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Abstract

This paper assesses and compares multi-factor continuous time affine mortality models
applied to age-cohort mortality curves that are well suited for theoretical and practical ap-
plication in finance and insurance. Models based on Gaussian distributed mortality rates,
as well as the Cox-Ingersoll-Ross (CIR) process allowing for Gamma distributed mortality
rates, are compared, also quantifying the probability of negative rates in the Gaussian mod-
els. In particular, we introduce the Gaussian Arbitrage-Free Nelson-Siegel (AFNS) mortality
model incorporating level, slope and curvature factors. The models have appealing features
including efficient estimation and computation. We estimate models using age-cohort data
to capture cohort effects more effectively and in order to explain the variability in cohort
mortality curves in the continuous time framework. The models allow for Poisson variation
in the model estimation using the Kalman filter. The affine mortality models facilitate the
derivation of closed-form survivor curves allowing for efficient valuation of mortality-linked
claims. The models can also incorporate factor dependence allowing for age-dependence in
the mortality curves. Importantly we show that the Gaussian independent factor AFNS
model performs very well in explaining and forecasting cohort mortality.
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1 Introduction
Longevity risk is the, now well recognised, risk that the overall survival probability of a

reference population is higher than expected (Cairns et al., 2006a). The mortality improve-
ments experienced over past decades have highlighted its significance. Life insurance companies
and pension funds, as the holders of substantial longevity risk, are often reluctant to provide
financial products for post-retirement wealth planning (Blake et al., 2014). The Continuous
Mortality Investigation (2018) highlights the potential for mortality experience to improve, and
the underestimation of longevity risk has been estimated as having a significant financial impact
requiring an extra $450 billion in payments per year (The Joint Forum, 2013). This also results
in a larger capital requirement for insurers (Barrieu et al., 2012). The quantification of longevity
risk and the design of financial and insurance products to manage this risk are fundamental to
life insurance companies and pension funds.

Many methods have been proposed for insurers and pension funds to manage the risk of
mortality improvement including transfering longevity risk to counterparties through longevity
swaps and transferring the risk to capital markets through securitization of insurance assets and
liabilities (The Joint Forum, 2013). Capital markets are expected to become increasingly sig-
nificant with potential for an expanding global market, arising from efficiency and effectiveness
of longevity management (Blake et al., 2018). Longevity-linked securities have been proposed
including longevity bonds (Blake and Burrows, 2001), longevity swaps (Dowd et al., 2006), and
q-forwards (Coughlan et al., 2007). As with all financial market innovations, risk quantifica-
tion and fair pricing are major concerns. The Life and Longevity Markets Association (2010)
acknowledge that expected mortality improvement is a key input in pricing longevity risk, but
forecasting such improvement remains challenging.

Many different stochastic mortality models have been proposed to describe the stochastic
evolution of mortality rates at an aggregate population level. These include the Lee-Carter
model (Lee and Carter, 1992) and its extensions under a discrete-time modeling framework.
The Lee-Carter model is considered as a cornerstone and is widely used. Numerous extensions
and improvements have been proposed. Cairns et al. (2009) provides a comprehensive summary
and comparison of these extensions. The Cairns-Blake-Dowd model (Cairns et al., 2006b) and
the age-period-cohort model (Renshaw and Haberman, 2006) have also become popular models.
Discrete-time mortality models describe the mortality intensity as a discrete time series and
usually require simulation to implement with no closed-form solutions for survival curves.

Continuous-time affine mortality models have also been proposed based on mathematical
finance techniques for interest rate and credit risk modelling. These mortality models reflect the
similarities between mortality rates and interest rates, as discussed in Milevsky and Promislow
(2001), Dahl (2004), and Cairns et al. (2006a). Continuous-time mortality models using diffusion
processes have many advantages over discrete-time models. Continuous-time models are readily
incorporated into the modelling of longevity risk where both mortality models and financial
models are required, as in the case of longevity-linked securities (Jevtic et al., 2013).

Affine mortality models are based on the application of Affine Term Structure Models
(ATSMs) for interest rate modeling, as in Duffie and Kan (1996) and Dai and Singleton (2000),
to mortality modelling. Affine mortality models, because of the similar structure to interest rate
models, allow for an integrated pricing framework (Barrieu et al., 2012) and closed-form solu-
tions to survival probabilities (Dahl, 2004). Affine processes are well suited for continuous-time
mortality models because of their flexibility and analytical tractability. Affine mortality models
that satisfy a consistency requirement (Björk and Christensen, 1999) have stable parameters
and ensure consistency between the dynamics of mortality rates and the functional form for the
survival curve. This ensures consistency in projected survival curves as discussed in De Rossi
(2004) and Blackburn and Sherris (2013). The models use continuous-time dynamics for risk
factors that drive changes in the cohort survival curve through time with factor loadings that
quantify how the risk factors impact the different ages in the survival curve.
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Affine mortality models have been predominantly considered for capturing the mortality
dynamics of a single cohort as in Dahl and Møller (2006), Biffis (2005) and Luciano et al.
(2008). These models are usually calibrated to age-period mortality data for the reference
population as in Schrager (2006) and Blackburn and Sherris (2013). The models do not fit as
well at older ages and do not capture the effect of heterogeneity (Pitacco, 2016). Alai et al.
(2019) find that the Gamma distribution fits mortality intensities well, which is consistent with
mortality heterogeneity.

Cohort effects have been observed in age-period data for many countries, for example Willets
(2004), Cairns et al. (2009) and Gallop (2008). The pricing of longevity-linked cash-flows
requires the survival rates of a cohort in the reference population (Xu et al., 2015). Recently
Jevtic et al. (2013), Xu et al. (2015) and Chang and Sherris (2018) have proposed affine age-
cohort mortality models to capture the dynamics of survival probabilities of multiple cohorts.

This paper assesses a range of continuous-time affine cohort mortality models. We propose
an affine mortality model based on the Arbitrage-Free Nelson-Siegel (AFNS) model (Christensen
et al., 2011) with identifiable factors of level, slope and curvature of the mortality curve. We
investigate the impact of incorporating factor dependence to capture correlations for the models.
To improve the model fit we use a Gamma distribution based on the Cox-Ingersoll-Ross (CIR)
model (Cox et al., 1985) for the affine mortality models. We capture cohort effects directly using
age-cohort data to calibrate and assess the model survival curve fit and forecasting performance.
Age-period models, that are fitted to age-period data, require additional factors to capture
cohort effects. Fitting age-cohort models using age-cohort data captures cohort effects more
naturally than age-period models.

This paper is structured as follows. Section 2 provides a general model framework for affine
mortality models and specifies the structure of the continuous-time cohort mortality models.
Section 3 describes the US mortality data for calibration. We use US data since this is a large
developed country with mortality experience typical of such economies. Section 4 outlines the
estimation methodology using the Kalman filter and provides an analysis of the estimation
results and model comparison. In Section 5, out-of-sample expected survival probabilities are
estimated for the latest cohort with full mortality data and the out-of-sample forecasting ability
is assessed. Section 6 concludes the paper with a summary and major findings.

