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Abstract

We investigate joint modeling of longevity trends using the spatial statistical framework of
Gaussian Process regression. Our analysis is motivated by considering the Human Mortality
Database that provides raw mortality tables for nearly 40 countries and clearly demonstrates
the commonality in global longevity. Yet few stochastic models exist for handling more than two
populations at a time. To bridge this gap, we develop a spatial covariance approach that treats
mortality data through the lens of smoothing and forecasting noisy input-output relationships.
In our framework, multiple populations are approached as distinct levels of a factor covariate,
explicitly capturing the cross-population dependence. We demonstrate that our approach not
only provides improved accuracy, but intrinsically generates coherent joint future longevity
scenarios. It also offers an opportunity to borrow the most recently available data from other
datasets, leading to more precise (and statistically more credible) forecasts regarding mortality
improvement rates. All the numerical algorithms are implemented using R and Stan statistical
languages and are publicly available. We illustrate using numerous figures on multiple European
HMD datasets for both Males and Females.

1 Mortality Models across Multiple Populations

Mortality data are typically collected by jurisdictional areas, such as countries and states. As a
result global mortality experience is summarized in dozens of national and sub-national registries,
presenting a major data-analysis challenge. The burgeoning Human Mortality Database (HMD
2018) offers a centralized portal to nearly 40 such datasets, yielding a rich source of cross-national
longevity trends.

Significant value can be extracted from joint models of these mortality tables. By aggregating data,
one hopes to improve prediction accuracy (through better disentangling of trends and “noise”) and
simultaneously reduce model risk (by increasing credibility of the forecasts). Moreover, joint models
allow information fusion, which is very valuable since mortality data are released asynchronously.
With a joint model one can rely on the newly released data of a related foreign population to update
and improve the domestic forecast. Last but not least, joint models are critical for generating
forecasts and future scenarios simultaneously across multiple populations. Individual models will
tend to be non-coherent, i.e. include scenarios where the joint mortality trends cross-over or diverge
in unrealistic ways.
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Yet few models exist for multi-population longevity analysis besides the 2-population case. The
latter case affords the convenient hierarchy of treating one population as the baseline “index” and
then separately modeling the “spread” or basis between the index and the secondary population.
With three or more populations one may still view one of them as the index, but the conceptual
meaning of the multiple resulting longevity spreads becomes fuzzy. Moreover, in the commonly
adopted Age-Period-Cohort-style models, multiple populations are treated through decomposition
into global- and population-specific factors, implying that the number of factors grows linearly in
the number of populations. Since each factor (Age, Period, etc) contains 30+ parameters, one
quickly ends up with hundreds of parameters to be estimated, creating significant computation and
statistical inference bottlenecks.

To start bridging the gap between the wealth of data in the HMD and multi-population stochas-
tic longevity models, we investigate a spatial covariance framework. Our work builds upon the
Gaussian Process (GP) models for longevity introduced in Ludkovski et al. (2018). GPs are a
machine learning technique that is a centerpiece of probabilistic data science. The main idea of
this framework is to view a mortality table as a latent input-output response surface, corrupted
by observation noise. Using the Bayesian lens, mortality modeling translates to smoothing (aka
interpolating) and extrapolating this surface, specifically using multivariate Gaussian conditioning
with respect to observations. This yields a full uncertainty quantification not just for mortality
rates, but also for mortality improvement factors.

With a GP approach, extension to multiple populations is conceptually straightforward: we treat
populations as a factor covariate. The corresponding correlation structure across factor levels
(i.e. correlation in mortality experiences of different countries) is then inferred and handled exactly
the same as statistical dependence across Ages or Calendar Years. Moreover, we show that GPs
are well-suited for all of the joint modeling tasks mentioned above. Their probabilistic structure
naturally captures reduced model risk (namely tighter hyperparameter and latent-surface poste-
riors) and straightforwardly offers borrowing of information from “notched” datasets. Moreover,
GPs intrinsically generate coherent and fully-stochastic forecasts.

Related spatio-temporal frameworks were considered by Christiansen et al. (2015) to capture the
spread between individual log mortality rates and weighted average log-mortality and Debón et al.
(2010). Another related analysis of the HMD can be found in Carracedo et al. (2018) who applied
spatio-temporal Markov clustering to detect common patterns of longevity across 26 European
countries; see also Antonio et al. (2017). More broadly, there is a growing strand of literature
addressing multi-population extensions of the now-classical Lee-Carter stochastic mortality frame-
work. The seminal work by Li and Lee (2005) extended Lee-Carter to two populations, postulating
a decomposition of mortality into population-specific plus global Age and Period factors (for a
total of 2L� 2 factors with L populations). More parsimonious versions were proposed by Kleinow
(2015) who considered a common Age effect, and Delwarde et al. (2006) who proposed a com-
mon Period effect. Enchev et al. (2017) investigated several intermediate cases. Dispensing with
country-specific factors allows more interpretability, e.g. in the Kleinow (2015) CAE model one
may directly compare period effects across countries since these are scaled with the same age pa-
rameters. From the other direction, the model of Li and Lee (2005) functionally corresponds to
having a single degree of freedom in the evolution of the mortality curve over time. According to
Li (2013) at least two Age/Period factors are warranted, and accordingly a multi-factor extension
was investigated. Note that in our setup mortality curves are non-parametric (i.e. as many degrees
of freedom as there are data points).

Another way to introduce dependence between populations is through statistical shrinkage within
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a Bayesian hierarchical model. Raftery et al. (2012) modeled mortality of 160+ countries by
first imposing a global hyper-prior over several one-dimensional parameters and then constructing
individual Lee-Carter models. A related approach is taken up by Wísniowski et al. (2015). This
framework also permits to inject additional socio-economic or geo-political covariates to capture
the varying degree of dependence (Kleinow and Cairns 2013, Boonen and Li 2017).

Several different methods have been proposed to achieve coherent forecasts. In the special situation
of two populations, co-integration models are a viable strategy and were studied in Hyndman
et al. (2013) for Male-Female mortality; see also the multi-level functional regression approach in
Shang (2016). In a similar spirit, D’Amato et al. (2016), Li and Lu (2017), Guibert et al. (2017)
investigated Vector Autoregressive (VAR) approaches to achieve correlation across the multiple
Period factors of the aforementioned Li and Lee (2005) framework. Alternatively, Chen et al.
(2015), Wang et al. (2015) applied a copula approach to capture the dependence between individual
Period factors and Yang and Wang (2013) considered a Vector Error Correction model.

The rest of the paper is organized as follows. The next Section 1.1 illustrates the co-dependence of
mortality in the context of multiple European nations. Sections 2 and 3 present the GP approach
to individual- and multiple-population mortality modeling, respectively. Our primary results are
in Section 4; additional features of joint GP models are in Section 5. Finally, Section 6 concludes
with the key take-aways and outlook for further analysis.

1.1 Motivation

The conceptual driver for joint longevity models is the idea of commonality in mortality experiences
of different countries. In other words, there are “global” longevity trends that can be observed across
datasets. This similarity is visualized in Figure 1 where we show smoothed mortality improvement
rates (i.e. the “gradient” of mortality rate) across 10 European countries: Austria, Denmark,
Estonia, France, Germany, Lithuania, Netherlands, Sweden, Switzerland, and UK, see Figure 2.a.
We see that there is a strong common pattern, for example in 2016 there is a “wave” structure
in Age where mortality improvement in the 60–70 age range is generally lower than at either
younger or older ages. Such similarities imply opportunities to fuse information from existing data;
they are moreover structura (driven by shared demographics in Western Europe) and are expected
to persist into the future. Thus, it is accepted that the mortality forecasts should converge or
remain stationary in the long run perpetuating historical regularities (Booth and Tickle 2008). By
construction single-population models feature independent, hence divergent, stochastic mortality
factors.

