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Abstract: Recently, it has been argued that capital markets may share some of the overwhelming
longevity risk exposures borne by the pension and life insurance industries. The transfer of risk can
be accomplished by trading standardized derivatives such as q-forwards that are linked to published
mortality indexes. To strategize such trades, one may utilize “longevity Greeks,” which are analogous
to equity Greeks that have been used extensively in managing stock price risk. In this paper, we first
derive three important longevity Greeks—delta, gamma and vega—on the basis of an extended version
of the Lee-Carter model that incorporates stochastic volatility. We then study the properties of each
longevity Greek and estimate the levels of effectiveness that different longevity Greek hedges can possibly
achieve. The results reveal several interesting facts; for example, in a delta-vega hedge formed by
q-forwards, the choice of reference ages does not materially affect hedge effectiveness, but the choice of
times to maturity does. These facts may help insurers to better formulate their hedge portfolios, and is-
suers of mortality-linked securities to determine what security structures are more likely to attract liquidity.

1 Introduction

It has been argued that capital markets may share some of the overwhelming longevity risk exposures borne
by the pension and life insurance industries (Graziani 2014; Michaelson and Mulholland 2014). Capital
market investors may be interested in taking longevity risk in exchange for a risk premium, because it has
no apparent correlations with typical market risk factors such as equity, inflation and foreign exchange. The
resulting diversification effect allows capital market investors to expand their efficient frontiers, achieving
better risk and reward combinations.

Capital market investors demand liquidity and transparency. Therefore, to attract their participation
in longevity risk transfers, there is a need to package longevity risk as standardized products that are
structured like typical capital market derivatives such as swaps and forwards. Hedgers have to compromise,
as standardized hedging instruments do not give a full elimination of risk (which bespoke derisking solutions
such as pension buyouts can offer). The act of standardization leads to a fundamental question: Given a
collection of standardized mortality derivatives, how should a hedger optimize a longevity hedge? Over
the past few years, there has been a wave of work on this research question. The contributions can be
divided into two broad categories: (1) risk minimization and (2) sensitivity matching.

A risk minimization strategy is one that aims to minimize a certain risk measure that reflects the
hedger’s exposure to longevity risk. The most commonly used risk measure is the variance of the present
values of the unexpected cash flows arising from the liability being hedged and the hedging instruments
used. Examples of such strategies include those proposed by Dahl and Møller (2006), Dahl et al. (2008),
Coughlan et al. (2011), Dahl et al. (2011), Ngai and Sherris (2011), Cairns et al. (2014) and Wong et al.
(2014). These strategies are very well suited for hedgers with a definite hedging objective (e.g., minimizing
variance). However, a solution that is optimum with respect to one objective may require compromising
other objectives. That being said, when a hedger cares about the overall longevity risk profile (based on a
collection of risk measures), then a risk minimization strategy may not result in the most preferred hedge
portfolio.

A sensitivity matching strategy is one that equates the sensitivities of the liability being hedged and
the hedging instruments used to changes in the underlying mortality. Rather than focusing on a particular
objective, it aims to find a “replicating portfolio” that is a broadly similar to the liability being hedged
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in terms of its longevity risk exposure. Compared with risk minimization, sensitivity matching appears
to be more flexible, as measures of mortality sensitivity can be applied to, in principle, all types of life-
contingent liabilities (e.g., life insurance and annuities) and mortality derivatives (e.g., mortality forwards
and swaps). It is also more adaptable to the formation of a liability hedging platform (Coughlan et al.
2007), in which risks other than longevity (e.g., equity and inflation) are also hedged so that a synthetic
pension buyout can be created. This is because the other risks can be mitigated by matching additional
sensitivity measures (e.g., the equity delta), without the need to re-derive the optimal solution.

Depending on how sensitivity is quantified, sensitivity-matching strategies can be further classified
into two types. The first type is based on the sensitivity to the changes in the (future) mortality rates
themselves. For instance, the key q-duration proposed by Li and Luo (2012) measures the sensitivity to
changes in several representative mortality rates on the relevant mortality curve/surface. Other examples
include those considered by Li and Hardy (2011), Plat (2011), Tsai et al. (2010), Tsai and Jiang (2011),
Lin and Tsai (2013) and Tsai and Chung (2013). In addition to calibrating standardized longevity hedges,
sensitivity-matching techniques have also been used in the context of natural hedging, whereby the offset-
ting longevity exposures in life insurance and life annuity books are utilized (see, e.g., Wang et al. 2010;
Lin and Tsai 2014).

The second type, which is the focus of this paper, is based on the sensitivity to changes in certain
parameter(s) in the stochastic process driving the evolution of mortality. Such measures of sensitivity are
sometimes known as “longevity Greeks,” as they are largely analogous to option Greeks that are utilized
extensively to hedge equity-related risks. In a continuous-time setting, Luciano et al. (2012), Luciano and
Regis (2014) and Luciano et al. (2015) use two longevity Greeks (delta and gamma) to develop their hedge
portfolios. Their contributions have been extended by Rosa et al. (2016), who incorporate an additional
longevity Greek (theta) to measure the change in the value of a life-contingent liability with respect to the
passage of time. In a discrete-time setting, delta hedging has been considered by Cairns (2011) and Zhou
and Li (2016), and extended by Cairns (2013) to delta-nuga hedging, which incorporates additionally the
sensitivity to the drift vector of the random walk embedded in the author’s assumed stochastic mortality
model.

The continuous-time setting has many mathematical appeals, including analytical solutions that re-
quire no simulation to evaluate. However, it often relies on rather restrictive mortality processes, which
inevitably compromise its applicability in practice. As an example, the result of Luciano et al. (2012) is
developed from an Ornstein-Uhlenbeck process which captures the mortality intensity of one birth cohort
only, and hence it does not facilitate the comparison between hedging instruments that are associated
with different years of birth. In this paper, we choose to consider the discrete-time setting, which is more
practical at the expense of more computationally involved calculations. We work along the lines of Cairns
(2011) with an objective to develop a better understanding of (discrete-time) longevity Greek hedging. As
described in the following paragraphs, our contributions are fourfold.

First, we propose to use two additional longevity Greeks: gamma and vega. Considered previously
in the continuous-time setting, longevity gamma measures the second-order sensitivity to changes in the
period (time-related) effect in the assumed mortality model, complementing the corresponding first-order
sensitivity captured by longevity delta. Longevity vega, in contrast, quantifies the sensitivity to changes
in the volatility of the period effects. Although longevity vega was not considered in previous studies, we
believe that it is important to consider, as there exists profound evidence that the evolution of mortality
over time is subject to (stochastically) varying volatility (see, e.g., Lee and Miller 2001; Gao and Hu 2009;
Chai et al. 2013). In the context of equity risk, the importance of vega in a stochastic volatility environment
is highlighted by Engle and Rosenberg (1995, 2000), Lehar et al. (2002), Javaheri et al. (2004) and Crépey
(2004). Several researchers, including Gao and Hu (2009), Giacometti et al. (2012), Chai et al. (2013),
Chen et al. (2015) and Wang and Li (2016), have used different variants of the generalized autoregressive
conditional heteroskedasticity (GARCH) model to capture the stochastic volatility of mortality over time.
However, they have made no attempt to relate their GARCH models to longevity hedging.

The longevity Greeks are derived from the Lee-Carter model (Lee and Carter 1992), which is augmented
to incorporate stochastic volatility. In particular, the evolution of its period effect is modeled by a random
walk (with drift), of which the innovations are assumed to follow a GARCH(1, 1) process. We focus on
static hedges, so all longevity Greeks are calculated at time 0 when the hedge is established. The longevity
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vega of a liability/instrument is defined as the first derivative of its value with respect to the conditional
volatility of the innovations at time 0. Likewise, longevity delta and gamma are calculated as the first
and second derivatives with respect to the time-0 value of the period effect, respectively. Compared with
those of Cairns (2011), our longevity Greeks are different in that they are expressed in a semi-analytical
form. For this reason, the computation of our longevity Greeks does not require finite inferencing and is
therefore somewhat less computationally intensive.

Second, we derive and explain the properties of the three longevity Greeks for q-forwards with different
specifications. Simply speaking, a q-forward is a zero-coupon swap with its floating leg proportional to the
realized death rate at a certain age (the reference age) in a certain year (the reference year) and its fixed
leg proportional to the corresponding predetermined forward mortality rate. We focus on q-forwards, in
part because they form basic building blocks from which other more complex mortality derivatives can be
constructed (Coughlan 2009), and in part because they have been considered extensively in the literature
(e.g., Cairns 2011, 2013; Cairns et al. 2014; Li and Hardy 2011; Li and Luo 2012). We found and explained
that, for example, other things equal, the magnitude of the longevity gamma of a q-forward increases with
its reference age. As with what have been developed for equity options (see, e.g., McDonald 2012), these
properties allow us to know more about q-forwards as a risk mitigation tool. Also, in practice, when a
perfect Greek neutralization is not always possible, these properties can guide the hedger to choose an
appropriate q-forward that can offset his or her longevity risk exposure in a particular dimension. For
instance, if the hedger has an annuity liability with a large longevity gamma, then based on our results,
he or she should contemplate acquiring a q-forward with a high reference age.

Third, using the properties of longevity Greeks, we identify and explain several relationships between
hedge effectiveness and q-forward specification. The results reveal several interesting facts. For example,
in a delta-vega hedge formed by q-forwards, the choice of reference ages does not materially affect hedge
effectiveness, but the choice of times to maturity does. What we found may aid insurers to better formu-
late their hedge portfolios, in terms of choosing what q-forwards to use and what longevity Greek(s) to
match. The relationships we identified also allow us to go beyond the classical problem of longevity hedge
optimization, shedding light on questions like “What q-forward specification is likely to be the most useful
to typical hedgers?” The answers to such questions may help issuers of mortality derivatives determine
what security specifications are more likely to attract demand and hence liquidity.