2 Affine Mortality Models
We outline the continuous-time model framework of affine mortality models, then introduce

the AFNS and the CIR model applied to mortality modeling for multiple cohorts. Finally we
discuss the incorporation of factor dependence in the affine models. We initially derive the
mortality models in a financial modelling setting with risk-neutral pricing measures. We then
give the link between the risk-neutral dynamics and the real world dynamics which allows us
to calibrate the models to historical mortality data.
2.1 General Model Framework

The models are formally defined based on a filtered probability space (Ω,F ,F, P ), where
Ω is the set of possible states of nature and F = {Ft}0≤t≤T , where Ft = HtVM is the com-
bined filtration for both the term structure of interest rates and mortality, assumed to satisfy
the conditions of right continuity, with Ht the filtration generated by the term structure of
interest rates up to time t, and Mt the filtration containing all the information generated by
the evolution of the survival curves for mortality up to time t.

There is an incomplete market for longevity risk so that there exists no unique risk-neutral
measure Q for pricing mortality linked cash flows (Xu et al., 2015). In pricing longevity risk
and longevity-linked financial products, the risk-neutral measure Q is defined in terms of the
zero-coupon longevity bond (Cairns et al., 2006a; Bauer et al., 2008; Blackburn and Sherris,
2013). The real-world measure P reflects the best estimate of mortality, which is related to
historical mortality data (Bauer et al., 2008).
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We use S̃ (t, T, x) to denote the survival probability of an individual aged x at time t surviving
to time T . The price of a zero coupon bond paying $1 at time T is denoted as P (t, T ). The price
of longevity bond at time t that pays the amount S̃ (t, T, x) at time T is denoted by P̃ (t, T, x).
If there exists a measure Q, equivalent to the real-world measure P for all t, T , and x, such
that

P (t, T ) = EQ
[
exp

(
−
∫ T

t
rudu

)∣∣∣∣Ht] , (1)

P̃ (t, T, x) = EQ
[
exp

(
−
∫ T

t
rudu

)
S̃ (t, T, x)

∣∣∣∣Ft] , (2)

then the dynamics of the combined financial market are arbitrage-free.
Assuming independence between interests rates and mortality, the price of a zero coupon

longevity bond can be written as:

P̃ (t, T, x) = EQ
[
exp

(
−
∫ T

t
rudu

)∣∣∣∣Ht]EQ [S̃ (t, T, x)
∣∣∣Mt

]
= P (t, T )S (t, T, x) , (3)

where S (t, T, x) is the risk-neutral survival probabilty, which is a martingale under the measure
Q.

The instantaneous mortality intensity for individuals aged x at time t of a given cohort i is
defined as:

µix (t) = ρ
′
1Xt, (4)

where ρ1 ∈ Rn, and Xt ∈ Rn is a vector of n latent factors that are assumed to drive the
mortality intensity.

In what follows the subscript x indicating ages and i indicating cohorts will be dropped
since we are considering a single cohort. Individuals age as time increases in the cohort.

The dynamics of the latent factors Xt are given by the following system of stochastic differ-
ential equations (SDEs) under the risk-neutral measure Q (Duffie and Kan, 1996; Christensen
et al., 2011):

dXt = KQ
[
θQ −Xt

]
dt+ ΣD (Xt, t) dW

Q
t , (5)

where KQ ∈ Rn×n is the mean reversion matrix, θQ ∈ Rn is the long-term mean, Σ ∈ Rn×n
is the volatility matrix, WQ

t ∈ Rn is a standard Brownian motion, and D (Xt, t) is a diagonal

matrix with the ith diagonal entry as
√
αi (t) + βi1 (t)x1t + . . .+ βin (t)xnt . α and β are bounded

continuous functions.
We will consider 3-factor affine models since this has been found to be satisfactory in cap-

turing mortality variations at older ages (Blackburn and Sherris, 2013).
Under these dynamics the risk-neutral survival probabilities for any age x from time t to

time T can be represented as (Blackburn and Sherris, 2013):

S (t, T ) = EQ
[
exp

(
−
∫ T

t
µ (s) ds

)]
= exp

(
B (t, T )

′
Xt +A (t, T )

)
, (6)

where B (t, T ) and A (t, T ) are the solutions to the following system of ordinary differential
equations (ODEs):

dB (t, T )

dt
= ρ1 +

(
KQ
)′
B (t, T ) , (7)

dA (t, T )

dt
= −B (t, T )

′
KQθQ − 1

2

3∑
j=1

(
Σ
′
B (t, T )B (t, T )

′
Σ
)
j,j
, (8)

with boundary conditions B (T, T ) = A (T, T ) = 0.
The survival probability can be written also in terms of the average force of mortality over
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the duration (T − t) for any age x. The average force of mortality is affine in the latent factors
and is defined as (Blackburn and Sherris (2013); Xu et al. (2015)):

µ̄ (t, T ) = − 1

T − t
log [S (t, T )] = −B (t, T )

′

T − t
Xt −

A (t, T )

T − t
. (9)

This allows us to construct the survival curve given the factors and the factor loadings.
2.2 Multi-Factor Affine Cohort Mortality Models

We present the dynamics of the latent factors in 3-factor affine models. For the different
models we specify the dynamics for Equations (4) and (5) and give the solutions to the ODEs
for Equations (7) and (8).
2.2.1 Independent Factor Models with Gaussian Processes

We first consider 3-factor affine mortality models with factors following Gaussian pro-
cesses. We consider the 3-factor independent model in Blackburn and Sherris (2013) (hereafter
Blackburn-Sherris model). We also consider an affine mortality model based on the AFNS in-
terest rate term structure model with the survival curve driven by factors for level (Lt), slope
(St), and curvature (Ct).

Table 1 summarises the assumptions for these models. The independent factor models have
an identity matrix for D (Xt, t) in Equation (5). The long-term mean θQ in the models is
assumed to be a vector of zeros for both models, as explained in Blackburn and Sherris (2013).

The model dynamics are given as follows:

• The independent Blackburn-Sherris model has instantaneous mortality rate given by

µ (t) = X1
t +X2

t +X3
t , (10)

with ρ1 = (1, 1, 1)T and Xt =
(
X1
t , X

2
t , X

3
t

)
in Equation (4).

The dynamics of the state variables Xt have the following form under the risk-neutral
measure Q dX1

t

dX2
t

dX3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33

 X1
t

X2
t

X3
t

 dt+

 σ11 0 0
0 σ22 0
0 0 σ33


 dW 1,Q

t

dW 2,Q
t

dW 3,Q
t

 . (11)

• The independent AFNS mortality model has instantaneous mortality rate given by

µ (t) = Lt + St, (12)

with ρ1 = (1, 1, 0)T and Xt = (Lt, St, Ct) in Equation (4).