In the context of a spatio-temporal model, the commonality of mortality experience implies that
there is an underlying global covariance structure. This similarity refers not to the specific mortality
(improvement) rates across countries, but to the degree that such rates are correlated among
themselves. Capturing this correlation is central to reduce model risk, i.e. the mis-specification
between the true mortality evolution and the fitted model dynamics that arises due to using limited
data to calibrate it. Table 1 lists the hyperparameters of the GP models fitted to each of the 10
individual datasets. We observe that most countries have very similar dependence structures, for
example almost the same Age coefficients βag1 , and θag P r6, 14s. However, there are also a few
outliers , such as the Switzerland dataset whose θyr parameter is relatively very large and implies
data under-fitting. The latter is in fact statistical anomalies, i.e. the methodology has difficulty
in correctly estimating these hyperparameters. As we will show in Section 5.1, by working with
more data, a joint model is able to crystallize the underlying dependence pattern and offers a
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Table 1: Fitted hyperparameters of single-population GP models. Training set is Ages 50–84 and Years
1990–2016 for Males. Mean function is mpxq � β0 � βag

1 xag. Hyperparameter outliers are indicated with
italics.

Denmark Estonia Lithuania Sweden UK

β0 �9.9809 �8.4675 �7.6614 �11.1924 �10.3695

βag1 0.0935 0.0788 0.0674 0.1071 0.0976

θag 11.3093 16.7860 9.7826 13.0261 6.5553

θyr 7.8445 3.3310 2.3587 10.3797 5.5229

η2 0.0445 0.0486 0.0155 0.0365 0.0239

σ2 2.707� 10�3 6.436� 10�3 2.936� 10�3 1.963� 10�3 5.421� 10�4

Austria France Germany Netherlands Switzerland

β0 �10.4653 �9.7192 �10.2552 �10.9651 �11.0439

βag1 0.0991 0.0890 0.0975 0.1053 0.1050

θag 6.5078 9.9525 9.2840 13.7416 10.7675

θyr 5.7786 8.4953 9.0939 6.5164 17.0494

η2 0.0322 0.0435 0.0370 0.0273 0.0724

σ2 2.052� 10�3 4.069� 10�4 8.163� 10�4 1.235� 10�3 2.602� 10�3

methodological tool to guard against under- or over-fitting the data.
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Figure 1: Smoothed annual Male mortality improvement factors BmGP
backp.; yrq (11) in different countries,

yr P t2000, 2016u. The improvement factors are based on fitting a GP model to each individual dataset,
following the methodology in Ludkovski et al. (2018). Inference done separately for each country.

Data Source: We work with mortality data from the Human Mortality Database (HMD) (HMD
2018) which provides the aggregated mortality statistics at the national levels for 40 developed
countries across the globe. The HMD applies the same consistent set of procedures (Boe et al.
2015) on each population, which is the reason why mortality data are only available for developed
countries whose death registrations and census data are available and reliable. For our analysis
we rely on one-year age groups, concentrating on Ages 50–84 for both genders and calendar Years

https://www.mortality.org
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1990–2016.

The dataset is organized as a large table. The nth observation for the lth country (l � 1, . . . , 10)
contains (i) Age and Year as a pair of independent variables, pxnag, x

n
yrq, and (ii) the logarithm of

the observed mortality rate,

yn � log

�
Death counts at pxnag, x

n
yrq

Exposed-to-risk counts at pxnag, x
n
yrq

�
� log

�
Dn

En

�
. (1)

We denote by Dl � tpxn, ynquNn�1 the dataset for the lth country. Figure 2.b illustrates a typical
mortality surface. It shows the raw Male log mortality rates in Denmark, as well as the smoothed
surface obtained from a GP model. We note the prevalent patterns, namely log mortality increasing
roughly linearly in Age, and decreasing gradually over calendar Year.
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(b) Raw Male log mortality rates in
Denmark
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(c) Smoothed Male log mortality
rates in Denmark

Figure 2: Selected HMD dataset of 10 European countries and an illustration of GP smoothing of
mortality observations.

2 Methods

In this section we review the approach of applying Gaussian Process models to individual mortality
datasets.

2.1 Gaussian Process Regression for Mortality Tables

A Gaussian process (GP) is an infinite collection of random variables, any finite number of which
follows a multivariate normal (MVN) distribution. As such, a GP f � GP pm,Cq is characterized
by its mean function mpxq and its covariance structure Cpx, x1q. This means that for any vector
x � px1, . . . , xnq of n inputs:

fpx1q, . . . , fpxnq � N
�
mpxq,Cpx,xq

�
where mpxq � Erfpxqs is the mean vector of size n and Cpx,xq is the n by n covariance matrix,
Cpx, x1q :� Erpfpxq �mpxqqpfpx1q �mpx1qqs.

In a GP regression setup, the latent f links the observations or output vector y � py1, . . . , ynq to
the input vector x via:

yi � fpxiq � εi, (2)

where εi is the error term to accommodate the fact that we observe only a noisy sample of fpxiq.
In our context, xi are the individual cells in a mortality table (so indexed by Age, Year, etc.), yi
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are observed raw log mortality rates, and fpxiq is the true mortality rate that would materialize in
the absence of any random shocks. We shall assume that the error terms εi are from i.i.d. Gaussian
distribution with zero mean and constant variance across all x’s: εi � N p0, σ2q or ε � pε1, ..., εnq �
N p0,Σ � diagpσ2qq. It follows that y � N pmpxq,Cpx,xq �Σq, because

Covpyi, yjq � Covpfpxiq, fpxjqq � σ2δpxi, xjq (3)

where δpxi, xjq is the Kronecker delta which is one iff the indices match i � j, and zero otherwise.

GP regression works by applying the Bayesian formalism of assigning a prior distribution to f �
GP pm,Cq and using MVN conditioning relative to a dataset D � px,yq to infer the posterior
distribution of f . The Gaussian structure of the prior and the Gaussian structure of (2) together
with Bayes’ rule yield a Gaussian posterior for f |D � GP pm�, C�q:

Posterior distribution �
Prior distribution x Likelihood function

Marginal distribution

or ppf |Dq 9 ppfqppy|x,Θq.

The principal objective is to draw prediction about f� � fpx�q or future observations y� � Y px�q
at new inputs x�. By construction, y and y� follow a joint MVN distribution:

�
y
y�

�
� N

��
m

m��

�
,

�
C�Σ Cpx,x�q

Cpx,x�q
T C�� �Σ��

��

where Cpx,x�q is the covariance matrix between training inputs x and test inputs x�, C�� is the
covariance matrix of x� and m�� � mpx�q. The MVN formulas then imply that

ppy�|yq � N pm�px�q,C�px�,x�qq where

Ery�|Ds � m�px�q � m�Cpx,x�q
T rC�Σs�1py �mq; (4)

Varpy�|Dq � C�px�,x�q � C�� �Σ�� �Cpx,x�q
T rC�Σs�1Cpx�,xq. (5)

Note that the posterior variance C�px�,x�q is equal to the prior variance C�� �Σ�� minus a
positive term which reflects the information gained (relative to the prior) from the training data.
Furthermore, (4)-(5) are valid for any x�, i.e. both for in-sample smoothing or for out-of-sample
extrapolation.

2.2 GP Hyperparameters

To implement a GP model requires specifying its hyperparameters. Note that actual inference
reduces to linear-algebraic formulas in (8)-(9), and the modeling task is to capture the spatial
covariance, namely the mean and kernel functions.

1. Mean function is often taken to be zero or a constant, mpxq � β0. This choice is adequate
for in-sample smoothing. For long-term extrapolation we wish to capture the commonly
assumed longevity features, such as higher mortality at higher ages via a linear mean function:
mpxq � β0 � βag1 xnag, implying that mortality rates tend to rise exponentially in Age.

2. Covariance function captures the correlation between mortality rate at a given Age and Year
and mortality rates at other coordinates. For example, we expect the mortality for age 70 in
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2010 or xi � p70, 2010q, to be more correlated with xj � p69, 2011q than with xj � p50, 1995q.
In this paper, we employ the squared-exponential kernel:

Cpxi, xjq � Ci,j � η2exp

�
�
pxiag � xjagq2

2θ2
ag

�
pxiyr � xjyrq2

2θ2
yr

�
. (6)

Above, η2 is the process variance: when xi � xj , the covariance reaches its maximum value
Cpxi, xjq ¤ η2; when xi and xj are far apart, the covariance becomes very small, Cpxi, xjq � 0.
This feature of expressing the dependence structure through a spatial perspective is central to
GPs and is controlled by the hyperparameters θag and θyr in (6) that are called characteristic
length-scales. The lengthscales determine how much influence an observation has on others
in the Age and Year dimensions, respectively. Note that θag —lengthscale for Age—and θyr
—lengthscale for Year—are not comparable. The overall hyperparameter set for Cp�, �q is
pθag, θyr, η

2, σ2q.