Fourth and finally, we investigate how much hedge effectiveness may be eroded if the mortality model
from which the longevity Greeks are derived does not hold. We also examine if the identified patterns
of hedge effectiveness relative to q-forward specifications are still preserved if the evolution of mortality
does not follow the assumed model. To this end, we employ the nonparametric bootstrapping method
considered by Li and Ng (2011), in which scenarios of future mortality are simulated by drawing pseudo
samples of mortality improvement rates from the historical data. This bootstrapping method is chosen for
our analyses because, among all available mortality bootstrapping methods (Brouhns et al. 2005; Koissi
et al. 2006; Renshaw and Haberman 2008; Liu and Braun 2010; Li 2014; Yang et al. 2015), it appears to
be the only one that entails no assumed model. So far as we aware, this study represents the first attempt
to validate longevity hedging results with a nonparametric, model-free approach.

The rest of this paper is organized as follows. Section 2 introduces the extension of the Lee-Carter
model that incorporates stochastic volatility. Section 3 defines the three longevity Greeks considered and
derives these Greeks for annuity liabilities and q-forwards. Section 4 studies the properties of the three
longevity Greeks for q-forwards with different specifications. Section 5 considers several longevity Greek
hedging strategies and estimate the levels of hedge effectiveness that these strategies can possibly achieve.
Section 6 validates the results in the previous section, using the nonparametric bootstrapping method.
Finally, Section 7 concludes with a discussion of the limitations of this study.

2 The Lee-Carter Model With Stochastic Volatility

The model we consider is developed from the Lee-Carter structure, which assumes that

ln(mx,t) = αx + βxκt, (1)
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Fig. 1. Estimated Values of αx, βx and κt

where mx,t represents the underlying central death rate at age x and in year t, αx is a parameter capturing
the average level of mortality at age x, κt is a time-varying index (the period effect) reflecting the overall
level of mortality in year t, and βx is a parameter measuring the sensitivity of the mortality at age x to
changes in κt.

As in many studies of the Lee-Carter model, including the original work of Lee and Carter (1992), we
assume that κt follows a random walk with drift. However, to capture the potential stochastic volatility of
mortality, we permit the innovations of the random walk to follow a GARCH(1, 1) process. Overall, the
dynamics of κt are governed by the following set of equations:

κt = κt−1 + θ + εt
εt =

√
htηt

ht = ω + aε2t−1 + bht−1

, (2)

where θ is the drift term representing the expected rate of change in κt, εt is the innovation at time t, ht is
the conditional variance of εt, ηt is a standard normal random variable that possesses no serial correlation,
and ω, a, b are parameters in the GARCH process that determine the evolution of ht. Parameters a and b,
which respectively measure the dependence of ht on ε2t−1 and ht−1, play the most crucial role in modeling
stochastic volatility. In the extreme case when a = b = 0, the volatility of εt becomes constant over time,
and equation (2) degenerates to an ordinary random walk with drift.

We illustrate the proposed model using data from the female population of England and Wales (EW),
over an age range of 60 to 89 and a sample period of 1921 to 2011. This data set and the estimated model
are used throughout the rest of this paper.

We first use Poisson maximum likelihood (Brouhns et al. 2002) to estimate the parameters in Equation
(1). The estimated values of αx, βx and κt are shown in Figure 1. Of particular interest is the pattern of
κt. As expected, κt possesses a downward trend, which reflects the historical improvement in mortality.
The augmented Dickey-Fuller test confirms that this trend is removed after first differencing; that is, the
series of κt − κt−1 is stationary. More importantly, we observe signs of varying volatility from the pattern
of κt, particularly during 1921–1961.

We use Engle’s ARCH test and the Ljung-Box test to verify the existence of conditional heteroskedas-
ticity. Reported in Table 1, the test results reject the null hypothesis that (κt − κt−1)2 possesses no serial
correlation, confirming the existence of conditional heteroskedasticity. The test results are echoed in the
sample autocorrelation function for (κt − κt−1)2 (Figure 2, left panel), from which we observe that the
sample autocorrelation for (κt − κt−1)2 at lags 1, 10, 11 and 12 are significant. There is hence a strong
ground for using a GARCH process for εt instead of assuming a constant volatility.

We then fit Equation (2) to the estimates of κt over the sample period. The retrieved values of ht
are displayed in Figure 3, while the estimates of θ, ω, a and b are reported in Table 2. The existence of
conditional heteroskedasticity is further supported by the empirical facts that ht is not constant over time
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Fig. 2. Sample Autocorrelation Functions for (κt − κt−1)2 (Left Panel) and the Squared

Standardized Residuals (ε2t/ht) in Equation (2) (Right Panel), Lags 1–20

Table 1. Values of the Test Statistic for Engle’s ARCH Test and the Ljung-Box Test on

(κt − κt−1)2, Lags 1–5

Lag 1 2 3 4 5

Engle’s ARCH test
19.9426 21.7042 22.8088 22.7850 23.1499
(<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0003)

Ljung-Box test
20.5841 21.5166 22.2887 22.5414 23.0843
(<0.0001) (<0.0001) (<0.0001) (0.0002) (0.0003)

Note: The p-values are reported in parentheses.

and that the estimates of a and b are significantly different from 0.
Finally, we evaluate the adequacy of the assumed stochastic process by applying Engle’s ARCH test and

the Ljung-Box test to the squared standardized residuals (ε2t/ht). For both tests, the null hypothesis that
ε2t/ht is free of serial correlation is not rejected (see Table 3), suggesting that conditional heteroskedasticity
is adequately captured by the assumed stochastic process. The same conclusion can be drawn from the
right panel of Figure 2, where we plot the sample autocorrelation function for the squared standardized
residuals.

We conclude this section with two remarks. First, admittedly, the existence of conditional heteroskedas-
ticity is data dependent. Nevertheless, it has been detected in the historical mortality experiences of quite
a few other populations; see Gao and Hu (2009) for Iceland, Giacometti et al. (2012) for Italy, Chai et al.
(2013) for the United Kingdom (including the part of the United Kingdom outside England and Wales),
and Chen et al. (2015) and Wang and Li (2016) for Canada, France, Germany, Japan and the United
States. Second, to keep the mathematics in the derivation of longevity Greeks modest, we consider only
the simplest possible GARCH process and do not impose an autoregressive moving average (ARMA) struc-
ture for the conditional mean of κt−κt−1. In principle, a more general GARCH(P ≥ 1, Q ≥ 1) process can
be assumed, but as Tsay (2005, Ch.3) mentioned, in most applications only lower-order GARCH processes
such as GARCH(1, 1) are used.
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Table 2. Estimates of θ, ω, a and b in Equation (2)

Parameter Estimate Standard Error t-Value

θ −0.49476 0.109296 −4.52677

ω 0.03297 0.046127 0.71482

a 0.13450 0.062155 2.16393

b 0.83494 0.071398 11.6941

3 The Longevity Greeks

3.1 Defining Survival Probabilities

Let

Sx,t(T ) =

T∏
s=1

(1− qx+s−1,t+s)

be the ex post probability that an individual aged x at time t would have survived to time t + T , where
qx,t represents the probability that an individual aged x at time t−1 dies between time t−1 and t (during
year t). Using the approximation that qx,t ≈ 1−e−mx,t , which holds exact if the force of mortality between
two integer ages is constant, we can express Sx,t(T ) in terms of the Lee-Carter parameters as

Sx,t(T ) ≈ e−
∑T
s=1 e

αx+s−1+βx+s−1κt+s

= e−
∑T
s=1 e

Yx,t(s)

= e−Wx,t(T ),

where Yx,t(s) = αx+s−1 + βx+s−1κt+s and Wx,t(T ) =
∑T
s=1 e

Yx,t(s) are defined for simplicity.
For ease of exposition, from now on, time t = 0 represents the time at which the (static) longevity

hedge is established. In the illustrations, we set time 0 to the end of 2011, the year in which the data
sample ends. We let Ft be the information about mortality up to and including time t. It is clear that for
t ≥ 0, Sx,t(T )|F0 is a random variable that depends on the random realizations of κs for s = t+1, . . . , t+T .

According to Equation (2), we have the following expression for κt given F0:

κt = κ0 + tθ +

t∑
s=1

εs = κ0 + tθ +

t∑
s=1

√
hsηs,
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Table 3. Values of the Test Statistic for Engle’s ARCH Test and the Ljung-Box Test on the

Squared Standardized Residuals (ε2t/ht) in Equation (2), Lags 1–5

Lag 1 2 3 4 5

Engle’s ARCH test
2.3773 2.5549 2.5148 2.8920 3.2689
(0.1231) (0.2787) (0.4726) (0.5761) (0.6586)

Ljung-Box test
2.4791 2.4819 2.6298 3.0612 3.9322
(0.1154) (0.2891) (0.4523) (0.5476) (0.5592)

Note: The p-values are reported in parentheses.

where

ht =

{
ω
(

1 +
∑t−1
s=1

∏s
u=1(aη2

t−u + b)
)

+ (aε20 + bh0)
∏t−1
u=1(aη2

t−u + b) if t ≥ 2

ω + aε20 + bh0 if t = 1
.

It follows that Sx,t(T ) depends on κ0 (the time-0 value of the period effect), h0 (the time-0 value of the
conditional volatility) and the sequence of i.i.d. standard normal random variables {ηs; s = 1, . . . , t+ T}.

Finally, we let
px,t(T, κ0, h0) := E[Sx,t(T ) | F0],

which represents the expected probability that an individual aged x at time t survives to time t+T , given
the information about mortality up to and including time 0. Revealed later in this section, px,t(T, κ0, h0)
is the key building block for the expected present values of the liability being hedged and the hedging
instruments at the time when the hedge is established. We can compute px,t(T, κ0, h0) by simulations.
Specifically, we can simulate a large number, say N , of sample paths of {ηs; s = 1, . . . , t+ T}, from which
N realizations of Sx,t(T )|F0 can be obtained; the value of px,t(T, κ0, h0) can be evaluated by averaging
the N realizations of Sx,t(T )|F0.