The dynamics of the factors under the Q-measure are given by: dLt
dSt
dCt

 = −

 0 0 0
0 δ −δ
0 0 δ

 Lt
St
Ct

 dt+

 σ11 0 0
0 σ22 0
0 0 σ33


 dW 1,Q

t

dW 2,Q
t

dW 3,Q
t

 . (13)

The solutions for the survival curve require B (t, T ), the factor loadings, and A (t, T ) from
Equations (7) and (8) which can be explicitly solved. The results are:

• The independent Blackburn-Sherris model (Blackburn and Sherris, 2013)

Bj (t, T ) = −1− e−δjj(T−t)

δjj
, j = 1, 2, 3, (14)
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Table 1: Affine Mortality Models - Independent Factor Model Specifications

Model Factors Xt ρ1 KQ KP Σ

Blackburn-
Sherris Model

 X1
t

X2
t

X3
t

  1
1
1

  δ1 0 0
0 δ2 0
0 0 δ3

  kP1 0 0
0 kP2 0
0 0 kP3

  σ11 0 0
0 σ22 0
0 0 σ33


AFNS Model

 Lt

St

Ct

  1
1
0

  0 0 0
0 δ −δ
0 0 δ

  kP1 0 0
0 kP2 0
0 0 kP3



A (t, T ) =
1

2

3∑
j=1

σ2jj
δ3jj

[
1

2

(
1− e−2δjj(T−t)

)
− 2

(
1− e−δjj(T−t)

)
+ δjj (T − t)

]
. (15)

• The independent AFNS model (Christensen et al., 2011)

B1 (t, T ) = − (T − t) , B2 (t, T ) = −1− e−δ(T−t)

δ
,

B3 (t, T ) = (T − t) e−δ(T−t) − 1− e−δ(T−t)

δ
,

(16)

A (t, T )

T − t
= σ211

(T − t)
6

+ σ222

[
1

2δ2
− 1

δ3
1− e−δ(T−t)

T − t
+

1

4δ3
1− e−2δ(T−t)

T − t

]
+

σ233

[
1

2δ2
+

1

δ2
e−δ(T−t) − 1

4δ
(T − t) e−2δ(T−t) − 3

4δ2
e−2δ(T−t)

− 2

δ3
1− e−δ(T−t)

T − t
+

5

8δ3
1− e−2δ(T−t)

T − t

]
.

(17)

The factor loadings for the independent Blackburn-Sherris model have the same functional
form and differ because of the value of the fitted δjj values which results in different impacts
of the factors across ages for the cohort curve. For the independent AFNS model the factor
loadings have direct interpretation. B1 (t, T ) is level so that the level factor impacts all ages in
the cohort curve the same. B2 (t, T ) is increasing so that the slope factor impacts older ages
more than younger ages. B3 (t, T ) is decreasing and produces curvature in the survival curve
through time.

The selection of ρ1 and the specific structure of the mean reversion matrix KQ in Equation
(13) ensure that the factor loadings −B(t,T )

T−t (Equation (9)) of the AFNS model maintain the
exact Nelson-Siegel structure such that the latent factors can be interpreted as level, slope and
curvature factors driving the mortality curves (Diebold and Li, 2006; Diebold and Rudebusch,
2013). Moreover, since the AFNS model is derived from the ATSM in Duffie and Kan (1996),
this model maintains the arbitrage-free affine structure, which is suitable for financial and
pricing applications (Christensen et al., 2011).

Although Björk and Christensen (1999) argues that the Nelson-Siegel model does not satisfy
the consistency requirement (proposed by Björk and Christensen, 1999), Diebold and Rudebusch
(2013) explain that failing to meet the consistency requirement is due to the failure of the Nelson-
Siegel model to link the parameters in the state transition equation to the parameters in the
measurement equation in the state space form. The AFNS model establishes this link in the
yield-adjustment term, which is −A(t,T )

T−t .

2.2.2 Dependent Factor Models with Gaussian Processes
In the independent factor models all ages in the cohort survival curve are impacted by

the common factors to a greater or lesser extent as determined by the factor loadings. Factor
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dependence is incorporated to capture the correlation between different ages.
We give the factor dynamics and solutions to the dependent factor models with Gaussian

processes. For both of the Blackburn-Sherris model and the AFNS model, we assume the volat-
ility matrix Σ to be lower-triangular which allows correlated shocks in the models. Although
correlation can also be incorporated through KQ, for the AFNS model the structure of KQ

has to be the same as for the independent factor model in order to preserve the Nelson-Siegel
structure for the survival curve factors.

The risk-neutral dynamics of the dependent factor models are specified as:

• The dependent Blackburn-Sherris model dX1
t

dX2
t

dX3
t

 = −

 δ11 0 0
δ21 δ22 0
δ31 δ32 δ33

 X1
t

X2
t

X3
t

 dt+

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW 1,Q

t

dW 2,Q
t

dW 3,Q
t

 . (18)

• The dependent AFNS model dLt
dSt
dCt

 = −

 0 0 0
0 δ −δ
0 0 δ

 Lt
St
Ct

 dt+

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW 1,Q

t

dW 2,Q
t

dW 3,Q
t

 . (19)

For completeness, the factor loadings B (t, T ) and A (t, T ) of the dependent Blackburn-
Sherris model are given in Appendix A. For the dependent AFNS model the factor loadings
B (t, T ) are the same as for the independent factor model and an explicit expression for A (t, T )
is given in Christensen et al. (2011).
2.2.3 The Cox-Ingersoll-Ross Mortality Model

The Gaussian models considered so far allow mortality rates to become negative, although
as we will show later, this is empirically small for most of the models we consider. To avoid
negative mortality rates we consider a multi-factor affine mortality model with each factor
following a square-root process, based on the Cox-Ingersoll-Ross model (CIR) (Cox et al., 1985)
frequently used as an affine term structure models for interest rates and credit risk.

Another benefit of the Cox-Ingersoll-Ross model (CIR) model is that it can capture the effect
of mortality heterogeneity. Under the CIR mortality model, mortality rates follow a non-central
Chi-square distribution and are asymptotically Gamma distributed (Cox et al., 1985).

Following Chen and Scott (2003) and Geyer and Pichler (1999) for interest rates, we define
the instantaneous mortality intensity as before to be affine with:

µix (t) = ρ
′
1Xt = X1

t +X2
t +X3

t , (20)

where Xt =
(
X1
t , X

2
t , X

3
t

)
are the state variables that are driving the mortality intensity and

ρ1 is assumed to be (1, 1, 1)T .
The factor dynamics driving the mortality survival curve are then described by the following

system of SDEs under the risk-neutral measure Q: dX1
t

dX2
t

dX3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33



 θQ1

θQ2
θQ3

−
 X1

t

X2
t

X3
t


 dt

+

 σ11 0 0
0 σ22 0
0 0 σ33



√
X1
t 0 0

0
√
X2
t 0

0 0
√
X3
t


 dW 1,Q

t

dW 2,Q
t

dW 3,Q
t

 .

(21)
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With this structure, each factor follows a single-factor CIR process, a square-root process.
The matrix D (Xt, t) in Equation (5) is defined as a diagonal matrix with the j-th element on

the diagonal as

√
Xj
t (j = 1, 2, 3).

The explicit expressions for B (t, T ) and A (t, T ) are

Bj (t, T ) = −
2
(
eγj(T−t) − 1

)
(δjj + γj)

(
eγj(T−t) − 1

)
+ 2γj

, j = 1, 2, 3, (22)

A (t, T ) =
3∑
j=1

2δjjθ
Q
j

σ2jj
ln

 2γj exp
(
(δjj+γj)(T−t)

2

)
(δjj + γj)

(
eγj(T−t) − 1

)
+ 2γj

 , (23)

with γj =
√
δ2jj + 2σ2jj , j = 1, 2, 3 (Duan and Simonato, 1999; Chen and Scott, 2003; Geyer

and Pichler, 1999).
2.3 Real World Dynamics and Change of Measure

The affine mortality models are specified under the risk-neutral measure Q. Since we fit the
models using historical data, this measure has to be changed to the real-world measure P . From
Girsanov′s theorem, the relationship between the dynamics under the measure P and under the
measure Q is given by:

dWQ
t = dWP

t + Λtdt, (24)

where Λt is the risk premium.
To specify the structure of the risk premium of longevity risk, we adopt the essentially affine

model proposed by Duffee (2002). The essentially affine model removes the strong link between

the factor loadings −B(t,T )
T−t and the drift term under the real-world measure (Blackburn and

Sherris, 2013) and preserves the affine dynamics under the P -measure (Christensen et al., 2011).
The form of the risk premium is (Duffee, 2002):

Λt =

{
λ0 + λ1Xt, for models with Gaussian processes;

D (Xt, t)λ
0, for the CIR model.