3. Observation Likelihood. We assume a constant observation noise σ � StDevpεiq @i which
is estimated via Maximum Likelihood or Markov Chain Monte Carlo along with all other
hyperparameters. While this is not entirely realistic, based on the discussion in Ludkovski
et al. (2018) the impact of modified observation models is minimal. A common alternative is to
assume a Poisson likelihood; however it is well known that mortality data are overdispersed, so
that parametrization is also mis-specified. Table 14 in the Appendix compares the estimated
noise variance σ2 in 10 European countries to their 2016 population. Law of Large Numbers
would imply a linear relationship between 1{σ2 and population size. However our results
clearly show that this relationship is far from linear and large countries have relatively more
noisy observations.

An important aspect that influences the goodness-of-fit of a GP model is its spatial smoothness.
The squared exponential covariance kernel (6) makes the mortality curves infinitely differentiable
in both Age and Year dimensions (note that the GP is defined over x P R2

� and so provides
a continuous interpolation of the observed data gridded by year). This will be exploited below
for computing mortality improvement factors. Moreover, the lengthscales θ affect the qualitative
nature of the fitted m�p�q. When lengthscales are too large, the fitted curves are over-smoothed
and the influence of individual data points attenuates (Rasmussen and Williams 2005). As a result,
there is less flexibility in m�p�q; to compensate, the estimated observation noise is increased and the
model under-fits. In contrast, too small lengthscales indicate over-fitting of the spatial dependence,
generating high-frequency oscillations in the fitted m�p�q and low observation noise σ2.

To better capture the trends in the data we fit a parametric prior mean: mpxq � β0�
°p
j�1 βjhjpxq,

where hj ’s are some fixed basis functions and the βj ’s are unknown coefficients. The coefficients
β � pβ1, ..., βpq

T are augmented to the kernel hyperparameters and estimated simultaneously. Let
hpxq �

�
h1pxq, ..., hppxq

�
and H �

�
hpx1q, ...,hpxN q

�
, then the estimation of β along with the

predicted posterior mean and variance s2
�px�q for a new input x� is:

β̂ � pHT pC�Σq�1Hq�1HT pC�Σq�1y; (7)

m�px�q � hpx�q
T β̂ � cpx�q

T pC�Σq�1py �Hβ̂q; (8)

s2
�px�q � Cpx�, x�q�

�phpx�q
T � cpx�q

T pC�Σq�1HqT pHT pC�Σq�1Hq�1phpx�q
T � cpx�q

T pC�Σq�1Hq. (9)

We note that the mean and kernel functions interact : choosing the mean function is analogous
to de-trending, and choosing the covariance function is analogous to modeling the residuals. An
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informative mean function will imply that the residuals are smaller (lower η2) and de-correlated
(small θ’s) compared to assuming a constant mean, which will lead to high η2 and larger θ’s.

Estimating the parameters. Our overall set of hyper-parameters is Θ � pθag, θyr, η
2, σ2,βq. We can

learn values of the hyperparameters via optimization of the marginal likelihood function which is
the integral of the likelihood times the prior: ppy|x,Θq �

³
ppy|f ,Θqppf |x,Θqdf . Since ppy|x,Θq �

N pm,C�Σq and if we assume the mean function is known or fixed, the log-likelihood of the
marginal is simply a MVN density:

log ppy|x,Θq � �
1

2
yT pC�Σq�1y �

1

2
log |C�Σ| �

N

2
logp2πq. (10)

Thus, we have to solve a system of nonlinear equations to maximize (10) which yields the MLE
estimate. We implement GP fitting via the function km() from the package DiceKriging (Roustant
et al. 2012) in R. That package carries out MLE of Θ using a genetic optimization algorithm.

2.3 Bayesian Gaussian Process Regression

The GP hyperparameters summarize the covariance structure of the fitted mortality model. The
MLE method provides a point estimate ΘMLE of that structure, i.e. a “best guess” of a GP
surface that fits the data. Uncertainty quantification is a major component of our analysis, in
particular in assessing how similar or different are the various populations. To this end, we aim to
quantify model risk, i.e. the range of GP models that are consistent with the data via a Bayesian
formulation. The Bayesian GP starts with a prior on Θ and then integrates out the likelihood of
the observed data to obtain the posterior distribution of the hyperparameters. A point estimate
of Θ is additionally obtained from the maximum a posteriori (MAP) hyperparameters, ΘMAP �
argmaxΘ

°
i log ppyi|ΘqppΘq. In fact, MLE can be viewed as a special case of MAP with improper

uniform priors. In our analysis, we employ weakly informative priors to minimize influence of
a priori assumptions (so that the data speaks for itself) but still regularize inference by keeping
hyperparameters within reasonable ranges.

In practice, computing the posterior density ppΘ|Dq requires to evaluate an intractable multidimen-
sional integral. MCMC algorithms bypass this challenge by drawing samples Θp1q,Θp2q, . . . ,ΘpMq

from the posterior. Traditionally, MCMC sampling for GP models was challenging due to strong
correlation among the hyperparameters. Recently, powerful new techniques, in particular Hamilto-
nian Monte Carlo (HMC) have been developed to overcome this challenge. We implement Bayesian
GP using Stan (Carpenter et al. 2017) that is built upon efficient HMC. Stan is a free, open-source
software, written in C++ language, and has risen to be one of the most efficient toolboxes to perform
Bayesian inference and optimization for statistical models.

Following Stan recommendations, we standardize the input covariates (by subtracting the mean
and dividing by the standard deviation, xiag,std :� pxiag � µxagq{σxag) to reduce the autocorrelation
between the hyperparameters and thus increase the efficiency in the MCMC chains. HMC in Stan

further helps to cope with this autocorrelation. Stan returns a set of posterior MCMC samples for
βββ and Θ based on standardized data, so we then have to convert these values back to the original
scales. For instance, the sampled hyperparameters βstd� of the linear mean function are transformed
back by:

mpxiq � β0 � βag1 xiag � β0 � βag1 pxiag,stdσxag � µxagq

�
�
β0 � βag1 µxagq � βag1 σxagx

i
ag,std
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Thus: βag1 �
βag,std
1
σxag

and β0 � βstd0 �

�
βag,std
1
σxag



µxag ; in similar fashion, we can transform the

lengthscales in the covariance kernel: θag � σxagθ
std
ag and θyr � σxyrθ

std
yr .

For Bayesian GP hyper-priors we take β0 � N p�4, 0.5q, βag1 � N p0, 0.5q. Inverse-Gamma priors
are chosen for the covariance hyperparameters: θstdag � Inv-Gammap9, 12q, θstdyr � Inv-Gammap9, 12q
which ensures that 99% of the respective prior is concentrated between 0.01 and 3.3, (Betancourt
2017). For the process variance, we take log η2 � N p�3, 1q. Finally, the prior for observation noise
is σ2 � N�p0, 0.5q.

2.4 Further Model Outputs: Improvement Factors and Life Expectancy

A common way to interpret a mortality surface is via the (annual) mortality improvement factors
which measure longevity changes year-over-year. In terms of the observations, the raw annual

percentage mortality improvement is 1 �
exp
�
ypxag ;xyrq

�
exp
�
ypxag ;xyr�1q

� . The smoothed improvement factor is

obtained by replacing y’s by the GP model posterior m�’s:

BmGP
backpxq :�

�
1�

exppm�pxag;xyrqq

exppm�pxag;xyr � 1qq

�
. (11)

Another way to visualize the output of a mortality model is via the resulting (conditional) life
expectancy. To do so, we fix Age and Year and employ the estimated mortality rates across future
ages. For an individual aged pxag, xyrq, (complete) life expectancy is calculated as:

e̊pxag ,xyrq �
1

2
� epxag ,xyrq �

1

2
�

110�xag¸
t�1

Sptq, (12)

where the survival function Sptq is evaluated recursively as Sp0q � 1 and

Spt� 1q � Sptq
�
1�m�pxag�t;xyrq

�
. (13)

Because our training set is only up to Age 85, we use the supplied actuarial life tables for Ages 90+
to compute (13).