3.2 The Longevity Greeks for px,t(T, κ0, h0)

In this section, we define the three longevity Greeks for px,t(T, κ0, h0). The full derivation of each Greek
is presented in Appendix A.

The longevity delta for px,t(T, κ0, h0) is defined as

∆x,t(T ) :=
∂px,t(T, κ0, h0)

∂κ0
= −

T∑
s=1

βx+s−1 E
[
eYx,t(s)−Wx,t(T )

∣∣∣ F0

]
, (3)

which measures the first-order sensitivity of px,t(T, κ0, h0) to κ0 (the time-0 value of the period effect). For
most mortality data sets (including the one we consider), the estimates of βx are all positive. In this case,
according to the above formula, ∆x,t(T ) is always negative, which means that px,t(T, κ0, h0) is negatively
related to κ0.

The longevity gamma for px,t(T, κ0, h0) is defined as

Γx,t(T ) :=
∂2px,t(T, κ0, h0)

∂κ2
0

= E

e−Wx,t(T )

( T∑
s=1

βx+s−1e
Yx,t(s)

)2

−
T∑
s=1

β2
x+s−1e

Yx,t(s)

 ∣∣∣∣∣∣ F0

, (4)

which represents the second-order sensitivity of px,t(T, κ0, h0) to κ0 and, equivalently, the first-order sensi-
tivity of the longevity delta ∆x,t(T ) to κ0. If Γx,t(T ) is negative, then px,t(T, κ0, h0) is a concave function
of κ0. The implications of the sign of Γx,t(T ) are further discussed later in Section 4.
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The longevity vega for px,t(T, κ0, h0) is defined as

Vx,t(T ) :=
∂px,t(T, κ0, h0)

∂h0

= −
T∑
s=1

βx+s−1 E

[
eYx,t(s)−Wx,t(T )

(
∂κt+s
∂h0

) ∣∣∣∣ F0

]
, (5)

where
∂κt+s
∂h0

=

t+s∑
u=1

ηu

2
√
hu

∂hu
∂h0

and
∂hu
∂h0

=

{
b
∏u−1
v=1(aη2

u−v + b) if u ≥ 2

b if u = 1
.

It measures the first-order sensitivity of px,t(T, κ0, h0) to changes in h0 (the time-0 value of the condi-
tional volatility). Compared with ∆x,t(T ), Vx,t(T ) contains additionally ∂κt+s/∂h0, which measures the
sensitivity of the period effect at time t + s to h0. It is also noteworthy that the longevity vega depends
critically on parameter b, which measures the extent of GARCH effect (i.e., the serial dependence in the
conditional variance). If b equals 0, then the longevity vega is always 0, which means that px,t(T, κ0, h0)
is no longer sensitive to the time-0 value of the conditional volatility.

The value of ∆x,t(T ), Γx,t(T ) and Vx,t(T ) can be obtained numerically. In particular, usingN simulated
paths of {ηs; s = 1, . . . , t+ T}, which can be the same as those used for calculating px,t(T, κ0, h0), we can
readily obtain N realizations of Yx,t(s)|F0 and Wx,t(T )|F0, with which the expectations in expressions (3),
(4) and (5) can be evaluated.

3.3 The Longevity Greeks of a Stylized Pension Plan

We consider a pension plan for a single cohort of pensioners, who are aged x0 at time 0. The plan pays
each pensioner $1 at the end of each year until death or time τ , whichever is the earliest. Let r be the
constant interest rate at which future cash flows are discounted. When viewed at time 0, the present value
of the pension plan’s future cash flows is

L(x0, τ) =

τ∑
s=1

(1 + r)−sSx0,0(s),

which is a random variable that depends on the random realizations of κt for t = 1, . . . , τ .
At time 0, the expected present value of the pension plan’s future cash flows is given by

L(x0, τ) = E[L | F0] =

τ∑
s=1

(1 + r)−spx0,0(s, κ0, h0),

which is just a linear combination of various expected survival probabilities. It follows that the longevity
delta, gamma and vega for the pension plan are

∆(L)(x0, τ) =

τ∑
s=1

(1 + r)−s∆x0,0(s),

Γ(L)(x0, τ) =

τ∑
s=1

(1 + r)−sΓx0,0(s)

and

V (L)(x0, τ) =

τ∑
s=1

(1 + r)−sVx0,0(s),

respectively. These longevity Greeks respectively measure the first-order sensitivity of L(x0, τ) to κ0, the
second-order sensitivity of L(x0, τ) to κ0, and the first-order sensitivity of L(x0, τ) to h0.
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3.4 The Longevity Greeks of q-Forwards

A q-forward is characterized by three parameters: the reference age xf , the time to maturity (also known
as the reference year) tf , and the forward mortality rate qf . For a q-forward issued at time 0, the payoff
to the fixed-rate receiver, payable at time tf , is qf − qxf ,tf per $1 notional. At an interest rate of r, its
(random) discounted value at time 0 is given by

Q(xf , tf ) = (1 + r)−t
f

(qf − qxf ,tf )

= (1 + r)−t
f

(qf − (1− Sxf ,tf−1(1)))

= (1 + r)−t
f

(Sxf ,tf−1(1)− (1− qf )).

Hence, at time 0, the expected present value of the q-forward’s payoff from the perspective of the
fixed-rate receiver is

Q(xf , tf ) = E[Q | F0] = (1 + r)−t
f

(pxf ,tf−1(1, κ0, h0)− (1− qf )) (6)

per $1 notional. As Q(xf , tf ) is linearly related to pxf ,tf−1(1, κ0, h0), we can easily calculate the longevity
Greeks of the q-forward using what we have developed in Section 3.2. It turns out that the longevity delta,
gamma and vega of the q-forward (per $1 notional and from the fixed receiver’s perspective) are

∆(Q)(xf , tf ) = (1 + r)−t
f

∆xf ,tf−1(1),

Γ(Q)(xf , tf ) = (1 + r)−t
f

Γxf ,tf−1(1),

and
V (Q)(xf , tf ) = (1 + r)−t

f

Vxf ,tf−1(1),

respectively. These longevity Greeks respectively represent the first-order sensitivity of Q(xf , tf ) to κ0,
the second-order sensitivity of Q(xf , tf ) to κ0, and the first-order sensitivity of Q(xf , tf ) to h0. Of course,
they are functions of the reference age xf and time to maturity tf . However, they do not depend on the
forward mortality rate qf , which appears in Q(xf , tf ) as a constant term and thus becomes irrelevant when
derivative is taken.

4 Analyzing the Longevity Greeks of q-Forwards

In this section, we study the properties of the three longevity Greeks of q-forwards. All empirical illustra-
tions are based on the data and model described in Section 2 and a constant interest rate of r = 5% per
annum.

4.1 Introducing the Curve of exp(− exp(Yx,t(1))) against Yx,t(1)

It follows from Equation (6) that the expected present value of the payoff to the fixed-rate receiver of a
q-forward (with reference age xf and time to maturity tf ) can be expressed as

Q(xf , tf ) = (1 + r)−t
f

(pxf ,tf−1(1, κ0, h0)− (1− qf ))

= (1 + r)−t
f

(E
[
Sxf ,tf−1(1)

∣∣ F0

]
− (1− qf ))

= (1 + r)−t
f

(
E

[
e−e

Y
xf ,tf−1

(1)
∣∣∣∣ F0

]
− (1− qf )

)
,

which is linearly related to E
[
exp(− exp(Yxf ,tf−1(1)))

∣∣ F0

]
.

It is clear that the curve of exp(− exp(Yx,t(1))) against Yx,t(1) is very influential to the expected present
value and hence the longevity Greeks of a q-forward. It can be verified easily that the curve possesses the
following properties:
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1. For all real values of Yx,t(1), the curve is downward sloping.

2. For all Yx,t(1) < 0 (equivalently speaking, for all mx,t = eYx,t(1) < 1), the curve is concave.

3. For Yx,t(1) < −1 (equivalently speaking, for allmx,t < e−1 ≈ 0.3679), the curve becomes increasingly
concave as Yx,t increases.

The value of mx,t is typically less than the threshold of 0.3679, except for very high ages. For instance, this
threshold is not exceeded until age 97 (100) for English and Welsh males (females) in 2011. In practice,
it is unlikely that a q-forward with such an extremely high reference age will be available in the market.
Therefore, the portion of the curve of exp(− exp(Yx,t(1))) that is of interest to us is concave, with a
concavity that increases with Yx,t(1). Figure 4 shows the curve of exp(− exp(Yx,t(1))) for −6 < Yx,t(1) <
−2, a range that encompasses all values of Yx,t(1)|F0 for x = 60, . . . , 89 and t = 1, . . . , 30, calculated from
10,000 simulated sample paths of {κt|F0; t = 1, . . . , 30}.

Also shown in Figure 4 are 100 simulated values of Yx,9(1)|F0, for x = 65, 75, 85. As x increases, the
cloud of simulated values moves to the right. This outcome is not surprising, because Yx,t, which represents
the log central death rate at age x in year t, should be monotonically increasing with x when t is fixed.
Consequently, for a given t, the simulated values of Yx,t(1)|F0 = (αx + βxκt+1)|F0 tend to be larger as x
increases. Similarly, because of the downward trend in κt, we can deduce that for a given x, the simulated
values of Yx,t(1)|F0 tend to be smaller as t increases.

The following analyses draw heavily from the facts concerning the curve of exp(− exp(Yx,t(1))) against
Yx,t(1) and the simulated values of Yx,t(1)|F0.