(25)

where Λt ∈ Rn×1, λ0 ∈ Rn×1 and λ1 ∈ Rn×n.
With these assumptions, the SDEs for factors under the measure P can be written as:

dXt =

{
KP

[
θP −Xt

]
dt+ ΣdWP

t , for models with Gaussian processes;

KP
[
θP −Xt

]
dt+ ΣD (Xt, t) dW

P
t , for the CIR model.

(26)

The form of KP and θP are derived in Appendix B. In the essentially affine model we are
free to choose the mean reversion matrix KP and the mean vector θP .

Under the real-world measure P , the dynamics of the factors in each model that we will
estimate from historical mortality data are:

• The independent Blackburn-Sherris model (Blackburn and Sherris, 2013) dX1
t

dX2
t

dX3
t

 = −

 kP11 0 0
0 kP22 0
0 0 kP33

 X1
t

X2
t

X3
t

 dt+

 σ11 0 0
0 σ22 0
0 0 σ33


 dW 1,P

t

dW 2,P
t

dW 3,P
t

 . (27)
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• The independent AFNS model (Christensen et al., 2011) dLt
dSt
dCt

 = −

 kP11 0 0
0 kP22 0
0 0 kP33

 Lt
St
Ct

 dt+

 σ11 0 0
0 σ22 0
0 0 σ33


 dW 1,P

t

dW 2,P
t

dW 3,P
t

 . (28)

• The dependent Blackburn-Sherris model dX1
t

dX2
t

dX3
t

 = −

 kP11 0 0
0 kP22 0
0 0 kP33

 X1
t

X2
t

X3
t

 dt+

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW 1,P

t

dW 2,P
t

dW 3,P
t

 . (29)

• The dependent AFNS model dLt
dSt
dCt

 = −

 kP11 0 0
0 kP22 0
0 0 kP33

 Lt
St
Ct

 dt+

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW 1,P

t

dW 2,P
t

dW 3,P
t

 , (30)

• The CIR model dX1
t

dX2
t

dX3
t

 = −

 kP11 0 0
0 kP22 0
0 0 kP33

 θP1
θP2
θP3

−
 X1

t

X2
t

X3
t

 dt
+

 σ11 0 0
0 σ22 0
0 0 σ33



√
X1
t 0 0

0
√
X2
t 0

0 0
√
X3
t


 dW 1,P

t

dW 2,P
t

dW 3,P
t

 .

(31)

3 Mortality Data
The US mortality data from the Human Mortality Database (2017) (HMD) is used to

calibrate and compare the mortality models. We use age-cohort data as opposed to age-period
data since we are estimating cohort models (Blackburn and Sherris, 2013; Xu et al., 2015; Chang
and Sherris, 2018).

We extract the mortality data of males from ages 50 to 100 for the cohorts born from 1883
to 1915. We are interested in the older ages for post-retirement applications. This gives us
complete mortality rate data for each complete cohort. The cohort death rates are obtained by
reading the age-period life table diagonally.

We then determine the historical survival probability, Si (x; t, T ), and the historical average
forces of mortality µ̄i (x; t, T ) over the period τ = T − t for each cohort i aged x at time t from
the data, using:

Si (x; t, T ) =
T−t∏
s=1

[
1− qi (x+ s− 1, t+ s− 1)

]
, (32)

µ̄i (x; t, T ) = − 1

T − t
log
[
Si (x; t, T )

]
, (33)

where qi (x, t) is the one year death probability for an individual aged x at time t in cohort i.
The average force of mortality for cohorts born between 1883 and 1915, aged 50 to 100, is

shown in Figure 1. Mortality improvement across cohorts is seen from the downward trend of
the average force of mortality at each age. The rate of mortality improvement differs by age.
The average force of mortality of each cohort grows exponentially in each cohort.

Figure 2 shows the principal component analysis (PCA) for the change of mortality intensity
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Figure 1: Average Force of Mortality
for Males Born from 1883 to 1915

Figure 2: Fractions (%) of Variance

Explained by Each of the First 7

Principal Components

for all cohorts as they age. The first three principal components are able to explain approxim-
ately 90% of the total variance which supports our choice of 3-factor affine mortality models
while maintaining parsimony. This is consistent with the analysis in Blackburn and Sherris
(2013).

4 Model Assessment and Comparison
We estimate the model parameters for all the models using the Kalman filter. The fitted

models are then compared using a number of model selection criteria.
4.1 Parameter Estimation

The Kalman filter (Kalman, 1960) with maximum likelihood estimation is used to estimate
the parameters in the affine mortality models, following Christensen et al. (2011) and Blackburn
and Sherris (2013). Since our models only capture the volatility of the mortality rates we need
to account for the exponentially increasing ‘Poisson’ variation in the historical data reflecting
the size of the population at each age. We do this in the measurement equation for the Kalman
filter (Xu et al., 2018).

The estimation process is as follows:

1. Represent the affine mortality models in the state space form which consists of two com-
ponents, the measurement equation and the state transition equation (Xu et al., 2015;
Shumway and Stoffer, 2017).

The measurement equation describes the affine relationship between the average force of
mortality and the state variables (Xu et al., 2015; Durbin and Koopman, 2012). Based on
Blackburn and Sherris (2013) and Xu et al. (2015), the measurement equation in terms
of the average forces of mortality is:

µ̄ (t, T ) = −B (t, T )
′

T − t
Xt −

A (t, T )

T − t
+ εt, εt ∼ N (0, H) , (34)

where the measurement error εt is independently and identically distributed noise with
the covariance matrix of the measurement error, H, being diagonal.

To capture the increasing nature of the Poisson variation, the parameteric form assumed
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for the diagonal of the covariance matrix H is

H (t, T ) =
1

T − t

T−t∑
i=1

[
rc + r1e

r2i
]
, (35)

where the values of rc, r1 and r2 are estimated from the data.

The state transition equation represents the unobserved dynamics of the state variables
(Xu et al., 2015; Durbin and Koopman, 2012) and is given by:

Xt = exp
(
−KP

)
Xt−1 + ηt, ηt ∼ N (0, R) , (36)

where ηt is the transition error vector with diagonal matrix R the covariance matrix of
the transition error.

The matrix R has the following structure:

R =

∫ t

t−1
e−K

P (t−s)ΣΣ
′
e−(KP )

′
(t−s)ds. (37)

2. Use the Kalman filter to evaluate the likelihood function of affine mortality models and
to extract the values of the state variables. The information available at time t is denoted
by Yt = (y1, . . . , yt) and the model parameters given by ψ.

