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Abstract 
This paper presents an approach to analyzing contin- 

uing care retirement community (CCRC) data and dem- 
onstrates the methodology by using data from a CCRC. 
It is assumed that residents make "transitions" among 
a number of "states" that represent the levels of care 
required by residents. There is randomness associated 
with both the transition times and the states entered at 
these times. The model is conveniently characterized 
in terms of "transition intensity functions," which rep- 
resent the instantaneous rates of transition between 
pairs of states. Statistical methods for estimating these 
functions are discussed, and estimates are obtained 
from the dataset. A simulation approach for determin- 
ing probabilities and other interesting quantities based 
on the estimated intensity functions is also described 
and illustrated. 

1. Introduction 

1.1 Background on CCRCs 

Continuing care retirement communities (CCRCs) 
offer housing and a wide range of services to elderly 
individuals. These services typically include daily 
meals, housekeeping, flat linen, maintenance of apart- 
ment and grounds, emergency nursing, security, sched- 
uled transportation, and activities. In addition, CCRCs 
usually provide two or three levels of long-term care. 

CCRCs generally charge a rather substantial entry 
fee as well as periodic fees paid throughout an individ- 
ual's duration of residence. Additional fees may also 
be charged for some services. Many CCRC contracts 
provide for the refund of some portion of the entry fee 

in the event of death or withdrawal. A key feature of 
most CCRC contracts is that some or all of the cost of 
long-term care is covered by the entry and periodic 
fees. Such contracts therefore provide a long-term-care 
insurance benefit. 

Discussions of the characteristics of CCRCs and 
CCRC contracts, as well as actuarial issues relating to 
CCRCs, are given by the Actuarial Standards Board 
(1994), Brace (1994), Moorhead and Fischer (1995), 
and Winklevoss and Powell (1984). 

1.2 Actuarial Models for  CCRCs 

CCRCs offer a unique challenge for actuaries. Most 
communities provide two or more levels of care, and 
residents may transfer temporarily or permanently to 
the care units. Actuarial models must therefore permit 
"transitions" among a large number of "states," usu- 
ally six or more. To calculate actuarial present values, 
the actuary should be able to estimate the probability 
that a resident is in any given state at any future time 
as well as the probability that a resident will move 
between any two states during any time interval. To 
perform cash-flow and population projections, the ac- 
tuary should be able to estimate the expected number 
of residents in each state at any future time and the 
expected number of transitions between any two states 
during any future time interval. It is also important to 
quantify the variation about these expected values. 

Cumming and Bluhm (1992) describe a CCRC pop- 
ulation and financial model that uses a multiple decre- 
ment approach. Expected results can be calculated 
directly and random variation estimated by simulation. 
Jones (1995, 1996b, 1997) explores continuous-time 
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multistate stochastic models for analyzing CCRCs with 
emphasis on parsimonious models for which direct cal- 
culation is possible for many important probabilities, ex- 
pected population values, and actuarial present values. 

1.3 CCRC Data 
The data source upon which model parameters are 

to be based should be chosen carefully. The character- 
istics of CCRC residents can differ greatly among 
CCRCs. Some communities are like expensive resorts, 
affordable only to the wealthy; others are much more 
modest with fees that reflect this. We expect to see 
differences in health care utilization between residents 
from different socioeconomic classes. In addition, dif- 
fering management philosophies on resident transfers 
can affect CCRC experience. 

Ideally, parameter values used in modeling a given 
community should be based on that community's ex- 
perience. Unfortunately, many CCRCs have not main- 
tained appropriate records for this purpose or are too 
small to have accumulated substantial recent experi- 
ence. It is important, though, that as much information 
as possible be extracted from the available data. Mod- 
em statistical techniques can help in doing this. 

At present, little CCRC industry data are publicly 
available. However, an ongoing study conducted by 
Actuarial Forecasting and Research, funded by the Na- 
tional Institute on Aging, and endorsed by the Society 
of  Actuaries and the American Association of  Homes 
and Services for the Aging will provide a good source 
of  CCRC industry mortality and morbidity data. 