2.5 Interpreting the Single-Population Models

The previously discussed Table 1 illustrates fitted GP models to the 10 selected Male datasets.
To summarize the main take-aways we provide the following comments about the various fitted
hyperparameters:

• In the mean function, the intercept coefficient β0 and the linear coefficient βag1 determine the
shape of the mortality curve.

– The positive βag1 of Age in Table 1 matches our expectation of an increasing Age factor.
For example, βag1 � 0.099 in Austria implies mortality rates increase by 9.9% on average
for each year of increase in Age.

– The intercept β0 determines the “average” baseline level of log-mortality after removing
the Age effect. Populations with higher life expectancy should have lower β0. In Table 1,
Sweden and Switzerland have lowest β0 and indeed have the highest life expectancy in
this group.
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• θag controls the Age-correlation effect. For instance, θag � 6.51 in Austria can be interpreted
as Ages being correlated to about �2θag � �13 neighboring Age-groups. This can be observed
in Figure 1: populations with larger θag have much flatter mortality improvement factors
(i.e. less Age-dependent and more correlated). Namely, θag is intuitively the “frequency” of
fluctuations in BmGP

backp�q, see the 3-4 inferred “waves” in Austrian MI in the Figure over a
span of 35 Age groups (50–84); while Denmark has only two such “waves” due to θag � 11.30.

• Similarly, θyr determines the influence of historical trends on the current mortality experience.
A typical value of θyr � 5.78 in Austria implies that historical patterns de-correlate and
disappear after about a decade. Demographic knowledge implies that the Age structure is
more persistent than the historical/temporal structure, so we expect θag ¡ θyr.

• Most countries have similar dependence structures where θag P r6, 14s and θyr P r4, 10s. In
some smaller populations, such as Estonia and Lithuania, θyr is rather small, suggesting a lot
of Year-over-Year variability in mortality evolution.

• The observation noise σ2 represents the credibility of the observed raw mortality rates. Results
in Table 1 and Table 14 show large countries have less noisy observations.

• Heatmaps of the fitted GP model residuals (see Appendix A) show appropriate goodness of
fit without any discernible spatial patterns in either Age- or Year- dimensions. This validates
the use of a spatial model and effective capturing of the underlying mortality trends.

3 Joint Modeling

In this section we proceed to set up the framework to incorporate information in mortality across
different populations by pooling them into one single dataset. In particular we want to pool data
from populations with similarities in mortality (e.g., countries within the same region, male and
female population in a country, different states in the same country).

Data aggregation is done by treating Population as categorical input. Let L be the number of
different populations considered. We now generate L factor levels, with l � 1, . . . , L the code
representing each population. This is encoded as additional input dimensions, with each additional
dimension coded as 1 or 0; see (Duvenaud 2014, Chu and Ghahramani 2005, Garrido-Merchán and
Hernández-Lobato 2018) for further discussion of GP modeling with categorical covariates. Thus,
the new input vector for the nth observation in the joint model is: xn � pxnag, x

n
yr, x

n
pop,1, . . . , x

n
pop,Lq

where each xnpop,l (l � 1, . . . , L) is an indicator function:

xnpop,l � 1tpopulation�lu �

#
1 if population � l (the nth observation is from population l);

0 if population � l.

To construct a covariance kernel for the joint model, we multiply a kernel for the numerical co-
variates xag, xyr with a kernel for the categorical ones (Qian et al. 2008, Roustant et al. 2018).
Let:

C̃i,j :� exp

�
�
pxiag � xjagq2

2θ2
ag

�
pxiyr � xjyrq2

2θ2
yr

�
; (14)

Γi,j,l1,l2 � exp

�
� θl1,l2δ

ij
l1,l2

�
where l1, l2 P t1, . . . , Lu, (15)
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with

δijl1,l2 �

#
1 ith and jth observation come from populations l1 and l2;

0 otherwise.

Note that δijl1,l2 � 1
txil1

�xjl1
u
� 1

txil2
�xjl2

u
is symmetric in i and j.

Then, the covariance between input rows xi and xj is set as follows:

Cpxi, xjq � η2exp

�
�
pxiag � xjagq2

2θ2
ag

�
pxiyr � xjyrq2

2θ2
yr

� ¹
tl1,l2u

exp

�
� θl1,l2δ

ij
l1,l2

�
(16)

�

#
η2C̃i,j if observations are from the same population;

η2C̃i,jΓi,j,l1,l2 if observations from populations l1, l2,

When observations are from the same country, the covariance between the ith and jth observation
is the same as in a single-population model, cf. Equation (6). Intuitively, Γl1,l2 ’s then discount
the covariance when observations are from different populations, Γl1,l2   1. In Equation (16),
Γl1,l2 is the function of the parameter θl1,l2 : large value of θl1,l2 implies low correlation between
the two populations. Specifically, the correlation coefficient is rl1,l2 :� exp

�
� θl1,l2

�
. Table 5

shows the fitted joint GP model for {Denmark, France, Sweden, UK} � t1, 2, 3, 4u Males, with
population lengthscales: θ21 � 1.2602, θ31 � 1.4569, θ41 � 0.0945, θ32 � 0.5123, θ42 � 0.4869, and
θ43 � 1.2196; assuming cells have the same Age and Year values, the cross-population correlation
matrix is: �

�r21

r31 r32

r41 r42 r43

�
� �

�
�0.28

0.23 0.60
0.91 0.61 0.30

�
� .

Thus, mortality rates in UK and Denmark are highly correlated (r41 � expp�0.0945q � 0.91), while
Sweden and France are little correlated with Denmark (r21 � 0.28 and r31 � 0.23 respectively).

Observation Noise: When modeling data from multiple populations, the observation noise vari-
ance σ2 changes for each of the different populations. We want to maintain the homogeneity of
noise variance within data from the same country and account for heterogeneous characteristics
when observations from multiple populations are combined. Consequently, the variance of an ob-
servation from population l in (2) is taken to be V arpεiq � σ2

l where each σ2
l is set to the output

from individual GP model for population l. This is implemented using the noise.var option within
the km() call to DiceKriging (Roustant et al. 2012).

Mean Function: For the mean function in a multi-population model one choice is to make it the
same across all populations, say mpxnq � β0. Alternatively, we may use a linear mean function to
take into account the different trends across populations:

mpxnq � β0 � βag1 xnag �
Ļ

l�2

βpop,lx
n
pop,l. (17)

Analogous to the coefficients of categorical covariates in regression, βpop,l can be interpreted as the
mean difference between log mortality in population l and the baseline. Note that (17) implies the
same shared prior Age structure in all populations.
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Bayesian hyper-priors: When fitting GP simultaneously for multiple countries, the lengthscales
θpop,l for the Population factor are added into the hyperparameter vector. Similar to the chosen
priors in individual GPs, the priors in joint-population GP are: β0 � N p�4, 0.5q and β1’s �
N p0, 0.5q; θstdag � Inv-Gammap9, 12q, θstdyr � Inv-Gammap9, 12q, and log η2 � N p�1, 1q. For the
population lengthscales we use log θl1,l2 � N p�1, 1q for all l1, l2. The prior for the observation noise
in population l is σ2

l � N�p0, 0.5q.

3.1 Qualitative Features of Multi-population Models

Having set up the joint mortality model, let us recap its main features compared to the individual-
country analysis as presented in Figure 1 and Table 1:

1. An aggregate model is expected to be more accurate, and have narrower credible bands.
Recall that (95%) credible bands are rm�px�q� 1.96s�px�qs, driven by the posterior standard
deviation s�pxq; we expect sJoint�   sIndiv� due to having a larger dataset.

2. Fusing multiple populations reduces hyper-parameter uncertainty and helps to discover the
“global” covariance structure. In particular, a joint model will achieve shrinkage across in-
dividual mortality improvement rates. A joint Bayesian GP model will further have tighter
hyperparameter posteriors.

3. An aggregate model can be used to borrow the latest information from other country(ies)
to improve prediction about the latest domestic mortality. This is especially relevant with
notched datasets where there is relatively more data in other populations.

