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Abstract 
Economic risk analysis has two dimensions: time and frequency. Asset return varies by time because of 
economic cycles and economic structural changes. Risk is higher during economic recessions and smaller 
during economic expansions. In addition, different economic structures may exist at different time 
scales. Risk measures calculated based on daily, weekly, monthly and yearly historical data can be very 
different. The appropriate frequency depends on the time horizon of the analysis. Therefore, it is 
important to measure economic risk at both the time level and the frequency level. However, time 
series analysis and statistical analysis that have been widely adopted in economic risk analysis focus on 
only one of the two dimensions.  

In this paper, wavelet models are used to enhance both time-invariant analysis and time-variant 
analysis. Wavelet models can systematically analyze risk by time and frequency and provide richer 
information than time series models. Using wavelet models, risk measurement can easily be adjusted 
based on time horizon in a consistent way. Equity VaR estimation is selected to demonstrate the 
application of wavelet analysis in risk management. 
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1. Introduction 

Economic risk is an important risk for insurers offering long-term products with guaranteed benefits. It 
originates from the economic system and can be reflected as either market risk or credit risk.  

When estimating the magnitude of economic risk, historical data are usually used. For example, to 
estimate the volatility of the equity market, one can simply calculate the standard deviation of historical 
equity returns. However, an implicit assumption of this method is that the risk is time invariant. In 
reality, equity market volatility varies by time. It is caused by either economic cycles or economic 
structural changes. Figure 1 shows the annualized volatility using daily S&P 500 index return from 1990 
to 2017. Assuming a time-invariant (constant) volatility, the annualized volatility is 17.7%. If calculating 
the annualized volatility on a yearly basis, the volatility could go above 40%, as evidenced during the 
2008 financial crisis. It is important to acknowledge the temporal impact in economic risk analysis. 

Figure 1. S&P 500 Index Return Annualized Volatility (1990–2017) 

 

Another complication of economic risk analysis is the frequency of historical data to be used. The 
annualized volatility calculated based on different frequencies varies a great deal. Table 1 shows the 
annualized volatility and empirical value at risk (VaR) of S&P 500 equity index return using daily, monthly 
and yearly data from 1990 to 2017. For simplicity, the calculation assumes that the volatility and VaR are 
time invariant and that the equity index follows a geometric Brownian motion, a common assumption 
used when generating stochastic equity return scenarios. In this paper, VaR with a confidence level of p 
is defined as 𝑖𝑖𝑖𝑖𝑖𝑖[𝑥𝑥 ∈ ℝ:𝑃𝑃𝑃𝑃(𝑋𝑋 + 𝑥𝑥 < 0) ≤ 1 − 𝑝𝑝], the smallest number of the probability that X 
exceeds −VaR is at least p. It is the opposite of the negative return value in the left tail. 
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Table 1. S&P 500 Index Return Volatility and VaR by Frequency 

Frequency Time-Invariant 
Volatility 

Annualized 
Volatility1 

99.5% Empirical 
VaR 

Annualized 
Empirical VaR2 

Daily 1.1% 17.5% 3.9% 69.3% 

Monthly 4.2% 14.5% 19.3% 75.3% 

Quarterly3 7.9% 15.5% 26.9% 64.2% 

Yearly 17.7% 17.5% 43.5% 43.5% 

Notes: 
1. Annualized volatility = Time-invariant volatility × √𝑖𝑖 , where n equals 250/12/4/1 for daily/monthly/quarterly/yearly 

frequency.   
2. Annualized empirical VaR = (99.5% Empirical VaR – Mean return) × √𝑖𝑖 – Mean return × 𝑖𝑖. 
3. Minimum value of quarterly and yearly return is used for 0.5% empirical VaR because the number of data points is 

less than 200. 

Historical equity index returns exhibit different risk levels by frequency, especially for empirical VaR. 
Annualized empirical VaR based on high frequency data (daily and monthly) is higher than the VaR based 
on low frequency data (quarterly and yearly). This phenomenon indicates the need to analyze the 
economic risk at different frequencies to get a holistic view. 

This paper uses wavelet models to analyze equity risk at both the time level and the frequency level. 
Section 2 discusses time series models and Fourier transform that examine equity risk by time and 
frequency, respectively. Section 3 introduces wavelet models that can systematically analyze equity risk 
by time and frequency at the same time, while Section 4 constructs the VaR measure in a wavelet 
model. Section 5 compares the performance of different models for estimating VaR, and Section 6 
discusses the possible applications of wavelet models in risk management. Section 7 concludes the 
paper. 

2. Time Series Model 

Time series models, such as generalized autoregressive conditional heteroskedasticity (GARCH) and 
autoregressive moving average (ARMA), can be used to capture the time variant feature of equity 
volatility. An ARMA-GARCH model is used to analyze historical S&P 500 index daily returns. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) ~ 𝑃𝑃𝑡𝑡 = 𝑐𝑐 + 𝜀𝜀𝑡𝑡 + �𝜑𝜑𝑖𝑖𝑃𝑃𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+�𝜃𝜃𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

 

𝜀𝜀𝑡𝑡 = 𝑧𝑧𝑡𝑡𝜎𝜎𝑡𝑡 

𝐺𝐺𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺(𝑝𝑝, 𝑞𝑞) ~ 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2

𝑝𝑝

𝑗𝑗=1
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Where 

𝑃𝑃𝑡𝑡 = S&P 500 index daily return. It is calculated as 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑆𝑆𝑡𝑡 𝑆𝑆𝑡𝑡−1� �. 