Estimated rates of transition between model states 
should appropriately reflect the effect of various factors, 
including aspects of a resident's health history since en- 
tering the CCRC as well as other information such as 
gender, marital status, fees paid, contract type, and so on. 
Data that provide this information are therefore required. 

1.4 Outline of Paper 
The purpose of  this paper is to present an approach 

to analyzing CCRC data and to demonstrate the meth- 
ods by using data collected from a CCRC. Section 2 
provides a description and some preliminary observa- 
tions of the dataset used. This illustrates the nature of 
CCRC data and gives an appreciation of  the challenge 
presented by such data. Statistical methods for analyz- 
ing CCRC data are described in Section 3. The state 
occupied by a resident is modeled as a continuous-time 

stochastic process characterized by transition intensity 
functions. I discuss a nonparametric approach to esti- 
mating these functions and the Cox regression model 
for quantifying the effect of important variables on 
these functions. The methods were used to obtain es- 
timates based on the data introduced in Section 2, and 
the results are summarized in Section 4. Because these 
estimates are based on limited data from one CCRC, 
they are illustrative only and should not be used in 
actuarial analyses. In Section 5, I explain how proba- 
bilities and other quantities of interest can be obtained 
by simulation, and I use the estimated transition inten- 
sity functions to illustrate the approach. Finally, some 
conclusions are discussed in Section 6. 

2. The Pilot Study Data 

2.1 Background 
In 1991, the Society of Actuaries and the American 

Association of Homes and Services for the Aging co- 
sponsored a pilot study that involved the collection of 
data from a CCRC in Florida. The purpose of the pilot 
study was to gain insight into collecting CCRC data with 
a view to future large-scale data collection and analysis 
projects. Results of the pilot study were presented in a 
report prepared by H. Barney (SOA and AAHA 1991). 

The CCRC under study provides three types of in- 
dependent housing (single-family, garden apartment, 
and high-rise units) and two levels of health care (as- 
sisted living and skilled-care beds). Access to health care 
is guaranteed with an increased charge to the resident. 

The data comprise information on all individuals 
who resided in the CCRC during the three-year period 
from April 1, 1988 to March 31, 1991, the "study 
period." Information was also coded for those who re- 
sided in the facility before this period with a spouse 
who remained in the CCRC through some or all of the 
study period. A total of 803 residents were included in 
the study. They spent a total of 1,605 life-years in the 
community during the study period. Some residents en- 
tered the CCRC during the study period, and some left 
during the study period. 

Information recorded for each resident includes an 
identification number, name, birth date, sex, couple 
status, apartment type at entry, apartment type at be- 
ginning of study period (or entry for those who entered 
during the study period), entry fee, service fee, health 
status (at later of entry or beginning of study period) as 
indicated by the level of care provided and whether or 
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not recovery was expected, roommate identification num- 
ber (if any), entry date, contract type, and refund provi- 
sion. In addition, for each change of health status that 
occurred during the study period, the new status, date of 
change, and cause of change (if known) were recorded. 

2.2 Preliminary Examination of Data 
Of the 803 residents in the study, most were typical 

CCRC residents receiving residential services and pos- 
sibly meals. Others, such as those admitted directly into 
assisted living or those residing in assisted-living units 
or skilled-care beds on a per-diem basis, were removed 
from the dataset. This left 722 residents who spent 
1,518 years in the CCRC during the study period. 

Because the number of individuals in the study was 
fairly small, the three types of  independent-living units 
were combined for estimating transition intensity func- 
tions. This reduced the number of functions to be es- 
timated. In large-scale studies conducted in the future, 
it will be appropriate to test whether the type of  inde- 
pendent-living unit affects the intensity function. 