4.2 Properties of the Longevity Delta

The longevity delta of a q-forward (with reference age xf and time to maturity tf ) is defined as the first
partial derivative of Q(xf , tf ) with respect to κ0. Assuming the expectation and differential operator can
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Fig. 5. The Longevity Delta of q-Forwards With Reference Ages xf = 60, . . . , 89 and Times

to Maturity 1, . . . , 30

be interchanged, it can be expressed as

∆(Q)(xf , tf ) = (1 + r)−t
f

∆xf ,tf−1(1)

= (1 + r)−t
f ∂

∂κ0
E

[
e−e

Y
xf ,tf−1

(1)
∣∣∣∣ F0

]

= (1 + r)−t
f

E

[(
∂e−e

Y
xf ,tf−1

(1)

∂Yxf ,tf−1(1)

)(
∂Yxf ,tf−1(1)

∂κ0

) ∣∣∣∣∣ F0

]

= (1 + r)−t
f

βxf E

[
∂e−e

Y
xf ,tf−1

(1)

∂Yxf ,tf−1(1)

∣∣∣∣∣ F0

]
. (7)

Figure 5 shows the longevity deltas of q-forwards with reference ages xf = 60, . . . , 89 and times to
maturity tf = 1, . . . , 30. All of the longevity deltas are negative, which is expected because the curve
of exp(− exp(Yx,t(1))) against Yx,t(1) is always downward sloping (so that the expectation of the partial
derivative is negative), and the values of βx for all x ∈ [60, 89] are positive.

We also observe that the longevity delta of a q-forward increases (becomes less negative) when its time
to maturity tf lengthens, but decreases (becomes more negative) when its reference age xf rises. These
trends can be explained by considering Equation (7), which suggests that the estimate of ∆(Q)(xf , tf ) is
proportional to the gradient of the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) over the region of
Yxf ,tf−1(1) that the simulated values of Yxf ,tf−1(1)|F0 span.

As argued in Section 4.1, for a fixed xf , the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to
move leftward as tf increases, lining up along the flatter portion of the curve of exp(− exp(Yxf ,tf−1(1)))

against Yxf ,tf−1(1). Moreover, the discount factor in ∆(Q)(xf , tf ) approaches 0 as tf increases. As such,
the magnitude of the longevity delta is smaller as the time to maturity tf becomes longer.

The relationship between ∆(Q)(xf , tf ) and xf is more complicated. On one hand, the magnitude of the
expectation in Equation (7) increases with xf , as the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends
to move rightward when xf increases. On the other hand, the magnitude of βxf reduces as xf increases
(see Figure 1). However, in this illustration, the former effect outweighs the latter, so the magnitude of
the longevity delta becomes larger as the reference age xf becomes greater.

4.3 Properties of the Longevity Gamma

The longevity delta of a q-forward (with reference age xf and time to maturity tf ) is defined as the second
partial derivative of Q(xf , tf ) with respect to κ0. Assuming the expectation and differential operator are
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Fig. 6. The Longevity Gamma of q-Forwards With Reference Ages xf = 60, . . . , 89 and Times

to Maturity tf = 1, . . . , 30

interchangeable, it can be expressed as

Γ(Q)(xf , tf ) = (1 + r)−t
f

Γxf ,tf−1(1),

= (1 + r)−t
f ∂2

∂κ2
0

E

[
e−e

Y
xf ,tf−1

(1)
∣∣∣∣ F0

]

= (1 + r)−t
f

β2
xf E

[
∂2e−e

Y
xf ,tf−1

(1)

∂(Yxf ,tf−1(1))2

∣∣∣∣∣ F0

]
. (8)

Figure 6 shows the longevity gamma of q-forwards with reference ages xf = 60, . . . , 89 and times to
maturity tf = 1, . . . , 30. The following observations can be made:

• As the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is concave, the expectation of the second

partial derivative in Equation (8) is negative, and so is Γ(Q)(xf , tf ).

• As tf increases, the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move leftward where
the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is less concave, so the expectation of the
second partial derivative in Equation (8) becomes less negative. Compounded by the fact that the
discount factor diminishes with tf , the value of Γ(Q)(xf , tf ) becomes less negative as tf increases.

• The relationship between Γ(Q)(xf , tf ) and xf depends on two offsetting effects. As xf increases,
the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move rightward where the curve of
exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is more concave, which in turn means that the expec-
tation of the second partial derivative in Equation (8) becomes larger in magnitude. On the other
hand, as xf increases, the magnitude of βxf reduces (see Figure 1). For xf < 85, βxf reduces rather
gently with xf , so the former effect dominates, and the magnitude of Γ(Q)(xf , tf ) increases with xf .
However, the opposite is true for xf > 85 when βxf reduces rapidly with xf .

• The relationship between Γ(Q)(xf , tf ) and xf is somewhat jagged. The jaggedness arises because
the estimates of βx are not perfectly smooth across ages (see Figure 1).
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4.4 Properties of the Longevity Vega

In terms of Yxf ,tf−1(1), the longevity vega of a q-forward (with reference age xf and time to maturity tf )
can be expressed as

V (Q)(xf , tf ) = (1 + r)−t
f

Vxf ,tf−1(1),

= (1 + r)−t
f ∂

∂h0
E

[
e−e

Y
xf ,tf−1

(1)
∣∣∣∣ F0

]
, (9)

which suggests that from a numerical perspective, V (Q)(xf , tf ) measures how the average of the simulated
values of exp(− exp(Yxf ,tf−1(1))) will change when the time-0 conditional volatility h0 increases by an
arbitrarily small amount.

Figure 7 shows the longevity vega of q-forwards with reference ages xf = 60, . . . , 89 and times to matu-
rity tf = 1, . . . , 30. As with the longevity delta and gamma, the longevity vega is negative for all reference
ages and times to maturity considered. A negative longevity vega means that the expected present value
of a q-forward decreases as the conditional volatility (h0) of the current period effect increases. The neg-
ativeness of the longevity vega is related to the concavity of the curve of exp(− exp(Yxf ,tf−1(1))) against
Yxf ,tf−1(1), which means that the sensitivity of exp(− exp(Yxf ,tf−1(1))) to changes in Yxf ,tf−1(1) is asym-
metric. When h0 increases, the range of the simulated values of Yxf ,tf−1(1)|F0 widens symmetrically
around E

[
Yxf ,tf−1(1)

∣∣ F0

]
; however, because of the asymmetric sensitivity, the average of the simulated

values of exp(− exp(Yxf ,tf−1(1)))|F0 reduces, thereby resulting in a negative longevity vega.1 This phe-
nomenon is demonstrated in Figure 8, which compares the simulated values of exp(− exp(Yx,t(1)))|F0 that
are based on two different assumed values of h0.

The relationship between the longevity vega and the reference age (xf ) is a result of the trade-off
between two offsetting effects:

1. When xf increases, the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move rightward where
the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is more concave. The effect of asymmetric
sensitivity becomes more severe, thereby pushing the longevity vega more negative.

2. When xf increases, βxf reduces, and so does the variance of Yxf ,tf−1(1)|F0 (which is proportional
to the square of βxf ). As the simulated values of Yxf ,tf−1(1)|F0 span a smaller range, the effect
of asymmetric sensitivity becomes less significant, and hence the longevity vega tends to be less
negative.

1According to Theorem 2 in Section 5.3, the third moment of κtf |F0 about its mean is 0. It follows that the
distribution of Yxf ,tf−1(1) = αxf + βxfκtf given F0 is symmetric.

13



-4

0.982

-4

0.974

Fig. 8. Simulated Values of exp(− exp(Yx,t(1)))|F0 Based on a Smaller Value of h0 (Left Panel)

and a Larger Value of h0 (Right Panel)

Note: The values of x and t used are arbitrary.

As seen in the left panel of Figure 7, in this illustration the first effect dominates for xf < 85, but the
opposite happens when xf > 85.

The relationship between the longevity vega and the time to maturity (tf ) depends on the following
three factors:

1. Given the assumed stochastic process for κt, the volatility of κtf |F0 increases with tf . As such, when
tf increases, the volatility of Yxf ,tf−1(1)|F0 = (αxf + βxfκtf )|F0 increases, and thus the simulated
values of Yxf ,tf−1(1)|F0 span a wider range. Consequently, the effect of asymmetric sensitivity
becomes more significant, thereby pushing the longevity vega more negative.

2. As tf increases, the cloud of the simulated values of Yxf ,tf−1(1)|F0 tends to move leftward where
the curve of exp(− exp(Yxf ,tf−1(1))) against Yxf ,tf−1(1) is less concave. The effect of asymmetric
sensitivity becomes less significant, so the longevity vega tends to be less negative.

3. As tf increases, the discount factor in equation (9) reduces, so the longevity vega tends to be less
negative.

The first factor dominates when tf is small, but the second and third factors become more influential when
tf is high. In this illustration, the turning point is at tf = 12 (see the right panel of Figure 7).

5 Greek Hedging of Longevity Risk

In this section, we consider different static longevity Greek hedging strategies, and investigate how much
hedge effectiveness can be obtained using different combinations of longevity Greeks and q-forwards.

5.1 Assumptions

The following assumptions are used in the rest of this section:
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1. The liability being hedged is a pension plan for a single cohort of individuals aged x0 = 60 at time
0. The pension plan pays each pensioner $1 at the end of each year until age 89 or death, whichever
is the earliest (i.e., τ = 30).

2. At time 0, a static longevity hedge for the pension plan is constructed using one or two q-forwards.

3. At time 0, q-forwards with reference ages xf = 60, . . . 89 and times to maturity tf = 1, . . . , 30
years are available. The q-forwards’ reference population is the England and Wales (EW) female
population.

4. The mortality experience of the plan members is identical to that of the EW female population, so
that there is no population basis risk.

5. The interest rate for all durations is r = 5% per annum.

6. The longevity Greeks are numerically calculated based on 10,000 mortality scenarios that are gen-
erated from the model described in Section 2.

Under these assumptions, the longevity Greeks of the liability being hedged are fixed regardless of
how many q-forwards are used and what the reference age(s) and time(s) to maturity are. It turns
out that the liability being hedged has an expected present value of L(60, 30) = 13.4403, a longevity
delta ∆(L)(60, 30) = −0.0562, a longevity gamma of Γ(L)(60, 30) = −0.0014, and a longevity vega of
V (L)(60, 30) = −0.0053.