𝑧𝑧𝑡𝑡 = iid with zero mean and unit variance.  

The distribution of 𝑧𝑧𝑡𝑡 should be chosen according to the experience data. Table 1 shows that the 
empirical VaR based on daily data materially exceeds the value implied from a normal distribution.1 
Therefore, a distribution that can more flexibly capture skewness and heavy tails is preferred. In this 
example, 𝑧𝑧𝑡𝑡 is assumed to follow the skewed generalized error distribution (SGED). It has the following 
probability density function: 

𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥; 𝜇𝜇,𝜎𝜎, 𝜆𝜆,𝑝𝑝) =
𝑝𝑝𝑒𝑒

−� |𝑥𝑥−𝜇𝜇+𝑚𝑚|
𝑣𝑣𝑣𝑣[1+𝜆𝜆𝜆𝜆𝑖𝑖𝜆𝜆𝜆𝜆(𝑥𝑥−𝜇𝜇+𝑚𝑚)]�

𝑝𝑝

2𝑣𝑣𝜎𝜎Γ(1/𝑝𝑝)  

 

Where 

𝜇𝜇 = location parameter. It is zero for 𝑧𝑧𝑡𝑡. 

𝜎𝜎 = scale parameter. It is one for 𝑧𝑧𝑡𝑡.  

𝜆𝜆 = skewness parameter. 

𝑝𝑝 = shape parameter. 

𝑚𝑚 =
2
2
𝑝𝑝𝑣𝑣𝑣𝑣𝜆𝜆Γ�0.5 + 1𝑝𝑝�

√𝜋𝜋
 if the mean of variable 𝑥𝑥 equals 𝜇𝜇. 

𝑣𝑣 = �
𝜋𝜋Γ�1𝑝𝑝�

𝜋𝜋(1 + 3𝜆𝜆2)Γ�3𝑝𝑝� − 16
1
𝑝𝑝𝜆𝜆2Γ�0.5 + 1𝑝𝑝�

2
Γ�1𝑝𝑝�

 if the volatility of variable 𝑥𝑥 equals 𝜎𝜎. 

ARMA(3,3) and GARCH(2,2) with the SGED are used to analyze historical S&P 500 daily index returns 
from 1990 to 2017. The orders (p and q) are chosen based on Akaike information criterion (AIC). Table 2 
lists the parameters of the fitted model. It also shows the results of the t test for each parameter. 

  

                                                        
1 Annualized volatility based on daily returns is 17.5%. Based on the assumption of normal distribution, 99.5% VaR 
= 17.5% × 2.576 = 45.1%. The annualized empirical VaR equals 69.3%, which means a heavier left tail than the 
normal distribution. 
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Table 2. ARMA + GARCH Model Parameters 

Parameter Value t Value p value 
𝑐𝑐 0.0003 3.450 0.0006 
𝜑𝜑1 –0.0924 –1.140 0.2545 
𝜑𝜑2 –0.2317 –4.095 0.0000 
𝜑𝜑3 0.7326 12.021 0.0000 
𝜃𝜃1 0.0421 0.560 0.5757 
𝜃𝜃2 0.1810 3.592 0.0003 
𝜃𝜃3 –0.7897 –13.687 0.0000 
𝜔𝜔 0.0000 4.330 0.0000 

𝛼𝛼1 0.0376 3.253 0.0011 

𝛼𝛼2 0.0914 5.985 0.0000 

𝛽𝛽1 0.3132 1.694 0.0903 

𝛽𝛽2 0.5446 3.132 0.0017 

𝜇𝜇 0 N/A N/A 

𝜎𝜎 1 N/A N/A 

𝜆𝜆 0.2825 41.414 0.0000 

𝑝𝑝 0.9014 64.615 0.0000 
Note: µ and σ are kept fixed in model calibration so that 𝑧𝑧𝑡𝑡 has zero mean and unit variance.  

Figure 2 shows the daily return and the conditional volatility 𝜎𝜎𝑡𝑡 based on the ARMA-GARCH model. The 
conditional volatility varies greatly, with the highest value observed during the 2008 financial crisis. 
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Figure 2. S&P 500 Index Daily Return and Conditional Volatility 

  

Standardized residuals are compared to standard normal distribution and fitted SGED to understand 
how well heavy tails have been captured by using the SGED. Figure 3 draws the quantile-quantile (Q-Q) 
plots between empirical distribution and theoretical distributions. The SGED does a better job capturing 
the left heavy tails than the normal distribution. 
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Figure 3. Q-Q Plot for Standardized Residuals 

 

With the fitted model, future daily VaR can be predicted. Traditionally, daily VaR can be estimated with 
the following steps: 

Step 1. Estimate the expected daily return l days after T, the ending date of the historical data. 