While in the community, individuals transfer among 
the following "states": 
1. Independent. Residents in this state are capable of liv- 

ing alone or with a roommate without 24-hour 
supervision. 

2. Assisted Living. Residents in this state require some 
ongoing, long-term supportive services in order to 
function. While some medical or nursing services 
may be provided, the emphasis is on personal care 
services (for example, help in walking, bathing, 
dressing, eating, and the like). 

3. Skilled Care (Temporary). Residents in this state re- 
quire continuous or ongoing nursing or medical care 
services provided by a licensed practical nurse, a 
registered nurse, or a physician. These residents are 
expected to recover and return to either the inde- 
pendent or the assisted living state. 

4. Skilled Care (Permanent). This state is the same as 
state 3 except that residents in this state are not ex- 
pected to recover.* 

*This is the traditional distinction between temporary and 
permanent. However, today it is common for residents to be 
classified as permanent only when the unit at the lower level 
of care is made available for another resident. If the individ- 
ual was residing with a spouse, then this may not occur until 
the spouse vacates the unit. One must therefore recognize 
that the labeling of transfers to skilled care may differ 
between CCRCs. 

Departure from the CCRC during the study period 
occurs by either withdrawal or death. Figure 1 illus- 
trates the setup. The boxes represent states that may be 
occupied by an individual, and the arrows indicate the 
possible transitions. The total number of  years spent in 
each state during the study period is shown in the ap- 
propriate box. Near the head of  each arrow is the num- 
ber of transitions of  the indicated type during the study 
period. Figure 1 shows that certain transitions occur 
with much greater frequency than others. For example, 
there were 371 transitions from state 1 to state 3, but 
only 2 transitions from state 1 to state 4. Thus, we 
should be able to say much more about the 1--->3 tran- 
sition intensity. 

Certain transitions should, in theory, not occur. 
There should be no recoveries from the assisted-living 
state to the independent state. Although the word per- 
manent has been omitted in describing the assisted- 
living state, all visits to this state were coded as per- 
manent. Also, there should be no recoveries from the 
skilled care (permanent) state to the independent, as- 
sisted-living, or skilled care (temporary) states. There- 
fore, the numbers of  2--->1, 4--->1, 4---)2, and 4--->3 
transitions should be zero. In practice, assessments of 
future health status cannot be performed with 100% 
accuracy. Figure 1 illustrates that some of  these tran- 
sitions did occur. 

Females in the dataset outnumbered males. Of  the 
722 individuals included in the analysis, only 198 were 
males. Table 1 shows the total time spent in the CCRC 
during the study period by state and sex. Table 2 pro- 
vides a breakdown of  the number of  transitions by tran- 
sition type and sex. 

One important variable in determining transition in- 
tensities is the age of  the resident. Therefore, it is help- 
ful to understand how the CCRC population is 
distributed by age. To this end, I prepared graphs show- 
ing the number of residents attaining each age during 
the study period (see Figure 2). Separate graphs are 
displayed for all residents and residents in each state. 
These graphs show the exposure by age in total and in 
each state. For each graph, the area under the curve 
between any two ages is the exposure for that age 
interval. 

Another potentially relevant variable is duration 
since entry to the CCRC, due to the selection that oc- 
curs at the time of  entry. Many CCRCs require resi- 
dents to demonstrate that they are in good health before 
they are admitted. Figure 3 shows the number of  resi- 
dents attaining each duration during the study period. 
The figure illustrates how the population was distributed 
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FIGURE 1 
STATE TRANSITION DIAGRAM FOR C C R C  RESIDENTS 
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by duration (that is, the exposure by duration). The 
distribution is heavily skewed to the right. Roughly half 
of  the total time that residents spent in the community 
during the study period was spent during the first five 
years since entry. However, some residents had been 
in the community for as long as 25 years. 