In the forecasting step, using the state update Xt−1 and its mean square error Σt−1
obtained at t− 1,

Xt|t−1 = E [Xt|Yt−1] = Φ (ψ)Xt−1, (38)

Σt|t−1 = Φ (ψ) Σt−1Φ (ψ)
′
+R (ψ) , (39)

where Φ = exp
(
−KP

)
.

In the update step, the information at time t, Yt, is used to update the forecasts Xt|t−1
and we obtain:

Xt = E [Xt|Yt] = Xt|t−1 + Σt|t−1B (ψ)
′
F−1t νt, (40)

Σt = Σt|t−1 − Σt|t−1B (ψ)
′
F−1t B (ψ) Σt|t−1, (41)

where
νt = yt − E [yt|Yt−1] = yt −A (ψ)−B (ψ)Xt|t−1, (42)

Ft = cov (νt) = B (ψ) Σt|t−1B (ψ)
′
+H (ψ) . (43)

3. Evaluate the following log-likelihood function with the values obtained in the previous
step:

logL (y1, . . . , yt;ψ) =

T∑
t=1

(
−N

2
log (2π)− 1

2
log |Ft| −

1

2
ν
′
tFtνt

)
, (44)

where N is the number of observed average forces of mortality.

The log-likelihood function is maximized with respect to ψ to obtain the optimal parameter
set. For the CIR mortality model we use quasi-maximum likelihood estimation.

4.2 Model Parameter Estimation Results
Table 2 summarizes the parameter estimates for each model, along with the standard er-

rors. The standard errors determine the significance of factor loadings, which further indicates
whether the corresponding factor has a significant influence on mortality rates. The risk neutral
parameter values are reported as well as the real world values.
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The parameters in KQ (δ
′
s) show the impact of each of the factors on changes in the

factors and summarise the significance of the factor loadings at the different ages. The diagonal
components are largely negative. The δ

′
s in the dependent-factor AFNS model are smaller in

absolute value than those in the independent-factor AFNS model. For the two AFNS models,
δ
′
s are both negative which results in the sensitivity at older ages for the slope factor.

The mean reversion KP parameters give the speed to revert to the long-term mean. These
values vary across the models reflecting different rates of mean reversion in the real world
measure. There are negative correlations between factors in the two dependent-factor models,
which impacts the adjustment term A (t, T ).

All the long-term mean θ parameters in the CIR model are positive which ensures positive
factors and hence positive mortality rates in the model. The second factor, X2, has the largest
mean reversion speed, kP22, and largest volatility, σ22, so this factor is more related to the short
term (Geyer and Pichler (1999)). The mean reversion rate kP11 and the volatility σ11 of X1 are
lowest, compared with the other two factors. The first factor has less impact on the mortality
dynamics and is less volatile.

Because of the structure of the matrix H in Equation (35), the measurement errors are
age-dependent and exponentially increasing with age. By comparing the r2, the scalar in the
exponential function in matrix H, the independent-factor Blackburn-Sherris model has the
largest r2, so that there is a larger measurement error volatility estimated for this model. Values
of all parameters in matrix H of the CIR model are negligible, indicating smaller measurement
errors and reflecting a better in-sample model fit.
4.3 Assessing Model Goodness-of-Fit

Table 3 shows, for each model, the Root Mean Square Error (RMSE), the Akaike information
criterion (AIC), and the Bayesian information criterion (BIC). Since the models with Gaussian
processes allow for negative mortality, we show the probabilities of negative mortality for these
models.

In terms of model selection, the CIR model has the highest log-likelihood and the smallest
RMSE. The AIC and the BIC of the CIR model show this to be a better model even though it
has more parameters than most of the other models. The CIR model, by construction, precludes
the probability of negative mortality.

The Gaussian models perform well, particularly the dependent-factor models. The depend-
ent factor Blackburn-Sherris model and the AFNS models all have low probabilities of negative
mortality rates. The dependent-factor Blackburn-Sherris model has the largest log-likelihood
and better AIC and BIC than the other Gaussian models.
4.4 Factors and Factor Loadings

We consider the factors and the factor loadings for the cohort survival curves for the inde-
pendent AFNS mortality model, where the factors for level, slope and curvature have a direct
interpretation, and the CIR mortality model which is the best performing model.

Figures 3 and 4 show the fitted values of the factors and factor loadings of the independent
AFNS model. For the factor loading B1 the impact of the level factor L is constant across
all ages. There is an increase in the factor level for all ages for the cohorts born around 1900
onwards.

The factor loading B2 increases exponentially, so it impacts older ages more than younger
ages and mortality rates at older ages are therefore more sensitive to the slope factor S. For
cohorts born after 1900, corresponding to the rise in the level factor L, there is a decline in the
slope factor S.

The factor loading B3 is negative and decreasing across all ages and, as a result, the convexity
of the survival curve at older ages decreases faster than at younger ages. For cohorts born after
1900, the decline in C results in mortality rate curves that are less convex across age. This
corresponds to mortality improvement at older ages being larger than for the younger ages.

The adjustment term A in the survival curve is negative and decreasing.
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Table 2: Estimated Parameters

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent-
Factor

Dependent-
Factor

Independent-
Factor

Dependent-
Factor

δ11
(AFNS: δ)

-0.01106
(0.00123)

-0.20183
(2.944e-05)

-0.08348
(1.580e-04)

-0.04725
(8.096e-05)

-0.09652
(2.513e-04)

δ21 -
0.56206

(4.091e-05) - - -

δ22
0.07484
(0.00432)

-0.07092
(1.766e-05) - -

0.12627
(2.412e-03)

δ31 -
0.24075

(1.555e-05) - - -

δ32 -
0.80809

(4.102e-05) - - -

δ33
-0.06883
(2.452e-04)

0.77825
(1.461e-05) - -

-0.11153
(3.060e-04)

kP11 0.38753 -0.04248 0.18793 0.01810 0.00077

kP22 0.13910 0.01869 0.01361 0.02002 0.59402

kP33 0.00718 0.01827 0.02701 0.04972 0.06842

σ11 0.00782 7.557e-11 9.593e-04 0.00400
0.00265

(6.894e-05)

σ21 - 0.01110 - -0.00387 -

σ22 0.00125 3.370e-11 1.120e-04 0.00091
0.02848

(1.250e-03)

σ31 - -0.01190 - -0.00183 -

σ32 - 0.00047 - 0.00123 -

σ33 5.409e-04 0.00029 3.549e-05 0.00023
0.01360

(9.494e-05)

r1 1.071e-11 4.337e-08 1.422e-10 6.272e-08 5.498e-10

r2 0.37797 0.11375 0.17784 0.10742 6.646e-07

rc 4.360e-08 5.705e-08 4.963e-07 4.636e-13 3.410e-07

The CIR Model

θQ1 0.00080 θQ2 0.01010 θQ3 0.00137

θP1 0.00697 θP2 0.00415 θP3 0.00356

Table 3: Comparison of Affine Mortality Models

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent-
Factor

Dependent-
Factor

Independent-
Factor

Dependent-
Factor

Log Likelihood 9896.419 9938.696 9665.801 9887.878 10045.70
RMSE 0.00250 7.601e-04 6.856e-04 9.160e-04 5.227e-04
No. of

Parameteres 12 18 10 13 18
AIC -19570.837 -19643.392 -19113.602 -19551.757 -19857.40
BIC -18968.292 -19008.277 -18521.914 -18943.783 -19222.29

Probability of
Negative
Mortality 0.02700 1.011e-32 1.722e-31 4.34e-14 -

Figures 5 and 6 show the estimated latent factors and factor loadings for the CIR mortality
model. The factors and factor loadings are quite different to those of the independent AFNS
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Figure 4: Factors Loadings in the Independent AFNS Model

mortality model. The first factor X1 is relatively stable for cohorts born before 1900, then
increases, followed by a moderate decline for cohorts born around 1910 and after. The factor
loading, B1, is positive and increases with age, so that the first factor X1 impacts older ages
more than younger ages.