𝔼𝔼(𝑃𝑃𝑇𝑇+𝑙𝑙) = 𝑐𝑐 + �𝜑𝜑𝑖𝑖𝑃𝑃𝑇𝑇+𝑙𝑙−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃𝑗𝑗𝜀𝜀𝑇𝑇+𝑙𝑙−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

 

𝜀𝜀𝑇𝑇+𝑙𝑙−𝑗𝑗 = 0  𝑖𝑖𝑖𝑖  𝑙𝑙 − 𝑗𝑗 > 0 

Step 2. Estimate the expected conditional variance.  

𝔼𝔼�𝜎𝜎𝑇𝑇+𝑙𝑙2 � = 𝜔𝜔 + �𝛼𝛼𝑖𝑖𝔼𝔼�𝜀𝜀𝑇𝑇+𝑙𝑙−𝑖𝑖2 �
𝑞𝑞

𝑖𝑖=1

+ �𝛽𝛽𝑗𝑗𝔼𝔼�𝜎𝜎𝑇𝑇+𝑙𝑙−𝑗𝑗2 �
𝑝𝑝

𝑗𝑗=1

 

𝔼𝔼�𝜀𝜀𝑇𝑇+𝑙𝑙−𝑖𝑖2 � = 𝔼𝔼�𝜎𝜎𝑇𝑇+𝑙𝑙−𝑗𝑗2 �  𝑖𝑖𝑖𝑖  𝑙𝑙 − 𝑖𝑖 > 0 

Step 3. Estimate the VaR with a confidence level of p. 

𝑉𝑉𝑉𝑉𝐴𝐴𝑇𝑇+𝑙𝑙 = −[𝔼𝔼(𝑃𝑃𝑇𝑇+𝑙𝑙) + 𝜎𝜎𝑇𝑇+𝑙𝑙𝑆𝑆𝐺𝐺𝑆𝑆𝑆𝑆−1(1− 𝑝𝑝)] 

However, this approach is not suitable for estimating a longer term VaR such as the annual one. Rather 
than deriving the VaR using the formula in Step 3, VaR can be estimated using simulation. Error term 
𝜀𝜀𝑇𝑇+𝑙𝑙 can be simulated as 𝜎𝜎𝑇𝑇+𝑙𝑙𝑧𝑧𝑇𝑇+𝑙𝑙, where 𝑧𝑧𝑇𝑇+𝑙𝑙 follows the calibrated SGED. With the simulated error 
terms, daily returns and volatilities can be projected concurrently. Figure 4 shows the results based on 
1,000 simulations for 251 trading days from October 2017 to September 2018. Actual daily returns are 
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compared with the projected ranges. While 10.4% of actual returns falls out of the middle 90% range 
(5th percentile to 95th percentile), 1.6% of actual returns falls out of the middle 99% range (0.5th 
percentile to 99.5th percentile). Although the SGED generates a better range prediction than the normal 
distribution, it still underestimates the probability of extreme returns for the projection period.  

Figure 4. S&P 500 Index Daily Return Range Estimation 

 

With simulated daily returns, annual returns can be calculated for each simulation. Annual VaR is 
estimated based on the calculated annual returns, as shown in Table 3. In this example, the SGED has a 
heavier left tail than the normal distribution. 

Table 3. S&P 500 Index Return Annual VaR Estimation 

 95% VaR 99.5% VaR 

SGED 4.6% 24.2% 

Normal distribution 5.0% 14.1% 

3. Wavelet Analysis 

If the evolving of risk is driven by a few forces with different frequencies, a pure time series model may 
not be able to capture all the different patterns. In the equity risk example in Section 2, when predicting 
the return and conditional volatility, the ARMA-GARCH model reflects only the direct impact of returns 
and volatilities in the past three days. The model cannot effectively capture the impacts for medium- 
and long-term patterns. People may argue that less frequent (such as annual) data can be used to 
estimate annual VaR. However, historical data may not be sufficient for a credible estimate, and 
valuable information in high frequency data is lost. 
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To address the shortcoming of a pure time series analysis, wavelet analysis can be used to analyze the 
historical data from two dimensions (time and frequency) at the same time. Wavelet analysis can be 
considered a combination of time series analysis and Fourier transform. Fourier transform analyzes the 
data purely from the frequency domain, assuming that patterns are time invariant. Fourier transform 
itself is not very useful for economic risk analysis because of economic structural changes and length 
and magnitude variation of economic cycles. As shown in Figure 5, wavelet analysis keeps more time 
information for high frequency data and less time information for low frequency data.  