3. Statistical Methods for 
Analyzing CCRC Data 

As stated in Section 1, CCRCs present a challenge 
for actuaries because of  the complexity of  the possible 
outcomes for a given resident. A CCRC resident may 
transfer many times before leaving the community by 
death or withdrawal. Thus, it is easiest to think of  the 
outcome as a realization of  a stochastic process. I 

then attempt to find a model that reasonably describes 
the behavior of  this process. 

Suppose we have n residents in the study. For j =  1, 
2 ..... n, let Xj(t) represent the state occupied by resident 
j at time t. Then {Xj(t), t > 0} is a continuous-time 
stochastic process (see Ross 1983, p. 26) with state 
space { 1, 2 ..... 6}. Often t will represent age. However, 
it will sometimes be convenient to let t measure the 
time since some event such as entry to the CCRC or 
entry to a given state. It is assumed that these pro- 
cesses are independent across residents. However, 
when resources are limited, decisions about resident 
transfers may well be influenced by the states occu- 
pied by other residents. If  this is the case, the effect 
of  this independence assumption should be examined. 

We can characterize the above processes in terms of  
transition intensity functions. These functions are also 
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TABLE 1 
TIME SPENT IN EACH STATE BY SEX 

State Females Males Total 

Independent 807.7 288.8 1,096.5 
Assisted Living 141.1 22.1 163.2 
Skilled Care (Temporary) 37.4 6.9 44.3 
Skilled Care (Permanent) 185.3 28.4 213.7 

Total 1,171.4 3 4 6 . 2  1,517.6 

TABLE 2 
NUMBER OF TRANSITIONS BY 

TYPE AND SEX 

Type Females Males Total 

1 --42 29 3 32 
1--+3 308 63 371 
1--->4 2 0 2 
1---)5 11 6 17 
1---~6 21 10 31 

2---~ 1 3 0 3 
2--~3 156 18 174 
2--44 10 2 12 
2---)5 3 1 4 
2--->6 8 1 9 

3--41 244 44 288 
3--~2 155 18 173 
3--44 42 10 52 
3--45 4 0 4 
3--+6 16 7 23 

4---~1 0 0 0 
4~2 3 2 5 
4--~3 4 0 4 
4---~5 2 1 3 
4--,6 56 7 63 

referred to as forces of transition because they are anal- 
ogous to the force of mortality. Let 

%g[t; Zj(t)] 

lim Pr [X(t + u) = ilX(t) = h, Zj(t)] 
u--~0 + 

u (1) 

h , i =  1,2 . . . .  ,6,  h w i ,  j =  1,2 . . . . .  n 

be the transition intensity function for transitions from 
state h to state i by individual j.  The term Zj(t) is a 
vector of  covariates containing relevant information 
about resident j that is available just prior to time t. 
Examples of  possible components of Zi(t) are the time 
since resident j entered state h and an indicator of the 

sex of  resident j.  The former depends on t and is re- 
ferred to as a time-dependent covariate. I assume that 
the limits in (1) exist for all t > 0 and therefore that 
the probability of  a transition at any fixed time t is zero. 
Initially, I consider the special case in which the tran- 
sition intensity functions do not involveany covariates. 
I further assume that these functions are the same for 
all residents; that is, 

oth,j[t; Zj(t)] = %i(t). 
My objective is to estimate the transition intensity 
functions. I attack this problem by first finding esti- 
mators for the corresponding cumulative intensity func- 
tions, 

Ah,(t) = fo' %,(s)ds. 