The second factor X2 shows a general downward trend across time. The factor loading B2

is decreasing with age and smaller than B1, so that younger ages show mortality improvement,
but the size of improvement from this factor is smaller.

The third factor X3 is relatively constant for cohorts born before 1900 and and decreases
afterwards, with a moderation in the rate of decrease for cohorts born after around 1910. The
factor loading B3 is positive and impacts older ages more than younger ages, with a convex
shape, which also results in curvature changes in the survival curve.

The adjustment term A in the survival curve is negative and, following a small increase for
younger ages, is then decreasing.
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Figure 6: Factors Loadings in the CIR Model

4.5 Residual Analysis
Figure 7 plots the residuals of the mortality models. The residuals are the differences between

the average force of mortality from the historical mortality data and those determined from the
fitted mortality models. Plots are on the same scale on the z-axis except for the independent
Blackburn-Sherris model which has large residuals at older ages reflecting a poorer fit at these
ages.

Apart from the independent Blackburn-Sherris model, all of the models have similar residual
plots. The independent AFNS model (Figure 7(c)) with three factors for level, slope and
curvature has a better fit than the independent Blackburn-Sherris model. The AFNS model
reduces the magnitude of residuals at the older ages in the independent Blackburn-Sherris
model without adding additional parameters. The use of level, slope and curvature factors
better capture the variation in mortality curves, especially at older ages.

Introducing factor dependence in the Blackburn-Sherris model also reduces the size of re-
siduals and better accounts for the mortality variation at older ages. This can be seen by
comparing the dependent Blackburn-Sherris model (Figure 7(b)) with the independent model
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Figure 7: Residuals of Affine Mortality Models

(Figure 7(a)). This is not the case for the independent AFNS model in Figure 7(c). The size
of the residuals in the dependent AFNS model (Figure 7(d)) is larger, particularly at older
ages. The independent AFNS model is able to capture the mortality variability better than the
dependent AFNS model.

The CIR model has lower residuals at older ages and an overall flatter residual surface similar
to the residuals of the independent AFNS model in Figure 7(c). The CIR model provides slightly
smaller residuals at older ages and ages younger than 60, in terms of absolute values compared
with the other models.

In all of the residual plots there is a hump shape running diagonally across the cohorts.
This reflects a period mortality factor that has impacted all of the cohorts around the year 1970
when period mortality improvement trends experienced a significant change to a higher level
of improvement. For the later cohorts at the older ages residuals are also higher reflecting the
recent slowing of mortality improvement rates.
4.6 In-Sample Analysis

We also use an in-sample model performance analysis by comparing the estimated cohort
survival probabilities from the fitted mortality models with the cohort survival probabilities
from the historical data. Figure 8 summarizes the in-sample model fit results using the Mean
Absolute Percentage Error (MAPE) for each age, across all cohorts. To reflect the difference in
values, the scale of the percentage error is different above and below age 85.

Figure 8(a) shows the MAPE for the affine mortality models with Gaussian processes. Below
age 85, all models have similar performance and the differences between the percentage errors
of the different mortality models are relatively small. Above the age of 85, the independent
Blackburn-Sherris model produces significantly larger percentage errors, while the dependent
Blackburn-Sherris model and the independent AFNS model provide similar and improved model
fit.

In Figure 8(b), the Gaussian mortality models with the better performance are compared
with the CIR mortality model. The CIR mortality model and the independent AFNS mortality
model are very similar, with the latter having only slightly larger percentage errors at most
ages. The dependent Blackburn-Sherris model is similar to the CIR model below age 75, but
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Figure 8: MAPE of Affine Mortality Models

the percentage errors of the Blackburn-Sherris model increase quickly after age 75 with values
as high as 10%.

Both the independent AFNS mortality model and the CIR mortality model provide satis-
factory performance based on MAPE for the historical age-cohort data for complete cohorts.

5 Forecasts of Survival Probabilities
To compare the predictive performance of the affine mortality models we use an out-of-

sample forecast with the fitted parameter values estimated from the cohorts born 1883 to 1915
for ages 50 to 100 to forecast the survival curve of the cohort born in 1916. For this cohort we
have full historical mortality data.

Following Christensen et al. (2011), who uses the optimal forecasts for predicting yields to
maturity, we use the optimal forecasts, also referred to as the best-estimate forecasts, to project
average forces of mortality and survival probabilities.

At time t, the average force of mortality over τ = (T + 1)− (t+ 1) periods at time t+ 1 for
cohort i, µ̄i (t+ 1, T + 1), is

µ̄i (t+ 1, T + 1) = −B (t, T )
′

T − t
E [Xt+1|Xt]−

A (t, T )

T − t
, (45)

where B (t, T ) and A (t, T ) only depend on τ = T − t .
The forcasts of survival probabilities are then:

S (t+ 1, T + 1) = exp
(
B (t, T )

′
E [Xt+1|Xt] +A (t, T )

)
. (46)

Since the factor dynamics under measure P in the independent Blackburn-Sherris model
and the 3-factor independent AFNS model, are the same, the conditional expectation of state
variables for these two models are as follows:

E
[
X1
t+1|X1

t

]
= e−k

P
11X1

t , E
[
X2
t+1|X2

t

]
= e−k

P
22X2

t , E
[
X3
t+1|X3

t

]
= e−k

P
33X3

t . (47)

For the independent AFNS model, the conditional mean has the same structure but with Xt =
(Lt, St, Ct).

The SDEs describing the P -dynamics of the dependent Blackburn-Sherris model and the
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dependent AFNS model are the same as for the independent factor model in Equation (47).
The conditional mean of the CIR model is given in Geyer and Pichler (1999) so that for the

mortality model:

E
[
X1
t+1|X1

t

]
= e−k

P
11X1

t + θP1

(
1− e−kP11

)
, E

[
X2
t+1|X2

t

]
= e−k

P
22X2

t + θP2

(
1− e−kP22

)
,

E
[
X3
t+1|X3

t

]
= e−k

P
33X3

t + θP3

(
1− e−kP33

)
.

(48)

The RMSE for projecting the 1916 cohort survival curve under each mortality model are
shown in Table 4. The indepedent AFNS mortality model performs best. The dependent
AFNS mortality model and the dependent Blackburn-Sherris models perform similarly. The
independent Blackburn-Sherris mortality model shows the poorest performance. The CIR mor-
tality model has reasonable RMSE but is outperformed by the AFNS mortalty models.

Table 4: RMSE by Comparing the Actual and Best-Estimate Survival Probabilities of the
1916 Cohort

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent Dependent Independent Dependent

RMSE 0.03197 0.00726 0.00668 0.00754 0.01835

To understand these differences, Figure 9 shows the survival probabilities for the different
mortality models using the best estimate forecasts compared to the actual survival probabilities
from the historical mortality data. Most models produce reasonable survival curve fits except
the independent Blackburn-Sherris mortality model and the CIR mortality model that both
underestimate the survival rates of the 1916 cohort.