Figure 5. Wavelet Analysis Concept 

 

3.1 Maximal Overlap Discrete Wavelet Transform 

In this paper, maximal overlap discrete wavelet transform (MODWT) is used to illustrate enhanced risk 
analysis based on wavelets. The MODWT is chosen over many other wavelets because its decomposition 
at different scales can easily be compared with original time series. The MODWT is also less sensitive 
than other wavelet transforms to the starting point of a time series. This is helpful to understand the 
patterns at different frequencies: short term, medium term or long term. In addition to signal 
processing, MODWT has been applied to the finance area as well. Conlon and Cotter (2012) used the 
MODWT to calculate the appropriate dynamic minimum-variance hedging ratio for various time 
horizons. Khalfaoui et al. (2015) studied individual stock market returns and their comovements at 
different frequencies using the MODWT and showed that stock returns have long memory dynamics. 
Risk is more concentrated at high frequency, and dependencies are more concentrated at low 
frequency.  

Following the definition of Percival and Walden (2000), the MODWT of a time series 𝑋𝑋𝑡𝑡 , 𝑡𝑡 = 1,2, … ,𝑁𝑁 to 
the 𝑗𝑗𝑡𝑡ℎ level works as the following: 

Wavelet coefficient 𝑊𝑊�𝑗𝑗,𝑡𝑡 = ∑ ℎ�𝑗𝑗,𝑙𝑙𝑋𝑋𝑡𝑡−𝑙𝑙 𝑀𝑀𝑀𝑀𝑆𝑆 𝑁𝑁
𝐿𝐿𝑗𝑗−1
𝑙𝑙=0  

Scale coefficient 𝑉𝑉�𝑗𝑗,𝑡𝑡 = ∑ 𝑙𝑙�𝑗𝑗,𝑙𝑙𝑋𝑋𝑡𝑡−𝑙𝑙 𝑀𝑀𝑀𝑀𝑆𝑆 𝑁𝑁
𝐿𝐿𝑗𝑗−1
𝑙𝑙=0  

Where 

ℎ�𝑗𝑗,𝑙𝑙  = wavelet filter constructed by convolving j filters composed of 𝑙𝑙�𝑙𝑙  and ℎ�𝑙𝑙. It suffices the 
following conditions: 
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�ℎ�𝑙𝑙

𝐿𝐿−1

𝑙𝑙=0

= 0          �ℎ�𝑙𝑙2
𝐿𝐿−1

𝑙𝑙=0

=
1
2

           � ℎ�𝑙𝑙ℎ�𝑙𝑙+2𝜆𝜆

∞

𝑙𝑙=−∞

= 0 for all integers 𝑖𝑖 > 0 

𝑙𝑙�𝑗𝑗,𝑙𝑙  = scale filter constructed by convolving j filters composed of 𝑙𝑙�𝑙𝑙. It suffices the following 
conditions: 

�𝑙𝑙�𝑙𝑙

𝐿𝐿−1

𝑙𝑙=0

= 1          �𝑙𝑙�𝑙𝑙2
𝐿𝐿−1

𝑙𝑙=0

=
1
2

           � 𝑙𝑙�𝑙𝑙𝑙𝑙�𝑙𝑙+2𝜆𝜆

∞

𝑙𝑙=−∞

= 0 for all integers 𝑖𝑖 > 0 

� 𝑙𝑙�𝑙𝑙ℎ�𝑙𝑙+2𝜆𝜆

∞

𝑙𝑙=−∞

= 0 for all integers 𝑖𝑖 

𝐿𝐿𝑗𝑗 = �2𝑗𝑗 − 1�(𝐿𝐿 − 1) + 1. 𝐿𝐿 is the width of the base level filter. 

The maximum number of levels depends on the available data points. For example, 6,992 data points 
are used when analyzing S&P 500 index daily returns from January 1990 to September 2017. The 
maximum level of decomposition is the integer part of log(6,992)/log(2). Therefore, a maximum of 12 
levels are feasible in this example. Table 4 lists the frequency of the first eight levels. 

Table 4. Frequency of Decomposition Levels 

Level (j) Frequency Scale (1/Frequency) 

1 [1/4,1/2] 2–4 days 

2 [1/8,1/4] 4–8 days 

3 [1/16,1/8] 8–16 days 

4 [1/32,1/16] 16–32 days 

5 [1/64,1/32] 32–64 days 

6 [1/128,1/64] 64–128 days 

7 [1/256,1/128] 128–256 days 

8 [1/512,1/256] 256–512 days 

Note: The scale is measured in business days.  

To analyze the equity risk, LA(8) (Daubechies least asymmetric filter with L = 8)  is used to define ℎ�𝑗𝑗,𝑙𝑙  and 
𝑙𝑙�𝑗𝑗,𝑙𝑙. Figure 6 shows the wavelet filters ℎ�𝑗𝑗,𝑙𝑙  and scale filters 𝑙𝑙�𝑗𝑗,𝑙𝑙  for the first three levels. The wavelet 
dampens out with larger width as the level goes up. The same pattern applies when the level goes 
higher than level 3. 
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Figure 6. LA(8) Wavelet and Scale Filters for MODWT 

 

LA filters with different L, and other filters can be used as well. They are not covered here because the 
focus of this paper is not on choosing the best filter. Also, the impact on the results is immaterial. 