Let Yhj(t)=l[X~(t-)=h] and Yh(t)=E~=l Yh~(t), where 
I(A) is the indicator random variable of  the event A. 
The term Yh(t) can be thought of  as the number of  
residents "at risk" just prior to time t of  a transition 
from state h. Note that Figures 2 and 3 present graphs 
of y4=~ Yh(t) (and Yh(t) for h = 1, 2, 3, 4 in Figure 2), 
where t measures age and duration since entry, respec- 
tively. Also, let Nho.(t) represent the number of observed 
h--->i transitions made by resident j during [0, t], and 
let Nh,(t)=E~=l N~j(t). Then {Nho.(t), t > 0} and {N~(t), 
t > 0} are counting processes. An elaborate theory has 
been developed for statistical models involving count- 
ing processes. This began with the work of  Aalen 
(1975) and is well described in books by Andersen et 
al. (1993) and Fleming and Harrington (1991). The the- 
ory is based on the fact that the difference between a 
counting process and its integrated intensity process is 
a martingale. Variances of  statistics that are stochastic 
integrals with respect to this martingale can be ob- 
tained, and asymptotic distributions can be found by 
using martingale central limit theory. The reader need 
not have an understanding of  the theory of  counting 
processes and martingales. 

3.1 The Neison-Aalen Est imator  

A well-known nonparametric estimator of  Ah,(t) = 
fo %~(s)ds is 

,4h,(t) = fo' Jh(s) Yh(s)-~ dN~(s) , (2) 

where Jh(S)=I[Yh(s)>O] and the integrand is defined to 
be zero when Yh(s)=0. Intuitively, this estimator makes 
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FIGURE 2 
NUMBER OF RESIDENTS ATTAINING EACH AGE DURING THE STUDY PERIOD 
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FIGURE 3 
NUMBER OF RESIDENTS ATTAINING EACH 

DURATION DURING THE STUDY PERIOD 
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sense if we break up the interval [0, t] into many sub- 
intervals of  length ds. The probability that an individual 
in state h at time s -ds  moves to state i by time s is 
ahi(s)ds. A reasonable estimator of  this probability is 
the number of  observed h---)i transitions during (s-ds, 
s], which is dNh~(s), divided by the number of  individ- 
uals in state h at time s-ds ,  which is Yh(s). Summing 
the actual probabilities over all subintervals in [0, t] 
gives Abe(t), and summing the estimators gives the 
right-hand side of  (2). If  Thil, Thi z . . . .  are the observed 
times of  the h--+i transitions, then-~h,(t) can be ex- 
pressed as a simple sum, 

k:Thik<t 

"4h, is the well-known Nelson-Aalen estimator, and it 
can be verified that the above expression is equivalent 
to Formula (7.90) of  London (1988, p. 170). This 
estimator was introduced by Nelson (1969) in the con- 
text of  estimating the hazard function of  failure time 
distributions using censored data. Nelson explored how 
to use plots of  the estimates to gain information about 
the distribution. Aalen (1978) discussed the estimator 
in a general counting process framework and consid- 
ered exact and asymptotic properties of  the estimator. 

The Nelson-Aalen estimator is not an unbiased es- 
timator of  Ah~ but is biased downward. Let 

A*,(t) = fo' 

The term A*i(t ) is almost the same as Ah,(t) when 
Pr[Yh(s)=O] is small for all s _< t. It turns out that 

£ E[A.,(t)I = = P r [ r . ( s )  > Olas.  

Hence, the bias in using Abe(t) to estimate Abe(t) is 

f0 I E[//,,(t)] - dh,(t) = -- ah,(s) Pr[Yh(s) = O]ds. 

The implications of  this in estimating transition inten- 
sity functions using the CCRC pilot study data will be 
discussed shortly. 

It is important to be able to quantify the variability 
of  an estimator. The variance of  the Nelson-Aalen 
estimator is 

Var[/lh,(t)] = E[{.4h,(t ) -- A*,(t)} 21 

= Jo '  E[Jh(s)Y (s)-q 
An unbiased estimator of  the variance is 

Var[,4h,(t)] =r jo ,  Jh(s)Yh(s)-' d,~hi(s) 

fo' Jh( )Yh( ) dNh( ) (3) = S S - 2  S i • 

As with Equation (2), we can express the right-hand 
side of  (3) as a sum, 

var[d ,(t)] = -2. 
k: Thik<t 

This variance estimator can be used to obtain approx- 
imate pointwise confidence limits for the cumulative 
intensity functions. In doing so, we use the fact that 
the asymptotic distribution of  Ah,(t) is normal. Because 
the distribution may depart significantly from the nor- 
mal distribution when Yh(t) is small, confidence limits 
obtained using the normal distribution assumption are 
not reliable in this case. 

