained-age experience well 
(parameter bias). Mortality is usually high in these ages due to causes such as accidents 
and suicides. As the excess causes level off with age, mortality regresses to a more 
normal pattern that fits better with logistic q function. The main strengths of logistic 
models are in aggregated mortality slope/differential estimation and model 
extrapolation. To improve fit, a possible solution could be to further customize a logistic 
q or qc model with some spline or localized regression methods to fit the ages that have 
less regular mortality patterns. 
 

2. When scarce experience data are available, such as at very old issue ages or later 
durations (data bias), a logistic function will be the primary driver for estimating 
modeled q or qc. For more accurate estimations, calibrations with expert knowledge are 
usually necessary. 

 
3. Shock lapse and shock mortality that occur at the end of the level premium period or 

during rare events like pandemics cannot be fit or reflected well by a continuous 
function-based model (parameter bias). At a more granular level, modeling issues such 
as quantifying the end of the level period effect for a specific portfolio will need more 
than a logistic mortality model. However, at an industry aggregated level and for 
constructing insured mortality tables, our study shows logistic models deliver 
reasonable results. 
 

4. The current lack of a consistently collected long-term insured experience database is 
limiting the optimization of any industry experience studies, including logistic mortality 
models (sampling and data biases). For example, not all companies and not all product 
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information are consistently or proportionally presented in an ad hoc industry-
experience data collection. Special cares are necessary in interpreting model outputs 
that implicitly assume the consistency. As data-processing technology and analytical 
methodology advance, it is our hope the industry will establish a mechanism to 
consistently collect comprehensive experience data for in-depth experience studies.  

 
In summary, logistic regression models have many strengths and much potential for insured 
mortality experience studies, including  
 

 Testing for statistical strength of mortality drivers in explaining mortality variations with 
effect analysis 

 Generating normalized mortality metrics such as slopes and differentials with odds ratio 
analysis 

 Extrapolating for advanced age or ultimate mortality with modeled estimation 

 Bridging or smoothing between select and ultimate mortality with model link function 

 Quantifying overall study reliability with model fit statistics 

 Helping construct multidimensional experience tables by using the model as a predictive 
model 

 Being implementable with widely available software systems  
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Appendix A. Logistic q model coefficient interpretation 

Consider a logistic q model  

(A.1)     

 

with two explanatory variables:  as continuous and  as a binary variable having 

male and female two-value categories. For the categorical variable sex, there could be many 
different ways to code the variable for analysis. The most commonly used coding scheme is 
reference coding: Code one category as 1 and the other as 0 and call the category 0 the 
reference category (e.g., 1 for female and 0 for male and male is the reference category). 
Reference coding is useful when the primary goal of a study is to compare mortality between 
two segments of policies.  

Under this coding scheme, we can calculate the difference of log of odds between females and 
males for the same age (controlling age), 

(A.2) 

or  

(A.2a) 

 
which is the odds ratio of death between females and males.  

For the continuous variable age, if we take the difference of log of odds between any age x and 
x + 1 for the same sex (controlling sex), we can derive 

(A.3) 

 
This is the odds ratio of death when age increases by 1 unit.  

If we set age = 0 and sex = 0 (or male) and consider this as the overall reference group, we have 

(A.4) 

 
In summary, (A.2), (A.3) and (A.4) illustrate how the coefficients of a logistic q model can be 
interpreted as odds ratios under the reference coding. 

 The exponential of a binary variable’s coefficient represents the odds ratio of the non-
reference category vs. the reference category. 

 The exponential of a continuous variable’s coefficient represents the odds ratio when 
the variable value increases by 1 unit. 
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 The exponential of the intercept represent the odds of the overall reference subset that 
have value 0 for all the explanatory variables, in this case, the males of age 0.  

 Through variable transformation and recoding, we may choose any category as the 
reference.  

In a more general situation, if a categorical variable has k categories of values and k > 2, we can 
replace it with a set of k − 1 binary variables and retain the reference coding advantages.  

For example, if in model (A.1) sex has three values: female, male and unknown, we can replace 
sex with 3 – 1 = 2 binary variables y1 and y2 . And the three sex categories can be represented by 
the paired (y1 , y2 ) as: 

 y1 y2 

female 1 0 

male 0 1 

unknown 0 0 

 
This means that y1 serves as female indicator, y2 as male indicator and the pair of (0,0) as the 
reference. Model (A.1) is reformatted as 

(A.1a) 

 
This model has only continuous and binary explanatory variables. Its coefficients can be 
interpreted as summarized before.  

There are also other useful coding schemes for categorical variables, under which the model 
coefficients can be interpreted differently. For example, the “deviation from means coding” 
codes the binary variables with values of 1 and −1 instead of 1 and 0. With this coding, the 
reference category is always the total controlled mean and the coefficient of a binary variable 
estimates the odds ratio between the represented variable category and the overall mean. This 
coding scheme is very useful for comparing mortality of a segment relative to the overall 
means. See Hosmer, Lemeshow and Sturdivant (2013, chapter 3) for more discussion.  
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Appendix B. Logistic q model coefficient estimation 

Consider logistic q model,  

(B.1)   

 
Let y be the death indicator, with value 1 for death and 0 for in-force, X denotes the vector of 

explanatory variable X = { x1 , x2 ,…,xk}, and β = { ,…, } are the coefficients. Then,  

q = Prob(y = 1|X)  

is a function of β when a sample value of X is given. Suppose we have a sample of n 
independent observation pairs (yi, Xi), i = 1, …, n. Since the likelihood of one observed yi given Xi 
is   

 

the joint likelihood of all n observations is the product of these likelihoods: 

(B.2) 

 
To solve for the β that maximize the likelihood function (B.2), it is equivalent and easier to solve 
for β that maximizes the log likelihood. 

(B.3) 

 
Unfortunately, the maximum likelihood estimate of β cannot be written explicitly. A Newton-
Raphson method is usually used to solve iteratively for the value of β that maximize (B.3). 
Consult McCullagh and Nelder (1989) for discussions of the methods commonly used by 
statistical modeling computer software.  
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