With all the assumptions set up for wavelet analysis, the original time series (S&P 500 index daily return) 
is decomposed into eight levels. Although a maximum of 12 levels can be used, eight levels are enough 
to represent the original time series with a maximum difference of less than 0.06%. Figure 7 shows the 
wavelet coefficients (𝑊𝑊�𝑗𝑗,𝑡𝑡) for all eight levels and the scale coefficients (𝑉𝑉�𝑗𝑗,𝑡𝑡) for the eighth level. 
Coefficients are shifted so they coincide with the original time series. The wavelet coefficients are 
smoother at a higher level, representing longer term volatility. The scale coefficients at the highest level 
represent the volatility that is not explained by wavelet coefficients. 
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Figure 7. MODWT Wavelet Coefficients and Scaling Coefficients 

 

Note: T−𝑖𝑖  means that the series of the coefficients is shifted by i positions backward so that all series are on the 
same timeline.  
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3.2 Time-Invariant Risk Analysis 

Before considering time-dependent risk estimation, wavelet analysis can be used to attribute the total 
volatility to different levels. The total variance can be calculated as the sum of the variances at each 
level: 

𝜎𝜎𝑋𝑋2 = �𝜎𝜎𝑋𝑋2(𝑗𝑗)
𝐽𝐽𝑀𝑀

𝐽𝐽=1

 

Where 

𝜎𝜎𝑋𝑋2 = total variance of the original time series. 

𝜎𝜎𝑋𝑋2(𝑗𝑗) = variance of the decomposition at level j. 

𝐽𝐽𝑀𝑀 = number of levels used in wavelet analysis. 

Also, 𝜎𝜎𝑋𝑋2(𝑗𝑗) has an unbiased estimator: 

𝜎𝜎�𝑋𝑋2(𝑗𝑗) =
1
𝐴𝐴𝑗𝑗

� 𝑊𝑊�𝑗𝑗,𝑡𝑡
2

𝑁𝑁−1

𝑡𝑡=𝐿𝐿𝑗𝑗−1

 

Where 

𝐴𝐴𝑗𝑗 = 𝑁𝑁 − 𝐿𝐿𝑗𝑗 + 1  

Skewness and kurtosis of each level can be estimated as well: 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒   �̂�𝑆𝑋𝑋(𝑗𝑗) =

1
𝐴𝐴𝑗𝑗

∑ 𝑊𝑊�𝑗𝑗,𝑡𝑡
3𝑁𝑁−1

𝑡𝑡=𝐿𝐿𝑗𝑗−1

𝜎𝜎�𝑋𝑋3(𝑗𝑗)
 

𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐒𝐒𝐊𝐊𝐒𝐒   𝐾𝐾�𝑋𝑋(𝑗𝑗) =

1
𝐴𝐴𝑗𝑗

∑ 𝑊𝑊�𝑗𝑗,𝑡𝑡
4𝑁𝑁−1

𝑡𝑡=𝐿𝐿𝑗𝑗−1

𝜎𝜎�𝑋𝑋4(𝑗𝑗)
 

Table 5 lists the mean, variance, skewness and kurtosis for each decomposition level and the original 
time series. The sum of the variance (volatility2) of the eight levels explains more than 99.9% of the 
variance in the original time series. Low levels (high frequency/short term) contributes most of the 
variance of the original return series. Skewness and kurtosis are quite different among the eight levels, 
which indicates that the patterns at different frequencies are different, and it may be beneficial to 
model them separately.  
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Table 5. Descriptive Statistics at Different Decomposition Levels 

 Mean Volatility Variance 
Contribution Skewness Kurtosis 

99.5% 
Empirical 

VaR 

99.5% 
VaR 

(Normal) 
Level 1 0.0000% 0.8% 53.5% 0.3 12.7 3.0% 2.1% 
Level 2 0.0000% 0.6% 24.9% 0.2 11.3 2.0% 1.4% 
Level 3 –0.0001% 0.4% 12.3% 0.1 7.6 1.2% 1.0% 
Level 4 0.0000% 0.2% 5.0% –0.1 6.3 0.9% 0.6% 
Level 5 –0.0001% 0.2% 2.3% 0.1 5.5 0.5% 0.4% 
Level 6 –0.0002% 0.1% 1.2% 0.03 5.2 0.4% 0.3% 
Level 7 0.0001% 0.1% 0.4% –0.2 3.7 0.2% 0.2% 
Level 8 –0.0001% 0.1% 0.3% –0.3 6.4 0.2% 0.2% 
Original 0.0274% 1.1% — –0.2 11.9 3.93% 2.84% 

The value of skewness and kurtosis indicates the non-normality of the original time series and wavelet 
coefficients. The 99.5% empirical VaR is much larger than when assuming a normal distribution at most 
levels. The empirical VaR of the original time series can be approximated by aggregating the VaR at each 
decomposition level as follows: 

𝑉𝑉𝑉𝑉𝐴𝐴𝐴𝐴𝜆𝜆𝜆𝜆 = ��𝑉𝑉𝑉𝑉𝐴𝐴𝑗𝑗2
𝐽𝐽𝑀𝑀

𝑗𝑗=1

 

Where 

𝑉𝑉𝑉𝑉𝐴𝐴𝐴𝐴𝜆𝜆𝜆𝜆 = aggregated VaR. 