5.2 The Evaluation Metric

We measure hedge effectiveness with the following metric:

HE = 1−
Var(L(60, 30)−

∑J
i=1 u(xfi , t

f
i )Q(xfi , t

f
i )|F0)

Var(L(60, 30)|F0)
, (10)

where

• J denotes the number of q-forwards used,

• u(xfi , t
f
i ) represents the notional amount of the ith q-forward used, and

• xfi and tfi are the reference age and time to maturity for the ith q-forward used, respectively.

In the fraction, the numerator is the hedged position’s variance, whereas the denominator is the unhedged
position’s variance. It follows that a value of HE that is close to 1 indicates a good hedge effectiveness.

We simulate 10,000 mortality scenarios on top of those used for calculating the longevity Greeks. The
additional 10,000 simulated mortality scenarios enable us to calculate realizations of L(60, 30)|F0 and
Q(xf , tf )|F0, with which the value of HE can be estimated.

5.3 Single Longevity Greek Hedging

When using J = 1 q-forward to match one longevity Greek, we find the required notional amount by
setting

G(L)(60, 30)− u(G)(xf , tf )G(Q)(xf , tf ) = 0,

which gives

u(G)(xf , tf ) =
G(L)(60, 30)

G(Q)(xf , tf )
,

where G = ∆, V represents the longevity Greek being matched. We do not consider gamma hedges here,
as it does not seem legitimate to match the second-order sensitivity to κ0 without matching the first-order
sensitivity.

It is clear that the notional amount and hence the hedge effectiveness depend on G, xf and tf . Figure
9 (left and middle panels) shows the values of HE for G = ∆, V , xf = 60, . . . , 89 and tf = 1, . . . , 30.

15



60 65 70 75 80 85 89
1 

5 

10

15

20

25

30

60 65 70 75 80 85 89
1 

5 

10

15

20

25

30

60 65 70 75 80 85 89
1 

5 

10

15

20

25

30

Fig. 9. Values of HE for the Delta Hedges (Left), Vega Hedges (Center) and Ex Post

Optimal Hedges (Right) With J = 1 q-Forward, xf = 60, . . . , 89 and tf = 1, . . . , 30

We also benchmark the Greek hedges against the corresponding ex post “optimal” hedges, which are
obtained by searching for the notional amount that minimizes the hedged position’s variance. Following
the results of Cairns et al. (2014), for a hedge with J = 1 q-forward, the ex post optimal notional amount
is

u(opt)(xf , tf ) =

√
Var(L(60, 30)|F0)

Var(Q(xf , tf )|F0)
× Corr(L(60, 30),Q(xf , tf )|F0), (11)

which gives a hedge effectiveness equal to the square of Corr(L(60, 30),Q(xf , tf )|F0). The variances and
correlation in Equation (11) are estimated using the 10,000 mortality scenarios which we use to evaluate
the Greek hedges. The right panel of Figure 9 shows the ex post optimal hedge effectiveness for different
combinations of xf and tf .

Several interesting relationships are observed in Figure 9. First, for a given time to maturity, the
hedge effectiveness is insensitive to the choice of the reference age. This outcome is not overly surprising,
because the assumed Lee-Carter structure implies that ln(mx,t) and ln(my,t) are perfectly correlated even
if x 6= y. As such, q-forwards with the same time to maturity but different reference ages should result in
similar levels of hedge effectiveness.

Second, a delta hedge is almost equally effective as the ex post optimal hedge when the q-forward’s
time to maturity is short (less than 15 years) but is very ineffective when the q-forward’s time to maturity
is long. This outcome can be attributed to the pattern of ∆(Q)(xf , tf ) against tf (Figure 5, right panel),
which implies that in a delta hedge, the notional amount u(∆)(xf , tf ) = ∆(L)(60, 30)/∆(Q)(xf , tf ) of the
q-forward increases rapidly as tf increases. However, the optimal notional amount u(opt)(xf , tf ) does not
increases rapidly with tf . In effect, as tf increases, u(∆)(xf , tf ) moves away from u(opt)(xf , tf ), leading to
a highly suboptimal hedge effectiveness. See Figure 10 for an illustration.

Third, in contrast, the effectiveness of a vega hedge approaches that of the ex post optimal hedge when
the q-forward’s time to maturity becomes longer. This relationship is associated with the moments of κtf
(about its mean) under the assumed GARCH process. In more detail, recall that Q(xf , tf ) (the expected
present value of the payoff from a q-forward with reference age xf and time to maturity tf ) is linearly
related to

pxf ,tf−1(1, κ0, h0) = E
[
e−e

αxf
+βxf

κtf
∣∣∣ F0

]
= E

[
f(κtf )

∣∣ F0

]
,

where

f(κtf ) := e−e
αxf

+βxf
κtf
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is defined for convenience. Using a fourth-order Taylor’s expansion, we have

pxf ,tf1(1, κ0, h0) ≈f(κ0 + tfθ) +
1

2!

∂2f

∂κ2
tf

E

( tf∑
s=1

√
hsηs

)2
∣∣∣∣∣∣ F0


+

1

3!

∂3f

∂κ3
tf

E

( tf∑
s=1

√
hsηs

)3
∣∣∣∣∣∣ F0

+
1

4!

∂4f

∂κ4
tf

E

( tf∑
s=1

√
hsηs

)4
∣∣∣∣∣∣ F0

,
where partial derivatives are evaluated at E

[
κtf

∣∣ F0

]
= κ0 + tfθ, which is free of h0. The moments of∑tf

s=1

√
hsηs (i.e., the moments of κtf about its mean) satisfy the following results.

Theorem 1. For tf ≥ 1,

E

( tf∑
s=1

√
hsηs

)2
∣∣∣∣∣∣ F0

 = ztf ,0 + ztf ,1h0, (12)

where ztf ,0 and ztf ,1 do not depend on h0.

Proof. See Appendix B.

Theorem 2. For tf ≥ 1,

E


 tf∑
s=1

√
hsηs

3
∣∣∣∣∣∣∣ F0

 = 0. (13)

Proof. See Appendix C.

Theorem 3. For tf ≥ 1,

E


 tf∑
s=1

√
hsηs

4
∣∣∣∣∣∣∣ F0

 = ctf ,0 + ctf ,1h0 + ctf ,2h
2
0, (14)

where ctf ,0, ctf ,1 and ctf ,2 do not depend on h0. Furthermore, ctf ,1 tends to ∞ as tf → ∞, and if
3a2 + 2ab+ b2 < 1, then ctf ,2 tends to a constant as tf →∞.
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Proof. See Appendix D.

Our estimated GARCH(1, 1) model satisfies the condition that 3a2 + 2ab + b2 < 1 (see Table 2).2 It
follows from the results above that Q(xf , tf ) is approximately a quadratic function of h0, with a curvature
that diminishes as tf tends to infinity. In other words, the longevity vega V (Q)(xf , tf ) = ∂Q(xf , tf )/∂h0

tends to be a more accurate measure of the sensitivity of Q(xf , tf ) to h0 as tf increases, and thus the
effectiveness of a vega hedge tends to be closer to that of the ex post optimal hedge for higher values of tf .

5.4 Multiple Longevity Greek Hedging

5.4.1 Calculating the Notional Amounts

We now consider matching two longevity Greeks with J = 2 q-forwards. We let G1 and G2 be the two
longevity Greeks being matched, and u(G1,G2)(xf1 , t

f
1 ) and u(G1,G2)(xf2 , t

f
2 ) be the notional amounts of the

two q-forwards in the resulting hedge portfolio. We have(
G(Q)

1 (xf1 , t
f
1 ) G(Q)

1 (xf2 , t
f
2 )

G(Q)
2 (xf1 , t

f
1 ) G(Q)

2 (xf2 , t
f
2 )

)(
u(G1,G2)(xf1 , t

f
1 )

u(G1,G2)(xf2 , t
f
2 )

)
=

(
G(L)

1 (60, 30)

G(L)
2 (60, 30)

)
, (15)

which gives

u(G1,G2)(xf1 , t
f
1 ) =

G(L)
1 (60, 30)G(Q)

2 (xf2 , t
f
2 )− G(Q)

1 (xf2 , t
f
2 )G(L)

2 (60, 30)

G(Q)
1 (xf1 , t

f
1 )G(Q)

2 (xf2 , t
f
2 )− G(Q)

1 (xf2 , t
f
2 )G(Q)

2 (xf1 , t
f
1 )

(16)

and

u(G1,G2)(xf2 , t
f
2 ) =

G(L)
2 (60, 30)G(Q)

1 (xf1 , t
f
1 )− G(Q)

2 (xf1 , t
f
1 )G(L)

1 (60, 30)

G(Q)
1 (xf1 , t

f
1 )G(Q)

2 (xf2 , t
f
2 )− G(Q)

1 (xf2 , t
f
2 )G(Q)

2 (xf1 , t
f
1 )
. (17)

It is clear that u(G1,G2)(xf1 , t
f
1 ) and u(G1,G2)(xf2 , t

f
2 ) depend on the two q-forwards’ specifications as well

as the two matched longevity Greeks (G1,G2), which can be either (∆,Γ) or (∆, V ). We do not consider
(Γ, V ), because it does not seem appropriate to match Γ without matching ∆.

A necessary (but not sufficient) condition for two q-forwards with different times to maturity to provide
risk reduction is that the notional amounts of both q-forwards must be positive; that is, the hedger must
be the fixed leg receiver in both q-forwards. This condition can explained as follows.

• When both notional amounts are negative, the present values of the q-forward portfolio and the
pension liability change in the same direction for any departure from the expected mortality tra-
jectory. The pension plan provider will be subject to even more longevity risk compared with the
naked position.