To illustrate the ideas discussed in this subsection, I 
now examine the use of  the Nelson-Aalen estimator in 
analyzing one transition type by using the CCRC pilot 
study data. I consider transitions from state 1 to state 
6, that is, deaths from the independent state. Because 
only 31 such transitions occurred, we can clearly see 
how the Nelson-Aalen estimator works. 

Table 3 shows, for both males and females, the ages 
at which each death from the independent state oc- 
curred, as well as the number of  residents at risk of  
dying while in the independent state at each of  those 
ages. The corresponding Nelson-Aalen estimates of  the 
cumulative intensity functions for females and males 
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TABLE 3 
D E A T H S  F R O M  THE INDEPENDENT 

STATE 

Females Males 

Age At Risk Age At Risk 

74.00958 17 
76.21903 24 
77.67830 30 
77.67830 30 
79.29363 45 
79.29911 44 
82.02053 61 
83.14305 62 
83.36482 62 
84.27926 53 
85.17180 46 
85.60986 46 
86.25873 46 
87.09651 53 
87.72621 53 
89.06776 35 
90.62834 23 
92.06571 19 
92.90075 14 
94.06160 9 

101.54689 1 

75.69884 11 
77.27584 10 
80.18891 17 
80.38877 18 
80.60780 17 
83.38946 24 
85.13621 22 
87.34565 13 
89.84531 12 
90.14648 8 

are shown in Figure 4. The estimated cumulative in- 
tensity functions are step functions with jumps at each 
of the transition (death) ages. The size of  each jump 
equals the number of  transitions that occurred at that 
age divided by the number of  residents at risk of  mak- 
ing the transition at that age. Perhaps the most appeal- 
ing aspect of  using Nelson-Aalen estimates is the 
ability to plot the estimates and observe the general 
shape of  the estimated cumulative intensity function. A 
cumulative intensity function that appears to increase 
linearly suggests a constant intensity function (because 
the cumulative intensity function is the integral of  the 
intensity function). A cumulative intensity function that 
is convex (concave) suggests an increasing (decreas- 
ing) intensity function. Keep in mind that estimates 
based on a small number of  transitions, as in this ex- 
ample, are limited in how much information they can 
convey. Figure 4 seems to indicate that the female in- 
tensity function is increasing with age, and the male 
intensity function may be constant, though there are 
only ten male transitions. 

To interpret the estimated cumulative intensity func- 
tion appropriately, we should also examine confidence 
intervals associated with the estimates. This will help 

FIGURE 4 
ESTIMATED CUMULATIVE INTENSITY 

FUNCTIONS FOR FEMALES AND MALES 
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in distinguishing whether a flat portion of  an estimated 
cumulative intensity function arises due to a small tran- 
sition intensity or a small number of  lives exposed. 

As stated above, pointwise confidence limits can be 
obtained by assuming that estimators have a normal 
distribution. For example, an approximate 95% confi- 
dence interval for A*~(t) is given by 

,'lh,(t) + 1.96 ~/Var[,4h,(t)]. 

Figure 5 shows the estimated cumulative intensity 
functions along with these 95% confidence limits. 
Since, for males, the number at risk at each age is 
rather small, the confidence limits should not be 
trusted. 