4. A joint model can achieve long-range coherence or convergence across populations, both in
terms of mean forecast and individual stochastic scenarios. In particular, one may explicitly
specify the long-range spread between mortality experiences.

Last but not least, a joint model is important for “slicing-and-dicing” the dataset. A challenge
intrinsic to any spatio-temporal paradigm concerns the underlying assumption of covariance sta-
tionarity. Indeed, the GP model implies that the correlation structure is homogeneous across the
input space. This means for instance that the correlation between Age 50 and Age 60 is the same
as correlation between Age 75 and 85. Demographically, one would expect the old ages to be more
correlated, hence the above assumption might not be valid. The mis-specification in turn strongly
affects both the shape and width of the CI and suggests to build a model that is segmented by Age.
However, for individual countries this is problematic as credibility gets lost and model inference
becomes weaker. A combination of multiple countries can be used to boost credibility, and provide
reliable estimates of the respective correlation structures.

4 Results

4.1 Performance metrics

To assess model performance we employ three different metrics. First, we consider out-of-sample
predictive accuracy, comparing observed future mortality to its mean model forecast. The most
common choice is root mean squared error (RMSE); however RMSE is highly sensitive to out-
liers and also to the pattern that mortality errors will be necessarily larger at higher Ages. To
remedy this, we focus on the mean absolute percentage error (MAPE) measure, specifically its
symmetric (SMAPE) version that corrects for the tendency of MAPE to put heavier penalties on
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over-estimating the observations (Armstrong and Collopy 1992, Makridakis 1993):

SMAPE :�
100

M

M̧

i�1

|Y i� �m�px
i
�q|

p|Y i�| � |m�pxi�q|q{2
, (18)

where Y i� is the realized observed value at test input xi� and m�px
i
�q is the predicted log-mortality

rate by the model. Unlike the squared errors, SMAPE is a scale-independent measure that is
convenient to compare across different data sets.

4.2 Case Study I: Two Nordic Countries

As a first illustration, we build a joint GP model, as proposed in Section 3, for Male mortality
data across Sweden and Denmark (l � 1: Denmark and l � 2: Sweden). The two countries share
similar demographic characteristics, such as population size and are Nordic neighbors. We test two
different mean functions:

Example 1: Common constant mean function across both populations, mpxnq � β0.

Example 2: Linear mean function that takes into account the separation in mortality between
Denmark and Sweden:

mpxnq � β0 � βag1 xnag � βpop,2x
n
pop,2. (19)

Analogous to a coefficient of categorical covariates in regression, βpop,2 � βSWE can be interpreted
as the mean difference between log mortality in Sweden and in the baseline country, Denmark.

Table 2 shows the output of a fitted joint GP model compared with GP models fitted separately
on each country. We observe that all joint hyper-parameters fall generally between those of single-
population models, illustrating hyper-parameter shrinkage. In Example 2, the coefficient βSWE �
.0794 implies that on average male mortality in Sweden is higher than that in Denmark by 7.9%.
The lengthscale θDNK,SWE controls the correlation between Denmark and Sweden, see Section 3.
We notice that θDNK,SWE in Example 1 (� 0.0684) is smaller than in Example 2 (� 0.3973). This
can be explained based on the choice of the mean function. When we assume both countries to
share the same constant trend, it induces a higher correlation between two populations.

Table 13 in Appendix B further compares the estimated e̊pxag ,xyrq (complete life expectancy) in
Denmark and Sweden from three different approaches: individual GP model, joint GP, and the
HMD-provided life table from year 2013.

4.3 Impact of Joint Modeling on Prediction Quality

Table 3 displays out-of-sample prediction for male mortality in Sweden via the individual GP and
joint (Sweden + Denmark) GP models. We recall that m�px�q denotes the predicted posterior
mean (see Section 2.1), while s2

�py�q � C�px�, x�q � σ2
SWE corresponds to the posterior marginal

variance of ypx�q. For prediction in the near-term future such as in 2013 and at Ages that are within
or close to the training range r70, 84s, we see no significant difference in the prediction performance
between the two approaches. We do observe that the posterior variance in the joint model is smaller
than one from the individual model. This validates the advantage of a joint model to strengthen
the confidence in estimating the lengthscales. One way to conveniently compare the performance
in prediction between GP models is to visualize the outputs, see Figure 3. While for Denmark, the
differences are very slight, in Sweden model prediction starts to diverge for xyr ¥ 2013 (models
were fitted up to 2012). We see that the predicted curves produced by a joint model are closer to
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Table 2: Comparison between single-population GP models and a joint GP model for Males in Sweden
and Denmark. The training set is Ages 70–84 and Years 1990–2012.

Parameters Denmark Sweden Denmark &
Sweden

Constant mean: mpxq � β0 for both countries

β0 �4.2190 �3.5037 �3.0996

θag 61.3880 28.8684 36.6561

θyr 56.3974 105.7308 43.2589

θDNK,SWE � � 0.0684

η2 10.7882 5.1866 3.9685

σ2
DNK 1.531� 10�3 � 1.531� 10�3

σ2
SWE � 8.418� 10�4 8.418� 10�4

Linear mean function mpxq from 19

β0 �10.5627 �11.2166 �11.0174

βag1 0.0984 0.1086 0.1046

βSWE � � 0.0794

θag 30.9987 19.4562 22.4098

θyr 19.5434 10.7198 23.2661

θDNK,SWE � � 0.3973

η2 0.1223 0.0416 0.1030

σ2
DNK 1.516� 10�3 � 1.516� 10�3

σ2
SWE � 8.025� 10�4 8.025� 10�4

Table 3: Predicted Male Swedish mortality in 2013 and 2016 using a joint Denmark + Sweden GP model
as in Table 2.

Year 2013 Observed

value µ

(2013)

Year 2016 Observed

value µ

(2016)

Single Joint GP Single Joint GP

Age m� s�pyq m� s�pyq m� s�pyq m� s�pyq

75 �3.4501 0.0300 �3.4682 0.0292 �3.4526 �3.4542 0.0399 �3.5285 0.0316 �3.5518

85 �2.2000 0.0330 �2.2189 0.0309 �2.2462 �2.1996 0.0461 �2.2578 0.0345 �2.2835

90 �1.5615 0.0473 �1.5761 0.0406 �1.6602 �1.5641 0.0637 �1.6029 0.0461 �1.6575

the observed values in the test period from 2013-2016. Table 4 compares the predictive accuracy
between the models via SMAPE and confirms that joint GP is better (smaller SMAPE values) at
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Table 4: Prediction accuracy via SMAPE for single-population and joint GP models from Table 2. The
test set is Ages 70–84 in Years 2013, 2015, and 2016.

SMAPE
2013 (one-year out) 2015 (three-year out) 2016 (four-year out)

Single Joint GP Single Joint GP Single Joint GP

Age P r70, 84s
Denmark 1.5798 1.4451 1.3445 1.2862 1.2584 1.1955

Sweden 1.0450 0.8256 1.9752 1.1011 2.5272 0.9038

Table 5: Joint model using mortality rates in 4 countries: Denmark, France, Sweden, and UK.
The aggregated training dataset contains Ages 70–84 and Years 1990–2012 for Males.

Mean function Covariance hyper-parameters

β0 βag1 βSWE θag θyr θDNK,FRA θDNK,SWE θDNK,UK θFRA,SWE θFRA,UK

�10.5417 0.1006 �0.0268 14.0396 9.5543 1.2602 1.4569 0.0945 0.5123 0.4869

– βFRA βUK – θSWE,UK η2 σ2
DEN σ2

FRA σ2
SWE σ2

UK

– �0.0869 0.0069 – 0.7036 0.0327 1.516� 10�3 3.393� 10�4 8.021� 10�4 6.887� 10�4

out-of-sample prediction in both populations.
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Figure 3: 95% credible intervals for observed log-mortality ypx�q across the individual and joint GP models.
Top row: Denmark Males; bottom row: Sweden Males. Note that for up to 2011, the smoothed mortality
curves and CIs are essentially identical for both approaches.