Figure 10 shows the absolute percentage errors across ages for all the mortality models con-
firming the superior forecasting performance of the independent AFNS mortality model. The de-
pendent Blackburn-Sherris mortality models performs better than the independent Blackburn-
Sherris mortality model, showing the benefit of including correlations between the factors in
this model. The level, slope and curvature structure of the factors in the AFNS mortality model
capture the impact of dependence in the factors in the Blackburn-Sherris mortality model.
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Figure 9: Actual and Best-Estimate Survival

Probabilities of the 1916 Cohort
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6 Conclusion
This paper introduces continuous time affine mortality models applied to cohort survival

curve data. We introduce an AFNS mortality model with interpretable latent stochastic factors
for level, slope and curvature of the survival curve. We outline, compare and assess a number
of independent-factor and dependent-factor affine mortality models with Gaussian processes
including the Blackburn-Sherris mortality model (Blackburn and Sherris, 2013; Christensen
et al., 2011) as well as an affine mortality model with square-root processes (the CIR mortality
model). The CIR mortality model precludes negative mortality rates that can occur in the
Gaussian models. The CIR latent factors and the mortality intensity have non-central Chi-
square distributions which can capture mortality heterogeneity.

Affine mortality models produce survival rates consistent with the dynamics of the latent
stochastic factors. The structure is similar to interest rate models providing a closed-form solu-
tion for survival probabilities and are suitable for financial and insurance applications involving
longevity risk management. We use US historical age-cohort data to fit and assess the mortality
models.

Although incorporating dependence in the Blackburn-Sherris mortality model improves in-
sample model fit and out-of-sample forecasting performance, we find that that independent-
factor AFNS mortality model performs well. It can better capture the variation in cohort
mortality rates in US data and produces a better fit at older ages than the independent-factor
Blackburn-Sherris model. For the 1916 cohort the independent-factor AFNS mortality model
has better predictive performance compared to the other models. Negative mortality rates have
very low probability in the AFNS mortality models.

The CIR mortality model has the best in-sample model fit including model residuals. The
superior in-sample performance of the CIR mortality model reflects the more realistic assump-
tion of Gamma-distributed mortality rates. The benefits of the independent-factor AFNS in
modelling cohort mortality survival curves lead us to favour this model over the CIR model.

Based on our assessment of affine mortality models, the independent AFNS model provides
satisfactory model fit and satisfactory predictive performance. The model is parsimonious and
can be readily estimated using the Kalman filter, allowing for Poisson mortality variation in
the measurement equation. The model allows for intuitive factor interpretation in terms of
the dynamics of the mortality survival curve and is well suited for financial and insurance
applications including pricing and longevity risk management.
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Appendices

A Solutions to the Ordinary Differential Equations
We have

d

dt

[
e(K

Q)
′
(T−t)B (t, T )

]
= e(K

Q)
′
(T−t)dB (t, T )

dt
−
(
KQ
)′
e(K

Q)
′
(T−t)B (t, T ) , (49)

and substituting equation (7), we simplify to obtain∫ T

t

d

ds

[
e(K

Q)
′
(T−s)B (s, T )

]
ds =

∫ T

t
e(K

Q)
′
(T−s)ρ1ds, (50)

with has the solution, after including the boundary conditions,

B (t, T ) = −e(−KQ)
′
(T−t)

∫ T

t
e(K

Q)
′
(T−s)ρ1ds. (51)

With KQ in equation (18) and ρ1 = (1, 1, 1)T in the Blackburn-Sherris model,

e(−K
Q)
′
(T−s)ρ1 =

 a11 a21 a31
0 a22 a32
0 0 a33

 1
1
1

 =

 a11 + a21 + a31
a22 + a32
a33

 (52)

where

a11 = eδ11(T−s), a21 = D1

(
eδ11(T−s) − eδ22(T−s)

)
,

a31 = (D4 +D1D5) e
δ11(T−s) −D1D2e

δ22(T−s) + (D2D3 −D4) e
δ33(T−s),

a22 = eδ22(T−s), a32 = D2

(
eδ22(T−s) − eδ33(T−s)

)
, a33 = eδ33(T−s),

(53)

and

D1 =
δ21

δ11 − δ22
, D2 =

δ32
δ22 − δ33

, D3 =
δ21

δ11 − δ33
, D4 =

δ31
δ11 − δ33

, D5 =
δ32

δ11 − δ33
.

Integrating each element in Equation (52),

b1 =

∫ T

t
(a11 + a21 + a31) ds

= (1 +D1 +D1D5 +D4)
1− e−δ11(T−t)

−δ11
−D1 (1 +D2)

1− e−δ22(T−t)

−δ22

+ (D2D3 −D4)
1− e−δ33(T−t)

−δ33
,

b2 =

∫ T

t
(a22 + a32) ds = (1 +D2)

1− e−δ22(T−t)

−δ22
−D2

1− e−δ33(T−t)

−δ33
,

b3 =

∫ T

t
a33ds =

1− e−δ33(T−t)

−δ33
.

Let

e(−K
Q)
′
(T−t) =

 c11 c21 c31
0 c22 c32
0 0 c33

 , (54)
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where

c11 = e−δ11(T−t), c21 = D1

(
e−δ11(T−t) − e−δ22(T−t)

)
,

c31 = (D4 +D1D5) e
−δ11(T−t) −D1D2e

−δ22(T−t) + (D2D3 −D4) e
−δ33(T−t),

c22 = e−δ22(T−t), c32 = D2

(
e−δ22(T−t) − e−δ33(T−t)

)
, c33 = e−δ33(T−t).

(55)

Equation (51) now can be written as: B1 (t, T )
B2 (t, T )
B3 (t, T )

 = −

 c11 c21 c31
0 c22 c32
0 0 c33

 b1
b2
b3

 . (56)

Therefore, the solutions of B (t, T ) are

B1 (t, T ) = −E1
1− e−δ11(T−t)

δ11
+ E2

1− e−δ22(T−t)

δ22
− E3

1− e−δ33(T−t)

δ33
,

B2 (t, T ) = − (1 +D2)
1− e−δ22(T−t)

δ22
+D2

1− e−δ33(T−t)

δ33
,

B3 (t, T ) = −1− e−δ33(T−t)

δ33
,

(57)

where E1 = 1 +D1 +D1D5 +D4, E2 = D1 (1 +D2) , E3 = D2D3 −D4.
From Equation (8) and the boundary condition,

A (t, T ) =
1

2

∫ T

t

3∑
j=1

(
Σ
′
B (s, T )B (s, T )

′
Σ
)
j,j
ds

=
1

2

∫ T

t

[
σ211B

1 (s, T )2 +
(
σ221 + σ222

)
B2 (s, T )2 +

(
σ231 + σ232 + σ233

)
B3 (s, T )2

+2σ11σ21B
1 (s, T )B2 (s, T ) + 2σ11σ31B

1 (s, T )B3 (s, T )

+2 (σ21σ31 + σ22σ32)B
2 (s, T )B3 (s, T )

]
ds.