• If one notional amount is negative and the other is positive, then the hedged position will be very
vulnerable to “nonlinear” mortality scenarios. To illustrate, let us suppose that the notional amount
of the shorter-dated q-forward is negative, while that of the longer-dated is positive. Suppose further
that on the earlier maturity date, the realized mortality is lower than expected, so that the hedger
suffers a loss (arising from both the unexpected increase in the pension liability and the net payment
to the q-forward’s counterparty). If the realized mortality on the later maturity date is also lower
than expected, then the payoff from the longer-dated q-forward may defray the earlier hedge loss
(provided that the notional amount of the longer-dated q-forward is sufficiently large). However, if
it turns out to be higher than expected (i.e., a “nonlinear” scenario), then the earlier hedge loss can
never be recovered.

We remark that this condition does not apply when the q-forwards have the same time to maturity, because
in this case, the payoffs from both q-forwards are made at the same time.

2All stationary ARCH(1) models (in which a = 0 and b < 1) meet this condition. However, admittedly, not all
GARCH(1, 1) models satisfy this condition, even if they are stationary with a+ b < 1.
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Fig. 11. Values of HE for the Delta-Gamma Hedges (Left), Delta-Vega Hedges (Center) and

Ex Post Optimal Hedges (Right) With J = 2 q-Forwards, tf1 = 5, tf2 = 15, xf1 , x
f
2 = 60, . . . , 89

Using Equations (16) and (17), it can be shown straightforwardly that to have both u(G1,G2)(xf1 , t
f
1 )

and u(G1,G2)(xf2 , t
f
2 ) being positive, we require

G(Q)
1 (xf1 , t

f
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G(Q)
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>
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1 (60, 30)

G(L)
2 (60, 30)

>
G(Q)

1 (xf2 , t
f
2 )

G(Q)
2 (xf2 , t

f
2 )
, (18)

that is, the ratio of the two matched longevity Greeks for the liability being hedged must be strictly in
between those of the two q-forwards. This necessary condition explains many of the hedging results we
are about to present.

5.4.2 Impact of the Reference Age Combinations

We now examine the effectiveness of the delta-gamma and delta-vega hedges for different reference ages
when the times to maturity are fixed to 5 and 15 years, respectively. As in the previous subsection, we
benchmark the Greek hedges against their corresponding ex post optimal hedges, which are obtained by
minimizing the hedged position’s variance on the basis of the 10,000 mortality scenarios used for evaluating
the Greek hedges. The hedging results are displayed in Figure 11. For delta-gamma hedges, most reference
age combinations yield low or even negative hedge effectiveness; a meaningful reduction in risk happens
only when one reference age is greater than 86 but the other is not. In contrast, for delta-vega hedges, the
hedge effectiveness is much more robust relative to the choice of reference ages, and is much closer to that
produced by the corresponding ex post optimal hedges.

To explain the hedging results, let us study Figure 12, which demonstrates how the delta/gamma and
delta/vega ratios of a q-forward may vary with its reference age when its time to maturity is fixed. Also
shown in Figure 12 are the corresponding delta/gamma and delta/vega ratios for the liability being hedged
(the solid horizontal lines).

Let us first focus on the delta/gamma ratios (the left panel of Figure 12). The delta/gamma ratio of
a q-forward depends quite heavily on its reference age. The sensitivity to xf can be understood from the
following formula:

∆(Q)(xf , tf )

Γ(Q)(xf , tf )
=

E
[
eYxf ,tf−1

(1)−W
xf ,tf−1

(1)
∣∣∣ F0

]
βxf E

[
eYxf ,tf−1

(1)−W
xf ,tf−1

(1)(1− eYxf ,tf−1
(1))

∣∣∣ F0

] , (19)

which says that the delta/gamma ratio is inversely related to βxf . Indeed, the pattern of the delta/gamma
ratios against xf is reminiscent of the pattern of βx against x (Figure 1). However, the trends for tf = 5
and tf = 15 almost overlap each other, indicating that the delta/gamma ratio is very insensitive to its
reference age. From the graph, it is quite clear that in order to satisfy the necessary condition specified
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Fig. 12. Delta/Gamma (Left) and Delta/Vega (Right) Ratios for q-Forwards With tf = 5, 15

and xf = 60, . . . , 89

Note: The solid horizontal line in the left (right) panel represents the delta/gamma (delta/vega) ratio

for the liability being hedged.

by (18), one q-forward in the portfolio must have a reference age less than or equal to 86, and the other
must have a reference age greater than 86.

Next, we turn to the delta/vega ratios (the right panel of Figure 12). In stark contrast, the delta/vega
ratios of a q-forward are rather sensitive to its time-to-maturity (the trends for tf = 5 and tf = 15 are far
apart) but are relatively less sensitive to its reference age. The following formula casts some light on the
observed sensitivity to tf and insensitivity to xf :

∆(Q)(xf , tf )

V (Q)(xf , tf )
=

E
[
eYxf ,tf−1

(1)−W
xf ,tf−1

(1)
∣∣∣ F0

]
E
[
eYxf ,tf−1

(1)−W
xf ,tf−1

(1)
(
∂κ

tf

∂h0

) ∣∣∣ F0

] ,
In the fraction on the right side of the above equation, the only difference between the denominator and
numerator is ∂κtf /∂h0, which of course depends heavily on tf . Compared with Equation (19), βxf no
longer appears as a coefficient of the expectation in the denominator, offering an explanation to why the
delta/vega ratio is relatively less sensitive to xf . As a consequence, for the chosen times to maturity (5
and 15 years), all reference age combinations meet the necessary condition specified by (18), offering a
reason as to why the effectiveness of a delta-vega hedge is fairly robust relative to the q-forwards’ reference
ages.

5.4.3 The Impact of the Time-to-Maturity Combinations

We now fix the reference ages to xf1 = 80 and xf2 = 89, and examine how the hedge effectiveness may vary
with the q-forwards’ times to maturity.3 The hedging results are presented in Figure 13.

Except when both times to maturity are high, the delta-gamma hedges are almost as effective as
their corresponding ex post optimal hedges for all time-to-maturity combinations. We can attribute this
outcome to the property that the delta/gamma ratio of a q-forward is sensitive to its reference age but
not to its time to maturity. The implication of this property can be observed from the left panel of Figure
14, which shows that when the reference ages are fixed to 80 and 89, the necessary condition specified by
(18) is met no matter what times to maturity are chosen. The delta-gamma hedges do not perform well
when both times to maturity are high, because in this case, the deltas and gammas of both q-forwards are
very small (see Figures 5 and 6), so that the matrix on the left side of equation (15) is close to singular.

3When considering delta-gamma hedges with tf1 = 5 and tf2 = 15, these two reference ages result in the highest
level of hedge effectiveness. Other reference ages may also be used in this analysis, provided that one of them is
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the liability being hedged.

On the other hand, the delta-vega hedges perform well for only some time-to-maturity combinations.
This outcome can be explained by considering the property that the delta/vega ratio of a q-forward is
sensitive to its time to maturity but not so much to its reference age. Because of this property, from Figure
14 we observe that in order to satisfy the necessary condition specified by (18), when the q-forward with
xf = 80 has a time to maturity of less than 10 years, the other q-forward (with xf = 89) must have a time
to maturity of greater than 15 years. Likewise, when the q-forward with xf = 89 has a time to maturity
of less than 15 years, the other q-forward (with xf = 80) must have a time to maturity of greater than
10 years. It is noteworthy that part of the diagonal in the middle panel of Figure 13 is fairly bright. This
results because, as previously mentioned, the necessary condition specified by (18) does not apply when
the two q-forwards have identical times to maturity.

less than or equal to 86 and the other is greater than 86.
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6 Validation With a Model-Free Approach

In Section 5, the model used to generate the evaluation scenarios is identical to the model from which
the longevity Greeks are derived. We now examine how the hedging results may change when the model
assumptions are waived in the evaluation work. To this end, we employ the nonparametric (model-free)
bootstrapping method that was considered by Li and Ng (2011). The method is implemented as follows:

1. Calculate the historical mortality reduction rates, defined as

rx,t =
mx,t+1

mx,t
.

Since we have 91 years of data, 90 values of rx,t are obtained for each age. The augmented Dickey-
Fuller test is performed to confirm that the trend of rx,t over time at every age is weakly stationary.

2. Construct vectors of historical mortality improvement rates, i.e.,

rt = (r60,t, . . . , r89,t)
′

for t = 1921, . . . , 2010. The vectorization is performed to preserve any potential correlation across
the age dimension.

3. To retain the potential serial dependence, rt for t = 1921, . . . , 2010 are grouped into overlapping
blocks of size 2. The following 89 blocks are obtained:

(r1921, r1922), (r1922, r1923), . . . , (r2008, r2009), (r2009, r2010).

The same block size was also used by Li and Ng (2011). We have considered other block sizes, which
lead to similar conclusions.

4. A pseudo sample of reduction rates is obtained by drawing randomly from the 89 blocks in the
previous step with replacement and pasting the blocks drawn end to end. The pseudo sample of
reduction rates is multiplied by the most recent central death rates (mx,2011;x = 60, . . . , 89) to form
a simulated mortality scenario.

5. Repeat the previous step 10,000 times to obtain 10,000 simulated mortality scenarios, which give
10,000 realizations of L(60, 30)|F0 and Q(xf , tf )|F0 for xf = 60, . . . , 89 and tf = 1, . . . , 30. The
realizations of L(60, 30)|F0 and Q(xf , tf )|F0 allow us to estimate the effectiveness of the Greek
hedges using Equation (10). They also permit us to derive the ex post optimal (variance-minimizing)
hedges. Note that the longevity Greeks (and hence the notional amounts in the Greek hedges) are
still calculated from the Lee-Carter model with GARCH effects.

Figure 15 shows the effectiveness of various hedges, estimated using the nonparametric bootstrapping
method. As expected, the effectiveness of all hedges is reduced as the model assumptions are waived.