4.4 Case Study II: Four European Nations

We can straightforwardly implement the joint GP framework to model the mortality for more than
2 populations. Table 5 demonstrates a joint GP model on four countries: Denmark, France, Swe-
den, and UK, trained on Males aged 70–84 and Years 1990–2012. In Equation (17), the coefficient
βag1 provides the log-linear Age pattern across all populations, while the differences in baseline
mortality (Denmark) are captured through the coefficients βpop’s. (We will show that these differ-
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Figure 4: Comparison of annual mortality improvement factors between different joint models. Besides
the mean of improvement factors BmGP

backpag; 2012q (11) for Ages 70, . . . , 84, we also show the respective
95% posterior credible band.

ences are actually insignificant after we fit a fully Bayesian GP on this dataset.) In the covariance
kernel, the θag and θyr are shared between all populations, while θl1,l2 ’s control the cross-population
correlations.

Figure 4 examines the predicted annual mortality improvement factors between individual and
different joint models, concentrating on Denmark and Sweden. Large θag lengthscales in individual
GP models lead to essentially linear improvement rate factors (blue curves). When modeling Sweden
and Denmark together (green curves), lengthscale decreases and s�px�q falls, so the improvement
rate factors become more Age-dependent and with tighter credible bands. This effect becomes even
stronger when we use all four populations together. The corresponding smoothed curves (colored
in red) are quite nonlinear, and in particular imply that improvement at young Ages (  60) has
slowed dramatically. This illustrates that a joint model is better able to distinguish between signal
and “noise” and therefore pick up divergent changes in mortality faster, while a single model would
often smooth latest changes away.

4.5 Hyperparameters in Joint Models

We perform Bayesian GP on the above 4 populations: Sweden, Denmark, France, and UK. Com-
parison between the resulting maximum likelihood (MLE) and maximum a posteriori probability
(MAP) estimates is shown in Table 6. The MLE fits fall within the 95% posterior credible intervals
from the Stan model. The 95% credible interval for βag1 confirms the significance of the linear effect
of Age. The mean function coefficients βpop,l’s in the joint model estimate the mean differences in
mortality between Sweden (the baseline) and other countries. The 95% posterior CI’s for these co-
efficients all contain 0, implying that they are not statistically significant. This indicates that there
is no clear difference in the respective mortality experience which is intuitive since all populations
are from developed countries within the same geographic area.

Figure 5 shows the inferences of the lengthscales for Age and Year along with MLE estimations
when fitting mortality separately for each country: Denmark, France, Sweden, and UK, versus
jointly modeling them as groups of 2, or jointly as all 4 together. The figures visualize how joint
GP models produce tighter hyperparameter posteriors. For example, the posterior mean of θag in
Denmark is relatively large and its credible bands are wide compared to the other three countries
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Figure 5: Stan MCMC posteriors of the lengthscales θ for Age and Year across populations and joint
models with different groupings. The �’s indicate the respective MLE estimates from a DiceKriging model.
The dashed lines indicate the MCMC MAP estimate from the 4-population joint model.

(Figure 5.a). However, once we pair Denmark with either Sweden, UK, or France (Figure 5.a —light
blue, light green, and purple CIs respectively), the credible bands of θag become narrower and in
the more reasonable range of θag P r15, 30s. This effect is even further amplified when taking all 4
countries together. The underlying concept is that the more populations are added into the model,
the closer we get at discovering the “universal” representation of mortality pattern. In Figure 5, the
4-population MAP estimates of the lengthscales (dashed horizontal lines) intersect with a majority
of CIs suggesting that there is indeed a common covariance structure which is gradually revealed
as we increase the training dataset.

The posterior MCMC samples of the lengthscales θl1,l2 ’s can be used to sample the posterior
distribution of the correlation in mortality rates between a pair of countries in the model. In this
spirit, Table 7 reports the posterior mean (bold numbers) and the respective 95% credible bands
of Rl1,l2 . We note that the credible bands are quite wide, so the model is not too confident about
cross-population correlations.

4.6 Case Study III: Joint Modeling of Male and Female Datasets

The gender gap in mortality varies by country but Males tend to have higher mortality rates
than Females due to both biological and non-biological factors (Hazzard 1986, Kraemer 2000,
Regan and Partridge 2013). For example, women outlive men by 7 years on average in developed
countries (United Nations 2011). Modeling mortality for each gender separately often fails to take
into account the interdependent relationship between them and further results in divergent and
implausible long-run forecasts even if the same fitting procedure is applied. In this section we
demonstrate how a joint GP framework can be used to simultaneously model Male and Female
mortality within a country, using Denmark as the case study. Treating Female as a baseline factor,
the coefficient βM � .4157 in the fitted GP mean function reveals the higher mortality (by 40%
on average) for males compared to females. As we will see below, βM plays an important role in
achieving coherent long-term forecasts as we expect Females to continue having lower mortality
than Males. The length-scale θF,M � 0.4925 confirms the correlation between mortality of the two
genders.
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Table 6: Hyper-parameter estimates based on maximum likelihood (DiceKriging) and maximum a pos-
teriori probability (Stan), along with MCMC summary statistics using a joint mortality model across four
countries: Denmark, Sweden, France, and UK. Training set contains Males aged 70–84 during Years 1990–
2012. Sweden used as baseline population.

Parameters
DiceKriging

MLE
Stan

MAP MCMC Mean MCMC 95% Posterior CI

β0 �10.5417 �10.0220 �10.5337 (�12.0847, �9.1274)
βag1 0.1006 0.0958 0.0967 (0.0847, 0.1085)
βSWE �0.0268 �0.0685 0.1239 (�0.2438, 0.5827)
βFRA �0.0869 �0.0971 �0.0060 (�0.3596, 0.3844)
βUK 0.0069 0.000 0.1122 (�0.2252, 0.4961)

θag 14.0396 12.1915 17.4166 (12.0294, 24.0641)
θyr 9.5543 9.2694 11.3858 (8.2536, 13.3009)
θDNK,FRA 1.2602 0.3773 0.8269 (0.1544, 2.9089)
θDNK,SWE 1.4569 0.2725 0.5094 (0.0889, 1.8891)
θDNK,UK 0.0945 0.0799 0.1579 (0.0286, 0.5473)
θFRA,SWE 0.5123 0.1943 0.3658 (0.0797, 1.0949)
θFRA,UK 0.4869 0.1445 0.1439 (0.0383, 0.3917)
θSWE,UK 0.7036 0.1801 0.6132 (0.0530, 2.6660)
η2 0.0327 0.0392 0.0684 (0.0289, 0.1520)
σ2
DEN 1.516� 10�3 1.514� 10�3 1.528� 10�3 (1.315� 10�3, 1.772� 10�3)
σ2
FRA 3.394� 10�4 3.371� 10�4 3.459� 10�4 (2.956� 10�4, 4.045� 10�4)
σ2
SWE 8.022� 10�4 8.007� 10�4 8.226� 10�4 (7.033� 10�4, 9.640� 10�4)
σ2
UK 6.887� 10�4 6.849� 10�4 7.001� 10�4 (5.985� 10�4, 8.165� 10�4)

Table 7: MCMC for the inferred correlation between populations in the Male Sweden-Denmark-France-UK
joint model.

SWE DEN FRA UK

DEN
0.6561 1
(0.1512, 0.9149) -

FRA
0.7198 0.5178 1
(0.3345, 0.9233) (0.0545, 0.8568) -

UK
0.6340 0.8622 0.8697 1
(0.069, 0.9483) (0.5784, 0.9712) (0.6758, 0.9623) -

Another effect we observe is the shrinkage in terms of the lengthscales. Table 8 reports the Age
and Year lengthscales across individual and joint models. We note that the joint parameters
(θag � 12.0668 and θyr � 9.9789) are closer to the ones in the Female model (θag � 11.5567 and
θyr � 9.5256) than the Male model (θag � 30.9566 and θyr � 19.5687). Thus we witness the
strong effect of borrowing cross-population information in this example. Table 9 reports SMAPE
on out-of-sample forecasts and confirms that joint GP performs very well even at high ages with
zero information presented in the training set.
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Table 8: Joint model on Ages 70–84 and Years 1990–2012 for Males and Females in Denmark.