𝑉𝑉𝑉𝑉𝐴𝐴𝑗𝑗 = VaR at level j. 

In this example, aggregated empirical VaR is 3.94%, compared to 3.93% calculated directly from the 
original time series. The non-normality of the original time series is preserved well by the wavelet 
coefficients in this example. 

3.3 Time-Variant Risk Analysis 

The wavelet analysis in the previous section assumes a constant volatility. Time-variant risk analysis can 
be enhanced with wavelet analysis as well to reflect different patterns at each wavelet decomposition 
level. This subsection builds on the ARMA-GARCH example in Section 2 to include analysis at each 
decomposition level. As shown in Figure 8, instead of modeling the original time series with one model, 
wavelet-enhanced time-dependant analysis studies wavelet coefficients at each level separately to 
understand the risk in different ranges of frequency. Wavelet coefficients are fitted into a GARCH model 
to get the volatility and VaR information. Scale coefficients at the highest level are fitted into ARMA and 
GARCH models to understand the trend of the time series. They are aggregated to get the predicted 
return, total volatility and VaR. In this way, different patterns (skewness and tail heaviness) at each 
decomposition level can be reflected independently. 
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Figure 8. Wavelet-Enhanced Time-Dependent Analysis Structure  

 

 

Continuing with the example of S&P 500 index return, the GARCH model is calibrated to wavelet 
coefficients at each level. The orders p and q of this model are chosen based on the AIC. The error term 
is assumed to follow an SGED to reflect skewness and heavy tails. Table 6 lists the parameters of the 
fitted models. 

Table 6. GARCH Model Parameters for Wavelet Coefficients 

Level Model c ω α1 α2 β1 β2 µ σ λ p 

1 GARCH(1,2) –7E-13 3E-06 0.38 
 

0.23 0.37 0.00 1.00 0.01 1.81 
2 GARCH(2,2) –4E-12 2E-06 0.21 0.45 0.14 0.17 0.00 1.00 –0.03 2.07 
3 GARCH(1,2) –3E-12 5E-07 0.63 

 
0.00 0.35 0.00 1.00 –0.08 3.34 

4 GARCH(1,1) 3E-12 1E-07 0.72 
 

0.00 0.20 0.00 1.00 0.04 5.72 
5 GARCH(1,2) 3E-12 1E-07 0.64 

 
0.02 

 
0.00 1.00 0.05 5.79 

6 GARCH(1,2) 7E-12 1E-08 0.52 
 

0.00 0.14 0.00 1.00 –0.07 10.00 
7 ARCH(1) 3E-12 6E-09 1.00 

   
0.00 1.00 0.90 1.28 

8 ARCH(1) 5E-12 4E-10 0.50 
   

0.00 1.00 –0.06 10.00 

As expected, the mean of wavelet coefficients at each level is negligible because wavelet coefficients 
capture the volatility instead of the trend. The t test for each parameter has a p value less than 0.005. 
With the volatility reflected in wavelet coefficients, the smoothed trend of the original time series needs 
to be incorporated as well. The scale coefficients at the highest decomposition level are fitted to an 
ARMA model to predict the future returns. In the example of S&P 500 index return, an ARMA(10,10) is 
chosen, given its low AIC. Table 7 lists the calibrated parameters. The magnitude of autocorrelation is 
higher, which indicates the significance of the trend. The volatility of the error term is small as most of 
the volatility has been captured by the wavelet coefficients. 
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Table 7. Scale Coefficients AMRA Model Parameters 

AR Parameters MA Parameters 

ϕ1 1.48 θ1 1.58 

ϕ2 –0.29 θ2 1.45 

ϕ3 0.16 θ3 1.36 

ϕ4 –1.02 θ4 1.37 

ϕ5 1.14 θ5 1.36 

ϕ6 –0.32 θ6 1.35 

ϕ7 0.00 θ7 1.34 

ϕ8 –0.49 θ8 0.35 

ϕ9 0.59 θ9 –0.23 

ϕ10 –0.24 θ10 –0.09 

c 0.0003 Volatility(εt) 8.9E-08 

The ARMA model for the scale coefficients at the highest level can be used to predict the expected 
returns in the future. Following the simulation method used in Section 2 to simulate future equity 
returns, wavelet coefficients can be simulated at each decomposition level. Conditional volatility and 
VaR can be projected for each level according to the calibrated GARCH model. They can be aggregated 
to predict the total VaR: 

𝑉𝑉𝑉𝑉𝐴𝐴𝐴𝐴𝜆𝜆𝜆𝜆,𝑇𝑇+𝑙𝑙 = ��𝑉𝑉𝑉𝑉𝐴𝐴𝑗𝑗,𝑇𝑇+𝑙𝑙
2

𝐽𝐽𝑀𝑀

𝑗𝑗=1

− 𝔼𝔼(𝑃𝑃𝑇𝑇+𝑙𝑙) 

𝑉𝑉𝑉𝑉𝐴𝐴𝑗𝑗,𝑇𝑇+𝑙𝑙 = −𝜎𝜎𝑗𝑗,𝑇𝑇+𝑙𝑙𝑆𝑆𝐺𝐺𝑆𝑆𝑆𝑆𝑗𝑗−1(1− 𝑝𝑝) 

 

Where 

𝑉𝑉𝑉𝑉𝐴𝐴𝐴𝐴𝜆𝜆𝜆𝜆,𝑇𝑇+𝑙𝑙  = aggregated daily VaR at T + l, l periods ahead of T.  