Let us first focus on the top row, where the effectiveness of the single Greek hedges is presented.
Still, the delta and vega hedges can perform comparably to the ex post optimal hedges, provided that the
q-forward’s time to maturity is appropriately selected. The vega hedges are almost as effective as the ex
post optimal hedges if the q-forward’s time to maturity is longer than 10 years, whereas the delta hedges
perform similarly to the ex post optimal hedges only if a short-dated q-forward is used. These observations
are in line with the those made in Section 5.3.

When both the evaluation scenarios and the longevity Greeks are obtained from our assumed model,
which implies that the log mortality rates at a given time point are perfectly correlated across ages, the
effectiveness of the single Greek hedges is robust relative to the q-forward’s reference age (see Figure 9).
When the evaluation scenarios are obtained from the nonparametric bootstrap, the assumption of perfect
age correlation no longer holds, so we observe that the robustness with respect to the choice of reference ages
is weakened. For both delta and vega hedges, the nonparametrically estimated hedge effectiveness increases
and then decreases with the q-forward’s reference age. This pattern may be explained by considering the

22



60 65 70 75 80 85 89
1 
5 

10

15

20

25

30

60 65 70 75 80 85 89
1 
5 

10

15

20

25

30

60 65 70 75 80 85 89
1 
5 

10

15

20

25

30

60 65 70 75 80 85 89
60

65

70

75

80

85
89

60 65 70 75 80 85 89
60

65

70

75

80

85
89

60 65 70 75 80 85 89
60

65

70

75

80

85
89

1 5 10 15 20 25 30
1 
5 

10

15

20

25

30

1 5 10 15 20 25 30
1 
5 

10

15

20

25

30

1 5 10 15 20 25 30
1 
5 

10

15

20

25

30

Fig. 15. Values of HE Produced by the Delta, Vega, Delta-Gamma, Delta-Vega and Ex Post

Optimal Hedges for Different Choices of Reference Age(s) and Time(s) to Maturity

Note: All HE values are calculated using the nonparametric bootstrapping method with a block size of

2.

age-specific goodness of fit produced by the Lee-Carter model, which can be measured by the following
explanation ratio:

ER(x) = 1−
∑
t (ln(mx,t)− αx − βxκt)2∑

t (ln(mx,t)− αx)
2 ,

where the summations are taken over the entire sample period.4 The model gives a better fit to age x than
age y if ER(x) is greater than ER(y). As shown in Figure 16, the estimated values of ER(x) suggest that
the Lee-Carter model gives a poorer fit at the ends of the age range. As a consequence, the sensitivity
measures for a q-forward tend to be more inaccurate when its reference age is too high or low. The
inaccuracy in turn leads to a low hedge effectiveness.

Next, we turn to the middle row of Figure 15, which displays the nonparametrically calculated HE
values for the hedges with two q-forwards, of which the times to maturity are fixed to 5 and 15 years and
the reference ages are allowed to vary from 60 to 89. The major conclusions drawn in Section 5.4.2 are still
preserved even when the evaluation scenarios are generated using a model-free approach: (i) the delta-
gamma hedges do not give a satisfactory performance for most combination of reference ages (that lead
to one negative and one positive notional amount); (ii) compared with a delta-gamma hedge, a delta-vega
hedge is much more robust with respect to the choice of reference ages.

4This metric is adopted from the (non-age-specific) explanation ratio considered by Li and Lee (2005).
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Finally, we study the bottom row of Figure 15, which displays the nonparametrically calculated HE
values for the hedges with two q-forwards, of which the reference ages are fixed to 80 and 89 and the
reference ages are allowed to vary from 1 to 30 years. The key conclusions drawn in Section 5.4.3 can still
be observed: (i) the delta-vega hedges perform satisfactorily only for some time-to-maturity combinations;
(ii) delta-gamma hedges do not work well only when the q-forwards’ times to maturity are long.

7 Concluding Remarks

In this paper, we consider three longevity Greeks which enable us to calibrate an index-based longevity
hedge. Most notably, we propose the longevity vega to address the empirical fact that for many populations,
the volatility of mortality improvement rates changes stochastically over time. Semi-analytical formulas
for the longevity Greeks of a q-forward and a stylized pension plan are provided.

The properties of the three longevity Greeks for q-forwards are studied. It is found that, for example,
while the magnitudes of the longevity delta and gamma reduce with the time to maturity, the magnitude
of the longevity vega increases and then decreases with the time to maturity. All of these properties can be
explained by considering (i) the gradient and concavity of the curve of exp(− exp(Yx,t(1))) against Yx,t(1),
(ii) the magnitude and variability of Yx,t(1), (iii) the pattern of βx across age, and (iv) the time value of
money.

We construct static hedges by matching one or two longevity Greeks, and examine how the performance
of the Greek hedges may vary with the reference age(s) and time(s) to maturity of the q-forward(s) used.
For instance, when matching one longevity Greek (with one q-forward), the hedge effectiveness is highly
sensitive to the q-forward’s time to maturity but not so to the q-forward’s reference age. Specifically, a
delta hedge performs satisfactorily only when the time to maturity is short, whereas a vega hedge behaves
in the opposite way. This finding may help hedgers decide which longevity Greek to use when a q-forward
with a certain specification is available to them.

We fully acknowledge that the longevity Greeks are model dependent. If another stochastic mortality
model such as the Cairns-Blake-Dowd model (Cairns et al. 2006) is assumed, then the expressions for the
longevity Greeks would become quite different. To address this problem, we validate our Greek hedges
using the nonparametric bootstrapping method, which does not depend on any model. As expected, the
hedge effectiveness estimated using the model-free approach is not as good as that estimated using the
model from which the longevity Greeks are derived. Nevertheless, many of the points we made concerning
the relationship between hedge effectiveness and q-forward specifications are still observed even when the
evaluation scenarios are generated by a model-free approach.
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We conclude this paper with a discussion of its caveats. First, the existence of stochastic volatility (and
hence the necessity of the longevity vega) is data dependent. For some populations, particularly those with
little historical mortality data, conditional heteroskedasticity may not be statistically significant. Second,
we focus on q-forwards only and paid no attention to other mortality-linked securities such as S-forwards
and longevity bonds. While the longevity Greeks for these more complex securities can be derived, their
properties may not be easily explained using simple arguments. Finally, we disregard population basis
risk and small sample risk, which can be taken into account in future research by using a multi-population
mortality model and a death count process, respectively.
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Appendix A Derivation of the Longevity Greeks

This appendix presents the derivations of the three longevity Greeks for px,t(T, κ0, h0). In all derivations,
it is assumed that the expectation and differential operator are interchangeable.
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• The longevity delta for px,t(T, κ0, h0):

∆x,t(T ) =
∂px,t(T, κ0, h0)

∂κ0
=

∂

∂κ0
E
[
e−Wx,t(T )

∣∣∣ F0

]
= E

[
e−Wx,t(T )

(
− ∂

∂κ0
Wx,t(T )

) ∣∣∣∣ F0

]
= E

[
e−Wx,t(T )

(
−

T∑
s=1

eYx,t(s)
(

∂

∂κ0
Yx,t(s)

)) ∣∣∣∣∣ F0

]

= −
T∑
s=1

βx+s−1 E
[
eYx,t(s)−Wx,t(T )

∣∣∣ F0

]
.

• The longevity gamma for px,t(T, κ0, h0):

Γx,t(T ) =
∂2px,t(T, κ0, h0)

∂κ2
0

=
∂

∂κ0

(
∂px,t(T, κ0, h0)

∂κ0

)
=

∂

∂κ0

(
E

[
−

T∑
s=1

βx+s−1e
Yx,t(s)−Wx,t(T )

∣∣∣∣∣ F0

])

= E

[
−

T∑
s=1

βx+s−1e
Yx,t(s)−Wx,t(T ) ∂

∂κ0
(Yx,t(s)−Wx,t(T ))

∣∣∣∣∣ F0

]

= E

[
−

T∑
s=1

βx+s−1e
Yx,t(s)−Wx,t(T )

(
βx+s−1 −

T∑
u=1

βx+u−1e
Yx,t(u)

) ∣∣∣∣∣ F0

]

= E

e−Wx,t(T )

( T∑
s=1

βx+s−1e
Yx,t(s)

)2

−
T∑
s=1

β2
x+s−1e

Yx,t(s)

 ∣∣∣∣∣∣ F0

.
• The longevity vega for px,t(T, κ0, h0):

Vx,t(T ) =
∂px,t(T, κ0, h0)

∂h0
= E

[
e−Wx,t(T )

(
−

T∑
s=1

eYx,t(s)
(

∂

∂h0
Yx,t(s)

)) ∣∣∣∣∣ F0

]

= E

[
e−Wx,t(T )

(
−

T∑
s=1

eYx,t(s)
(
βx+s−1

∂κt+s
∂h0

)) ∣∣∣∣∣ F0

]

= −
T∑
s=1

βx+s−1 E

[
eYx,t(s)−Wx,t(T )

(
∂κt+s
∂h0

) ∣∣∣∣ F0

]
,

where
∂κt+s
∂h0

=

t+s∑
u=1

ηu

2
√
hu

∂hu
∂h0

and
∂hu
∂h0

=

{
b
∏u−1
v=1(aη2

u−v + b) if u ≥ 2

b if u = 1
.

Appendix B Proof of Theorem 1

For convenience, we let Et [·] := Et [·|Ft]. Because ηt
i.i.d.∼ N(0, 1), we have Et−1 [ηt] = 0, Et−1

[
η2
t

]
= 1,

Et−1

[
η3
t

]
= 0, and Et−1

[
η4
t

]
= 3 for t ≥ 1. These results are used in this and the following appendixes.