Parameters Female Male Female & Male

β0 �11.6755 �10.5628 �11.3647

βag1 0.1095 0.0984 0.1054

βM � � 0.4157

θag 11.5567 30.9566 12.0668

θyr 9.5256 19.5687 9.9789

θF,M � � 0.4925

η2 0.0429 0.1224 0.0379

σ2
F 1.489� 10�3 � 1.489� 10�3

σ2
M � 1.516� 10�3 1.516� 10�3

Table 9: Prediction accuracy via SMAPE between individual- and joint-gender GP models. Training set
is Ages 70–84 and Years 1990–2012 in Denmark. Test set is Ages 70–84 and Years 2013, 2015, 2016.

SMAPE
2013 (one-year out) 2015 (three-year out) 2016 (four-year out)

Single Joint GP Single Joint GP Single Joint GP

Age P r70, 84s
Female 0.9422 0.8834 1.8973 1.7845 1.4010 1.2269

Male 1.5802 1.5062 1.3444 1.2454 1.2583 1.1819

5 Features of Joint GP Models

5.1 Improved Hyperparameter Estimation

In Table 1, the estimated length-scales in the Year dimension, θyr, are relatively large for Sweden
and Switzerland (bold numbers) and relatively small for Estonia and Lithuania (italic numbers).
These empirical features confirm the opportunity to better estimate the hyperparameters by utilizing
multiple data sets. We also observe that some of the “outlier” data sets, such as Switzerland, might
be resistant to accurate modeling and would strongly benefit from a more structured way of learning
their correlation structure. It is known that GPs might have difficulties in estimating lengthscales,
for example due to the likelihood function (10) being highly multi-modal, or conversely very flat
around its maxima. Providing more data is one remedy.

Figure 6 visualizes the fitted Swiss Male mortality improvement factors from a single-population
GP model (left panel) and a joint Switzerland-Austria GP model (right panel). We observe that the
individual model over-smoothes the data and hides most of the fluctuations. In contrast, pooling
data across the two populations shrinks unreasonably large lengthscales and provides a much better
fit in Figure 6.b.
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(a) Improvement factors via individual GP
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(b) Improvement factors from a joint model

Figure 6: Predicted annual Male mortality improvement factors BmGP
backp.; yrq in Switzerland. Training set

is Ages 50–84 and Years 1990–2012.
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(a) Male/Female difference in log-mortality
in Denmark using individual GP models
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(b) Male/Female difference in log-mortality
in Denmark using a joint model
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(c) Predicted Log-mortality rate for Age 70
Males using a joint GP model for Sweden,
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(d) Annual mortality improvement factors at
Age 70 Males using a joint GP model for the

respective four countries.

Figure 7: Long-term mortality forecasting over years 1990 to 2060. All models are trained using Ages
70–84 and Years 1990–2016 (edge of training set indicated by the dashed lines). Top panels show the

forecasted mean difference between Danish Male and Female mortality.
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5.2 Coherent Mortality Forecasts

Fitting GP models for individual populations tends to generate divergent long-term forecasts that
are inconsistent with historical patterns. To illustrate this issue, we fit individual GP models for
Males and Females in Denmark for Ages 70–84 and calendar Years from 1990 to 2016 and then
forecast gender-specific mortality forward up to 2060 (45 years into the future). The heatmap in
Figure 7.a displays the resulting projected Male-Female differences in log-mortality. We observe
that the models imply that as early as 2030, Males will have lower mortality than females. For
example, at Age 80 Males had 52% higher mortality in 1990, 34% higher in 2016 but will have 14%
lower mortality in 2030. This unlikely forecast is not caused by any specific feature of GP modeling,
but arises “randomly” due to independent treatment of the two datasets. We note that divergence
manifests itself both through implausible difference in mean forecasts, as well as excessively fast
changes in relative mortality, see the rapid overtaking between the two genders in Figure 7.a.

On the contrary, forecasts based on joint models maintain the historical characteristics observed in
the data into the future. Figure 7.b shows the Male-Female relative log-mortality coming from a
joint GP model. In that case, the relative forecast is coherent: Females are projected to maintain
higher longevity and historical patterns slow dissipate over time to the long-term spread of about
βM � 41.5% between same-age Male and Female mortality, cf. Table 8. The respective stochastic
scenarios similarly capture the long-run dependence between the two genders.

In GP models, the long-term forecast is driven by the prior of f , and specifically by the mean
functionmp�q. Thus, the relative differences in mortality between populations are controlled through
the choice of mp�q, so that different ways of achieving coherence are transparent to the modeler. To
highlight this aspect, Figures 7.c and7.d show the log-mortality and annual mortality improvement
rates for Males aged 70 across Sweden, Denmark, France, and UK, in the period from 1990 to 2060,
estimated via a joint 4-population GP model (each country curves are shaded with a unique color).
In the Figures we illustrate three different scenarios about long-term coherence:

1. Zero long-term mortality improvement, captured by the linear mean function mpxnq � β0 �
βag1 xnag �

°L
l�2 βpop,l

�
xnpop,l

�
(dashed curves). All mortality improvement factors converge

to zero (right panel) and the long-run mortality differences are summarized by the βpop,l
coefficients.

2. Long-term mortality improvement based on historical pattern (thin solid curves). This
is encapsulated via mpxnq � β0 � βag1 xnag � βyr1 xnyr �

°L
l�2 βpop,lx

n
pop,l. In the long-run

BmGP
backp.; yrq Ñ βyr1 (about 2% annual); again βpop,l determine the long-run relative difference

in longevity of different populations.

3. Long-term mortality improvement based on expert judgement (thick solid lines). We again
use mpxnq � β0�β

ag
1 xnag�β

yr
1 xnyr�

°L
l�2 βpop,l

�
xnpop,l

�
, but this time βyr1 coefficient is picked by

the modeler and fixed at 1%. Since it is not possible to fully extrapolate the future longevity
trends from past data, it is appropriate to use expert opinions about future mortality (Booth
and Tickle 2008). By way of illustration, we assume in Figures 7.c-d that future improvements
will moderate to only 1% annually, reflecting recent slowdown in MI.

In all three scenarios above, we observe that the choice of mp�q has minimal impact on in-sample
forecasts that are largely driven by the training data covering 1990–2016. On the other hand, the
long-term levels of mortality improvement are completely driven by mp�q. Finally, for short-term
extrapolation (roughly 2016–2025 in the Figure, reflecting the fitted Year lengthscale θyr � 10,
cf. Table 6) the forecasts blend information from the training set and from mp�q. Note that in this
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example some of the individual mortality curves may cross, i.e. the relative order of longevity in
different populations may change over time (such as France surpassing Sweden’s longevity) reflecting
relatively higher recent improvement rates. Nevertheless, we see a very strong coherence so that
mortality rates across populations all move roughly in unison over time, matching our intuition
about the persistent commonality of their future mortality experiences.

5.3 Incorporating Latest Data from Other Populations

In HMD, the reported data from different countries arrives non-synchronously. Indeed, the last
available year of data varies from one country to another. The prevailing approach is to consider
the time period that is common to all countries that are being modeled. This implies that the
most recent observations may be dropped for some countries. Of course, such recent data is in
fact the most informative for picking up new insights about the present longevity trend. Note that
the HMD datasets are updated continuously, so that which datasets have the latest observations
changes dynamically over time.

Sweden Denmark

Model 1 1990 - 2016 �
Model 2 1990 - 2015 �
Model 3 1990 - 2015 1990 - 2015
Model 4 1990 - 2015 1990 - 2016
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Figure 8 & Table 10: Accuracy of Male mortality predictions for Sweden at Ages P r70, 84s for calendar
Year 2016 between Models 1–4. We view Model 1 as the benchmark. The right panel shows the predictive
distributions of m�pag; 2016q for the respective Ages relative to the realized 2016 observation, so that closer
to zero (dashed line) is always better.