𝑉𝑉𝑉𝑉𝐴𝐴𝑗𝑗,𝑇𝑇+𝑙𝑙 = daily VaR at T + l at decomposition level j. The expected value of wavelet coefficients is 
zero and therefore is not included in the formula. 

𝜎𝜎𝑗𝑗,𝑇𝑇+𝑙𝑙 = projected conditional volatility of level j wavelet coefficient at T + l. 

𝑆𝑆𝐺𝐺𝑆𝑆𝑆𝑆𝑗𝑗−1(1− 𝑝𝑝) = the [100 × (1 – p)]th percentile of fitted SGED for level j wavelet coefficients. 

Figure 9 shows the daily return range prediction based on 1,000 simulations for 250 trading days from 
the beginning of October 2017. Actual daily returns till September 2018 are compared with the 
projected ranges. While 10.2% of actual returns falls out of the middle 90% range (5th percentile to 95th 
percentile), 0.7% of actual returns falls out of the middle 99% range (0.5th percentile to 99.5th 
percentile). Compared to a pure time-dependent prediction, as in Figure 4, wavelet-enhanced prediction 
has a wider predicted range for extreme returns (0.5th percentile and 99.5th percentile). 
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Figure 9. Wavelet-Based S&P 500 Index Daily Return Range Estimation 

 

Figure 10 shows the contribution to total variance of daily equity index returns by frequency. On 
average, level 1 (2 to 4 days) contributes 54% of total variance in this time-dependent analysis. 

Figure 10. Variance Contribution by Wavelet Coefficients 

 

Neither the predicted return percentiles nor the variance contribution mix are smooth across time. Only 
1,000 simulations are used in the analysis. More simulations will be able to smooth the results, but the 
trend is expected to be similar. 
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For decision makers with a longer time horizon, annual VaR is a better measure than daily VaR for risk 
assessment. Although daily VaR can be calculated directly from wavelet coefficients and scale 
coefficients, annual VaR is difficult to estimate because daily returns cannot be reconstructed directly 
from these coefficients. Wavelet coefficients and scale coefficients of MODWT need to be adjusted so 
that daily returns can be calculated as the sum of the transformed coefficients. Multiresolution analysis 
(MRA) based on MODWT can be used to construct daily returns from transformed coefficients that 
preserve the autocorrelation of daily returns. Annual returns are then calculated based on simulated 
daily returns. Table 8 compares the annual VaR derived by different methods for the period from 
October 2017 to September 2018. Wavelet-enhanced time-dependent analysis provides a much higher 
annual VaR than a pure time-dependent analysis given a low volatility environment in September 2017. 
It is obvious that wavelet analysis has a longer memory and helps preserve the long-term pattern much 
better than the time-dependent analysis in this example. Wavelet-enhanced time-dependent analysis 
also reflects current market conditions to predict the future risk in a given time horizon. 

Table 8. S&P 500 Index Return Annual VaR Estimation 

 Projection Type Model 95% VaR 99.5% VaR 

Time-dependent 
analysis Conditional ARMA + GARCH 4.6% 24.2% 

Wavelet-enhanced 
time-dependent 
analysis 

Conditional MODWT + MRA 17.6% 39.9% 

Empirical analysis 
(Jan. 1990–Sept. 
2017) 

Unconditional Statistical 
analysis 26.9% 43.5% 

     

4. Back-Testing 

It is helpful to understand the models’ performance regarding the equity return VaR prediction. Three 
models are compared: 

1. Time-invariant analysis. It estimates the daily VaR based on the historical data, assuming the 
volatility is constant across time.  

2. Time-dependent analysis. ARMA and GARCH models described in Section 2 are used to estimate 
the daily VaR. 

3. Wavelet-enhanced time-dependent analysis. Time-dependent analysis at different frequencies 
using the MODWT model is used to estimate the daily VaR, as explained in Section 3.3. 

To be comprehensive, both economic expansion and economic recession are considered in the back-
testing. The accuracy of prediction is assessed in the following scenarios: 

1. Starting with a medium volatility level at the end of 2007, the VaR estimation is compared to the 
actual daily returns in 2008, a high volatility period with an average conditional volatility of 2%. 

2. Starting from a low volatility level at the end of September 2017, the VaR estimation is 
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compared to the actual daily returns from October 2017 to September 2018, a low volatility 
period with an average conditional volatility of 0.9%. 