Proof of Theorem 1. For tf = 1,

E0

[(√
h1η1

)2
]

= ω + aε0 + bh0 = z1,0 + z1,1h0,
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where z1,0 = ω + aε0 and z1,1 = b do not depend on h0. Thus, Equation (12) holds for tf = 1. Let t > 1
be given, and suppose that Equation (12) holds for tf = t− 1. Then, for tf = t,

E0

( t∑
s=1

√
hsηs

)2
 = E0

(t−1∑
s=1

√
hsηs +

√
htηt

)2


= E0

(t−1∑
s=1

√
hsηs

)2
+ E0 [ht]

= zt−1,0 + zt−1,1h0 +

(
ω − ω(a+ b)t

1− a− b

)
+ (a+ b)t−1(aε20 + bh0)

= zt−1,0 +

(
ω − ω(a+ b)t

1− a− b
+ a(a+ b)t−1ε20

)
+
(
zt−1,1 + b(a+ b)t−1

)
h0

= zt,0 + zt,1h0,

where zt,0 and zt,1 do not depend on h0. Hence, Equation (12) also holds for tf = t. By the principle of
induction, Equation (12) holds for tf ≥ 1.

Appendix C Proof of Theorem 2

To prove Theorem 2, we need the following lemma.

Lemma 4. For tf ≥ 2,

E0

tf−1∑
s=1

√
hsηs

htf

 = 0. (C.1)

Proof of Lemma 4. For tf = 2,

E0

[√
h1η1h2

]
=
√
h1E0 [η1]h2 = 0.

Thus, Equation (C.1) holds for tf = 2. Let t > 2 be given, and suppose Equation (C.1) holds for tf = t−1.
Then, for tf = t,

E0

[(
t−1∑
s=1

√
hsηs

)
ht

]
= E0

[(
t−2∑
s=1

√
hsηs +

√
ht−1ηt−1

)(
ω +

(
aη2
t−1 + b

)
ht−1

)]

= E0

[(
t−2∑
s=1

√
hsηs

)
ht−1

]
(a+ b)

= 0.

So Equation (C.1) also holds for tf = t. By the principle of induction, Equation (C.1) holds for tf ≥ 2.

Proof of Theorem 2. For tf = 1,

E0

[(√
h1η1

)3
]

= h
3
2
1 E0

[
η3

1

]
= 0.

Thus, Equation (13) holds for tf = 1. Let t > 1 be given, and suppose Equation (13) holds for tf = t− 1.
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Then, for tf = t,

E0

( t∑
s=1

√
hsηs

)3
 = E0

(t−1∑
s=1

√
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√
htηt

)3
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= E0

(t−1∑
s=1

√
hsηs

)3
+ 3E0

[(
t−1∑
s=1

√
hsηs

)
ht

]
= 0,

since E0

[(∑t−1
s=1

√
hsηs

)
ht

]
= 0 by Lemma 4. Hence, Equation (13) also holds for tf = t. By the principle

of induction, Equation (13) holds for tf ≥ 1.

Appendix D Proof of Theorem 3

To prove Theorem 3, we need the following two lemmas.

Lemma 5. For tf ≥ 1,
E0

[
h2
tf

]
= φtf ,0 + φtf ,1h0 + φtf ,2h

2
0, (D.1)

where φtf ,0, φtf ,1 and φtf ,2 do not depend on h0.

Proof of Lemma 5. For tf = 1,

E0

[
h2

1

]
= (ω + aε20)2 + 2b(ω + aε20)h0 + b2h2

0 = φ1,0 + φ1,1h0 + φ1,2h
2
0,

where φ1,0 = (ω + aε20)2, φ1,1 = 2b(ω + aε20) and φ1,2 = b2 do not depend on h0. Hence, Equation (D.1)
holds for tf = 1. Let t > 1 be given, and suppose Equation (D.1) holds for tf = t− 1. Then, for tf = t,

E0

[
h2
t

]
= E0

[
(ω +

(
aη2
t−1 + b

)
ht−1)2

]
= E0

[
ω2 + 2ω(a+ b)ht−1 +

(
3a2 + 2ab+ b2

)
h2
t−1

]
= ω2 + π1

(
ω − ω(a+ b)t−1

1− a− b
+ (a+ b)t−2(aε20 + bh0)

)
+ π2

(
φt−1,0 + φt−1,1h0 + φt−1,2h

2
0

)
= π2φt−1,0 + ω2 +

π1ω(1− (a+ b)t−1)

1− a− b
+ π1a(a+ b)t−2ε20 +

(
π2φt−1,1 + π1b(a+ b)t−2

)
h0 + π2φt−1,2h

2
0

= φt,0 + φt,1h0 + φt,2h
2
0,

where φt,0, φt,1 and φt,2 do not depend on h0, and π1 = 2ω(a+b) and π2 = 3a2 +2ab+b2. Thus, Equation
(D.1) also holds for tf = t. By the principle of induction, Equation (D.1) holds for tf ≥ 1.

Lemma 6. For tf ≥ 2,

E0


tf−1∑

s=1

√
hsηs

2

htf

 = ψtf ,0 + ψtf ,1h0 + ψtf ,2h
2
0, (D.2)

where ψtf ,0, ψtf ,1 and ψtf ,2 do not depend on h0.
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Proof of Lemma 6. For tf = 2,

E0

[(√
h1η1

)2

h2

]
= ωh1 + (3a+ b)h2

1

=
(
ω2 + ωaε20 + (3a+ b)(ω + aε20)2
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(
bω + 2b(3a+ b)(ω + aε20)
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h0 + b2(3a+ b)h2

0

= ψ2,0 + ψ2,1h0 + ψ2,2h
2
0,

where ψ2,0 = ω2 +ωaε20 + (3a+ b)(ω+ aε20)2, ψ2,1 = bω+ 2b(3a+ b)(ω+ aε20) and ψ2,2 = b2(3a+ b) do not
depend on h0. Thus, Equation (D.2) holds for tf = 2. Let t > 2 be given, and suppose Equation (D.2)
holds for tf = t− 1. Then, for tf = t,

E0

(t−1∑
s=1

√
hsηs
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ht
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= E0
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√
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+ ωE0

(t−1∑
s=1

√
hsηs

)2
+ (3a+ b)E0

[
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]
= ((a+ b)ψt−1,0 + (3a+ b)φt−1,0 + ωzt−1,0) + ((a+ b)ψt−1,1 + (3a+ b)φt−1,1 + ωzt−1,1)h0

+ ((a+ b)ψt−1,2 + (3a+ b)φt−1,2)h2
0

= ψt,0 + ψt,1h0 + ψt,2h
2
0,

where ψt,0, ψt,1 and ψt,2 do not depend on h0. Hence, Equation (D.2) also holds for tf = t. By the
principle of induction, Equation (D.2) holds for tf ≥ 2.

Proof of Theorem 3. For tf = 1,

E0

[(√
h1η1

)4
]

= 3(ω + aε20)2 + 6b(ω + aε20)h0 + 3b2h2
0

= c1,0 + c1,1h0 + c1,2h
2
0,

where c1,0 = 3(ω + aε20)2, c1,1 = 6b(ω + aε20) and c1,2 = 3b2 do not depend on h0. Thus, Equation (14)
holds for tf = 1. Let t > 1 be given, and suppose Equation (14) holds for tf = t− 1. Then, for tf = t,

E0

( t∑
s=1

√
hsηs

)4
 = E0
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htηt
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= E0
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+ 6E0
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ht

+ 3E0

[
h2
t

]
= (ct−1,0 + 6ψt,0 + 3φt,0) + (ct−1,1 + 6ψt,1 + 3φt,1)h0 + (ct−1,2 + 6ψt,2 + 3φt,2)h2

0

= ct,0 + ct,1h0 + ct,2h
2
0,

where ct,0, ct,1 and ct,2 do not depend on h0. Therefore, Equation (14) also holds for tf = t. By the
principle of induction, Equation (14) holds for tf ≥ 1. Furthermore, ztf ,1 in Equation (12), φtf ,1 and φtf ,2
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in Equation (D.1), and ψtf ,1 and ψtf ,2 in Equation (D.2) can be solved as follows:

ztf ,1 =
b− b(a+ b)tf

1− a− b
,

φtf ,1 =

(
bπ1

a+ b− π2

)
(a+ b)t

f−1 +

(
2b(ω + aε20)− bπ1

a+ b− π2

)
πt
f−1

2 = π3(a+ b)t
f−1 + π4π

tf−1
2 ,

φtf ,2 = b2πt
f−1

2 ,

ψtf ,1 =
π4(3a+ b)

a+ b− π2

(
(a+ b)t

f−1 − πt
f−1

2

)
+

bω

(1− a− b)2

(
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f−1
)

+

(
2bω(3a+ b)

a+ b− π2
− bω
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)
(a+ b)t

f−1(tf − 1),

ψtf ,2 =
b2(3a+ b)

a+ b− π2

(
(a+ b)t

f−1 − πt
f−1

2

)
,

where π3 = bπ1

a+b−π2
and π4 = 2b(ω + aε20)− π3. Substituting the expressions above into ctf ,1 and ctf ,2, we

obtain

ctf ,1 = 6b(ω + aε20) +

(
6π4(3a+ b)

a+ b− π2
− 6bω

(1− a− b)2
+ 3π3

)(
a+ b− (a+ b)t

f

1− a− b

)

+ 6

(
2bω(3a+ b)

a+ b− π2
− bω

1− a− b

)(
(a+ b)− tf (a+ b)t

f

+ (tf − 1)(a+ b)t
f+1

(1− a− b)2

)
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(
3π4 −

6π4(3a+ b)

a+ b− π2

)(
π2 − πt

f

2

1− π2

)
+

6bω
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(tf − 1),

ctf ,2 = 3b2 +

(
6b2(3a+ b)

a+ b− π2

)(
a+ b− (a+ b)t

f

1− a− b

)
+

(
3b2 − 6b2(3a+ b)

a+ b− π2
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π2 − πt

f

2

1− π2

)
.

It is clear that ctf ,1 tends to ∞ as tf →∞, and if π2 = 3a2 + 2ab+ b2 < 1, then ctf ,2 tends to a constant
as tf →∞.
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