Terms with B (s, T ) are expanded:

B1 (s, T )2 =
E2

1

δ211

(
1− e−δ11(T−s)

)2
+
E2

2

δ222

(
1− e−δ22(T−s)

)2
+
E2

3

δ233

(
1− e−δ33(T−s)

)2
− 2

δ11δ22
E1E2

(
1− e−δ11(T−s)

)(
1− e−δ22(T−s)

)
+

2

δ11δ33
E1E3

(
1− e−δ11(T−s)

)(
1− e−δ33(T−s)

)
− 2

δ22δ33
E2E3

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
,

B2 (s, T )2 =
(1 +D2)

2

δ222

(
1− e−δ22(T−s)

)2
+
D2

2

δ233

(
1− e−δ33(T−s)

)2
− 2

δ22δ33
D2 (1 +D2)

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
,

B3 (s, T )2 =
1

δ233

(
1− e−δ33(T−s)

)2
,
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B1 (s, T )B2 (s, T ) =
E1 (1 +D2)

δ11δ22

(
1− e−δ11(T−s)

)(
1− e−δ22(T−s)

)
− E1D2

δ11δ33

(
1− e−δ11(T−s)

)(
1− e−δ33(T−s)

)
+

1

δ22δ33
(E2D2 + E3 (1 +D2))

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
− E2 (1 +D2)

δ222

(
1− e−δ22(T−s)

)2
− E3D2

δ233

(
1− e−δ33(T−s)

)2
,

B1 (s, T )B3 (s, T ) =
E1

δ11δ33

(
1− e−δ11(T−s)

)(
1− e−δ33(T−s)

)
+
E3

δ233

(
1− e−δ33(T−s)

)2
− E2

δ22δ33

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
,

B2 (s, T )B3 (s, T ) =
1 +D2

δ22δ33

(
1− e−δ22(T−s)

)(
1− e−δ33(T−s)

)
− D2

δ233

(
1− e−δ33(T−s)

)2
.

Collecting terms with
(
1− e−δjj(T−s)

)2
and

(
1− e−δii(T−s)

) (
1− e−δjj(T−s)

)
(i, j = 1, 2, 3 and

i 6= j) and integrating,

A (t, T ) =
1

2

[
F1

δ311

(
1

2

(
1− e−2δ11(T−t)

)
− 2

(
1− e−δ11(T−t)

)
+ δ11 (T − t)

)
+
F2

δ322

(
1

2

(
1− e−2δ22(T−t)

)
− 2

(
1− e−δ22(T−t)

)
+ δ22 (T − t)

)
+
F3

δ333

(
1

2

(
1− e−2δ33(T−t)

)
− 2

(
1− e−δ33(T−t)

)
+ δ33 (T − t)

)
+

F4

δ11δ22

(
(T − t)− 1− e−δ11(T−t)

δ11
− 1− e−δ22(T−t)

δ22
− 1− e−(δ11+δ22)(T−t)

δ11 + δ22

)

+
F5

δ11δ33

(
(T − t)− 1− e−δ11(T−t)

δ11
− 1− e−δ33(T−t)

δ33
− 1− e−(δ11+δ33)(T−t)

δ11 + δ33

)

+
F6

δ22δ33

(
(T − t)− 1− e−δ22(T−t)

δ22
− 1− e−δ33(T−t)

δ33
− 1− e−(δ22+δ33)(T−t)

δ22 + δ33

)]
,

(58)

where

F1 = σ211E
2
1 ,

F2 = σ211E
2
2 − 2σ11σ21E2 (1 +D2) +

(
σ221 + σ222

)
(1 +D2)

2 ,

F3 = σ211E
2
3 − 2σ11σ21E3D2 +

(
σ221 + σ222

)
D2

2 − 2 (σ21σ31 + σ22σ32)D2 + 2σ11σ31E3

+
(
σ231 + σ232 + σ233

)
,

F4 = −2σ211E1E2 + 2σ11σ21E1 (1 +D2) ,

F5 = 2σ211E1E3 − 2σ11σ21E1D2 + 2σ11σ31E1,

F6 = −2σ211E2E3 + 2σ11σ21 [E3 (1 +D2) + E2D2]− 2σ11σ31E2 + 2 (σ21σ31 + σ22σ32) (1 +D2)

− 2
(
σ221 + σ222

)
D2 (1 +D2) .

B Real World Dynamics and Change of Measure
B.1 Models with Gaussian Processes

The market price of risk has the following form:

Λt = λ0 + λ1Xt, (59)
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where Λt ∈ Rn×1, λ0 ∈ Rn×1 and λ1 ∈ Rn×n.
With the above specification, the SDEs of the state variablesXt under the real-world measure

P are derived as following:

dXt = KQ
[
θQ −Xt

]
dt+ Σ

[
dWP

t + Λtdt
]

= KQ
[
θQ −Xt

]
dt+ Σ

[
λ0dt+ λ1Xtdt+ dWP

t dt
]

=
[
KQθQ + Σλ0

]
dt−

[
KQ − Σλ1

]
Xtdt+ ΣdWP

t

=
(
KQ − Σλ1

) [KQθQ + Σλ0

KQ − Σλ1
−Xt

]
dt+ ΣdWP

t

= KP
[
θP −Xt

]
dt+ ΣdWP

t ,

(60)

where

KP = KQ − Σλ1, θP =
KQθQ + Σλ0

KQ
. (61)

B.2 The CIR Model
Following the essentially affine model structure in Duffee (2002), the market price of longev-

ity risk for the multi-factor CIR model is specified as:

Λt = D (Xt, t)λ
0 =


√
X1
t 0 0

0
√
X2
t 0

0 0
√
X3
t


 λ01

λ02
λ03

 , (62)

where Λt ∈ R3×1 represents risk premium and λ0 ∈ R3×1, and let

D2 (Xt, t)λ
0 =


√
X1
t 0 0

0
√
X2
t 0

0 0
√
X3
t



√
X1
t 0 0

0
√
X2
t 0

0 0
√
X3
t


 λ01

λ02
λ03


=

 X1
t 0 0

0 X2
t 0

0 0 X3
t

 λ01
λ02
λ03

 =

 λ01X
1
t

λ02X
2
t

λ03X
3
t


=

 λ01 0 0
0 λ02 0
0 0 λ03

 X1
t

X2
t

X3
t

 = Λ0Xt.

(63)

The SDEs of the state variables Xt under the real-world measure P are derived as following

dXt = KQ
[
θQ −Xt

]
dt+ ΣD (Xt, t)

[
dWP

t + Λtdt
]

= KQ
[
θQ −Xt

]
dt+ ΣD (Xt, t)

[
D (Xt, t)λ

0dt+ dWP
t dt

]
=
[
KQθQ −KQXt + ΣD2 (Xt, t)λ

0
]
dt+ ΣD (Xt, t) dW

P
t

=
[
KQθQ −

(
KQ − ΣΛ0

)
Xt

]
dt+ ΣD (Xt, t) dW

P
t

=
(
KQ − ΣΛ0

) [ KQθQ

KQ − ΣΛ0
−Xt

]
dt+ ΣD (Xt, t) dW

P
t

= KP
[
θP −Xt

]
dt+ ΣD (Xt, t) dW

P
t ,

(64)

where

KP = KQ − ΣΛ0, θP =
KQθQ

KQ − ΣΛ0
. (65)
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