GP models can easily handle such “notched” joint datasets, allowing to fully incorporate all latest
data without removing any observations. Recall that since GPs operate with a tabular representa-
tion of pxi, yiq, one simply adds rows to incorporate more observations. In Figure 8, we illustrate
the prediction of Male mortality in Sweden for the year 2016 based on several individual Swedish
and joint Denmark-Sweden datasets. Our benchmark is Model 1 that already has access to 2016
Swedish data. For the remainder of this example we then assume that this data is still unavailable,
so that only 2015 data is provided for Sweden, however 2016 mortality experience has already been
released for Denmark. Thus, to forecast 2016 Swedish mortality one must perform a 1-year-out
extrapolation. A basic choice is a single-population Model 2 that uses Swedish data up to 2015. An
improvement is the joint Model 3 that uses both Danish and Swedish data up to 2015 and would be
the typical way to cross-sectionally fuse mortality data. As expected (cf. Tables 3 and 4), the joint
Model 3 achieves lower prediction errors relative to Model 1. Finally, Model 4 works with a notched
most-up-to-date dataset that contains Danish 2016 data. Model 4 is not possible in the Lee-Carter
framework that requires rectangular datasets. We observe that Model 4 materially improves on
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Table 11: Prediction accuracy via SMAPE for single-population and joint models for Males in Germany
and Switzerland. Training is based on the specified Age groups and Years 1990–2012. More accurate models
are bolded.

SMAPE
2013 (one-year out) 2015 (three-year out) 2016 (four-year out)

Single� Joint GP: Single� Joint GP: Single� Joint GP:

Age P r70, 84s
Germany 0.8486 0.7437 1.2586 1.0292 1.9549 1.4930

Switzerland 1.0114 1.1870 1.3453 0.8290 4.8664 1.8771

Single� Joint GP; Single� Joint GP; Single� Joint GP;

Age P r85, 100s
Germany 5.6969 4.8998 4.7352 3.5757 2.8355 5.5830

Switzerland 5.1769 4.4189 5.4892 4.4078 10.9315 7.6852

�: Ages 70-100 (Full), :: Ages 70-84 (Old), and ;: Ages 85-100 (Advanced Old).

Model 3 and is practically as good as the benchmark Model 1. In other words, borrowing latest
information from a neighboring population is nearly as good as having the latest domestic data,
and is significantly better than just using the available domestic data (Model 2).

5.4 Age-Segmented Models

A key assumption of GP modeling is stationary covariance structure, i.e. that the covariance be-
tween input cells is fully specified by their relative distance (expressed through the lengthscales
θ’s.) rather than absolute coordinates. Such a stationarity assumption may be violated in prac-
tice, in particular when considering extreme ages where there may be stronger spatial correlation.
A natural way to handle such model mis-specification is to build an Age-segmented model. For a
single-population, segmentation is problematic as it reduces the training set size. In contrast a joint
multi-population model is well-suited to such “slicing-and-dicing”. In this section we investigate
these aspects by building Age-segmented joint models, namely for Ages 70–84 (similar to previous
case studies) and for Ages 85–100 (extreme Old). Comparing them also provides a test for spatial
homogeneity. We furthermore compare to single-population models fitted on the full range of Ages
70–100 (considering only 15 Age groups in an individual model is not recommended as the training
dataset is very small. This is especially so for ages 85++ where the data is very noisy.).

Table 11 compares the performance of single GP models fitted on full-Age-range German and Swiss
Male mortality datasets, as well as joint 2-population GP models fitted on the 70–84 and 85–100
age segments. Throughout we use a training period of 1990–2012 and test period of 2013–2016.
We purposely choose the same size of the training dataset across the models (i.e. individual models
have 30 Age groups, while joint models have 15 Age groups from each of two populations) to allow a
fair comparison and hence isolate the effect of Age segmentation. Table 11 shows that joint models
outperform, suggesting that it is beneficial to combine data from different populations but same
Age groups for prediction purposes. Note that the gains from joint modeling are largest at extreme
ages where prediction errors are necessarily higher due to larger observation variance (as number
of Exposed is very low).

Table 12 reports the respective fitted GP hyperparameters. We observe that while most hyperpa-
rameters are similar across the two age groups, the correlation in the Age dimension as captured by
θag changes significantly. At Ages 70-84 we obtain θag � 16, in line with other models in Section 4,
see Tables 2 and 5. However at Ages 85–100 we obtain θag � 6.8 which implies more idiosyncratic
Age effects at extreme old ages. In contrast, we find that the correlation between the two popula-
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Table 12: Hyperparameters of single-population and joint GP models for German and Swiss Males in
Table 11.

Parameters Germany Switzerland Joint Joint

(Ages) (70–100) (70–100) (70–84) (85–100)

β0 �11.2886 �10.6350 �10.3927 �10.8608

βag1 0.1100 0.0998 0.1003 0.1054

βSWI � � �0.1913 �0.1540

θag 3.7445 13.3372 16.0992 6.8645

θyr 23.1392 4.4980 13.0569 11.7254

θGER,SWI � � 0.0943 0.0371

η2 0.1128 0.0373 0.0537 0.0497

σ2
GER 1.687� 10�3 � 1.328� 10�3 1.328� 10�3

σ2
SWI � 4.383� 10�3 1.373� 10�3 1.373� 10�3

tions (θGER,SWI hyperparameter) is stronger at extreme Ages, suggesting that respective mortality
improvement at ages 85++ is driven by cross-national European, rather than domestic trends.

6 Conclusion

We have investigated stochastic multi-population mortality models based on Gaussian process
regression. In our approach, cross-population dependence is captured via spatial correlation based
on the inferred θpop,l hyperparameters. We show that a joint model is able to deliver multiple
modeling benefits, from better hyperparameter estimation to coherent joint long-term forecasts,
to full fusion of the most recent neighbor mortality observations. Looking ahead, it would be
worthwhile to investigate large-scale models, e.g. based on the full HMD database of 40 countries
and 2 genders. This requires additional modeling infrastructure as the presented approach becomes
computationally expensive for L ¡ 5 populations (more than N " 2500 total cells). Fortunately,
there is a very active ongoing progress on large-scale GP models especially for gridded data like in
HMD, see e.g. Flaxman et al..

A different avenue of future research would be to systematically explore the best spatial covariance
structures, as encapsulated by the kernel function Cpx, x1q. In this paper we focused on only
using the squared-exponential kernel and standard Age- and Year-effects. It is feasible to consider
further dependence formats, e.g. birth Cohort effect, and other kernel families, such as the Matern
Ludkovski et al. (2018). A third direction would be to revisit the observation variance assumption
via GLM (generalized linear model) GP formulations.
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A Independence Assumption via Residuals
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(a) Residuals from joint GP model for Denmark
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(b) Residuals from joint GP model for Sweden

Figure 9: Testing for dependence in residuals from a joint GP model.

B Impact of Joint Models on Life Expectancy

Table 13: Predicted complete life expectancy, e̊pxag ;xyrq for Males aged 70 and 84, from individual and
joint GP models. LT refers to the HMD life table used as benchmark.

(Age,Year)
Denmark Sweden

GP Joint
GP

LT GP Joint
GP

LT

p70, 2013q 13.74 13.72 13.96 14.38 14.50 14.8
p84, 2013q 5.73 5.68 5.86 5.65 5.74 6
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C Estimated Observation Noise vs Population Size

Table 14: Fitted observation noise variance in individual GP models versus population by country in
2016. Estonia is the baseline with population of 1.3 million and fitted σ2 � 1{155.3625. Source:

https://ec.europa.eu/eurostat.

Pop’n ratio Inverse of σ2 ratio

Estonia 1 1
Lithuania 2.1950 2.1922
Denmark 4.3370 2.3776

Switzerland 6.3279 2.4729
Austria 6.6116 3.1352
Sweden 7.4859 3.2784

Netherlands 12.9026 5.2078
UK 49.6849 11.8718

France 50.7092 15.8156
Germany 62.4462 7.8849

https://ec.europa.eu/eurostat
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Adrian E Raftery, Nan Li, Hana Ševč́ıková, Patrick Gerland, and Gerhard K Heilig. Bayesian probabilistic
population projections for all countries. Proceedings of the National Academy of Sciences, 109:13915–
13921, 2012.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

Jennifer C. Regan and Linda Partridge. Gender and longevity: Why do men die earlier than women? com-
parative and experimental evidence. Best Practice & Research Clinical Endocrinology & Metabolism,
27(4):467 – 479, 2013.

Olivier Roustant, David Ginsbourger, and Yves Deville. DiceKriging, DiceOptim: Two R packages for
the analysis of computer experiments by kriging-based metamodeling and optimization. Journal of
Statistical Software, 51(1):1–55, 2012.

Olivier Roustant, Esperan Padonou, Yves Deville, Alöıs Clément, Guillaume Perrin, Jean Giorla, and
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