3. Starting from a high volatility level at the end of September 2008, the VaR estimation is 
compared to the actual daily returns from October 2008 to September 2009, a very volatile 
period with an average conditional volatility of 2.4%. 

Models are recalibrated for each scenario based on different study periods. Table 9 lists the back-testing 
results. The assessment is conducted at four levels:  

1. Left Tail 0.5%. The probability that the actual daily return is lower than the 0.5th percentile 
predicted by the model. 

2. Left Tail 5%. The probability that the actual daily return is lower than the 5th percentile 
predicted by the model. 

3. Right Tail 5%. The probability that the actual daily return is higher than the 95th percentile 
predicted by the model. 

4. Right Tail 0.5%. The probability that the actual daily return is higher than the 99.5th percentile 
predicted by the model. 

Table 9. Back-Testing Result 

Threshold Analysis Method 

Starting Period 
Medium 
Volatility (2007 
Year End: 1.1%) 

Low Volatility 
(Sept. 2017: 
0.5%) 

High Volatility 
(Sept. 2008: 
2.6%) 

Testing Period 
High Volatility 
(2008: 2% on 
Average) 

Low Volatility 
(Oct. 2017–
Sept. 2018: 
0.9% on 
Average) 

High Volatility 
(Oct. 2008–
Sept. 2009: 
2.4% on 
Average) 

Empirical Probability 

Left tail 0.5% 

Time-invariant analysis 6.0% 0.8% 7.2% 
Time-dependent analysis 6.4% 0.8% 0% 
Wavelet-enhanced 
time-dependent 
analysis 

5.2% 0.4% 0% 

Left tail 5% 

Time-invariant analysis 19.6% 2.8% 20.8% 
Time-dependent analysis 20.0% 4.4% 8.4% 
Wavelet-enhanced 
time-dependent 
analysis 

19.2% 3.2% 13.6% 

Right tail 5% 

Time-invariant analysis 15.6% 0% 18.8% 
Time-dependent analysis 15.6% 6.0% 8.4% 
Wavelet-enhanced 
time-dependent 
analysis 

15.6% 2.8% 14.4% 
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Right tail 0.5% 

Time-invariant analysis 5.6% 0.4% 6.0% 
Time-dependent analysis 7.6% 0.8% 1.6% 
Wavelet-enhanced 
time-dependent 
analysis 

4.0% 0% 0% 

 

Ideally, the empirical probability should be consistent with the confidence level for perfect VaR 
estimation. For example, for the left tail 0.5%, a probability close to 0.5% is preferred. As expected, 
time-invariant analysis tends to underestimate the risk in low-volatility situations and overestimate the 
risk in high-volatility situations. In this example, wavelet-enhanced time-dependent analysis is better 
than the other two approaches for capturing the heavy tails (left tail 0.5% and right tail 0.5%). Like the 
other two approaches, wavelet-enhanced time-dependent analysis may underestimate VaR at a lower 
confidence level (left tail 5% and right tail 5%).  

For VaR estimation at a high confidence level, wavelet-enhanced time-dependent analysis is the best 
option based on the back-testing results. In addition, this type of analysis can adjust itself based on new 
information in a timely manner. With the new information in the first three quarters of 2008, its 
prediction of extreme returns moved to the range seen in a financial crisis. 

5. Application 

As shown in Section 3, wavelet analysis can be used to understand the contribution of different 
frequencies to the total risk. In the example of S&P 500 index return, wavelet analysis identifies that 
short-term (2 to 4 days) volatility contributes more than half of the total volatility. It is valuable 
information for risk analysis when time horizon matters. For example, for hedging equity risk exposure, 
a daily hedging is quite different from a weekly or monthly hedging. Wavelet analysis help us 
understand the amount of volatility at different frequencies. A longer time horizon would expect a lower 
volatility. 

Wavelet analysis can also enhance time-dependent analysis if different patterns exist for different 
frequencies. Modeling the time-dependent pattern separately by frequency can better capture the tail 
risk at different levels. Wavelet analysis can be applied to risks where high frequency data are available. 
Economic risks such as interest rate risk, credit risk and asset market risk are areas where wavelet 
analysis is expected to provide richer information than a pure time-dependent analysis.   

While not shown in this paper, wavelet analysis can be applied to multiple time series at the same time. 
Correlations among time series can be calculated at different frequency levels. Long-, medium- and 
short-term correlation coefficients can be calculated separately and selected based on the time horizon 
of risk analysis as well. 

6. Conclusion 

Unlike time series analysis, wavelet analysis can be used to systematically analyze historical time series 
data by time and frequency at the same time. Wavelet analysis provides a decomposition of the total 
risk and can tell whether short-, medium- or long-term risk is dominating. Combined with time-
dependent analysis, it can better capture different patterns at different frequency levels to improve risk 
estimation. Risk measures such as volatility and VaR can be calculated directly using wavelet models.  
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Wavelet analysis is especially useful when time horizon has a significant impact on risk analysis. It can 
help refine assumptions such as volatility, tail heaviness and correlation according to the time horizon of 
risk analysis. 
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