I mentioned earlier that A~hi(t) is an unbiased esti- 
mator of  E[A*i(t)] and a biased estimator of  Ahi(t). The 
terms A*, and A,~ are quite different in the above ex- 
ample because there are no residents at the younger 
ages. In fact, Yh(s)=O for all s < 55. Fortunately, we 
are less interested in estimating the function Ah~ than 
we are in estimating othi(t ) for values of t in the age 
range of  the CCRC residents. Now Othi(t ) is the slope 
of  Ah, at age t. For an age interval with Yh(t) > 0, the 
slopes of Ah, and A*~ are the same. Thus, we can esti- 
mate ahi(t) by estimating the rate of  increase of A*, at 
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FIGURE 5 
ESTIMATED CUMULATIVE INTENSITY 
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time t. This can be done by averaging the jumps in 
-'lh, at ages near t, which is considered next. 

3.2 Kernel Function Estimators 
Smooth estimates of %~ can be obtained by using a 

kernel function estimator. This approach is discussed 
by Ramlau-Hansen (1983a, 1983b), Andersen et al. 
(1993), and Gavin et al. (1993). The estimator is de- 
fined as 

t - - s  1 f?~ K (" -"~)  dAhi(s), (4) 

where f=_= K(x)dx=l and K(x)=0 for Ix I > 1. The 
function K is called the kernel function, and b is called 
the bandwidth, or window size. Viewing the real line 
as many small intervals of length ds, we see that 
&h~(t) is a weighted average of the jumps in the Nelson- 
Aalen estimator that occur in the interval [t-b, t+b]. 
The smoothness of  the estimates increases as the value 
of b increases. Again letting Th,, Th,2, ..- be the ob- 
served h--->i transition times, (4) can be written as a 
sum, 

1 ~, K ( t -  Th,k] 
fh,(t) 

"r'  ,, b J 

The kernel function estimator is a consistent, though 
not unbiased, estimator of Oth,(t ). 

A variance estimator of the kernel function estimator 
is given by 

t - - S  
1 L K2 (-'--if-)Jh(s)Yh(s)-ZdNhi(s), Var[dh,(t)] = ~S 

which can also be written as 

1 x;' ( t -  Th,. ~ 
Var~h,(t)] = ~ ~ K = \ ~ ]  Yh(TJ -2. 

A popular choice of kernel function is the Epa- 
nechnikov kernel function (see Epanechnikov 1969), 

K(x) = 0.75(1 - x2), Ixl-  1. 

This kernel function minimizes the mean square error 
asymptotically. I use the Epanechnikov kernel function 
to obtain smooth transition intensity functions. Other 
kernel functions are discussed by Ramlau-Hansen 
(1983b). Bandwidth selection is reviewed by Jones et 
al. (1996). 

Note that it is appropriate to use (4) only if Yh(S) > 
0 for all s e [t-b, t+b]. Otherwise, a substantial down- 
ward bias could result since the absence of  exposure in 
a given time range will produce a low-transition-inten- 
sity estimate. The actual transition intensity might be 
quite large, but no residents were at risk of making the 
transition. I stated earlier that Nelson-Aalen estimates 
are informative only if calculated for a time interval 
[q, 6], where Yh(t) > 0 for all t ~ [q, 6]. If Yh(t)=0 for 
t outside this interval, then we should restrict use of 
(4) to obtaining estimates of  %,(0 for t ~ [tl +b, 6 - h i .  

Smoothed transition intensities for deaths from the 
independent state were calculated by using the CCRC 
pilot study data; they are shown in Figure 6 along with 
approximate 95% confidence limits. A window size of 
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6 was used for both females and males. In this exam- 
ple, we have too few observations to make conclusions 
about the transition intensity functions. 

3.3 Regression Models 
The transition intensity functions defined in (1) are 

resident-specific and depend on Zj(t), a vector of co- 
variates that provide relevant information about resi- 
dentj  that is available just prior to time t. One approach 
to reflecting the effect of covariates is by using a mul- 
tiplicative hazards model. This was introduced by Cox 
(1972) in the context of analyzing censored survival 
data and is often referred to as the Cox regression 
model. Andersen and Gill (1982) extended the ideas to 
general counting processes. Let 

ot,.j[t; Zj(t)] = 0%0(0 exp[ffh,Zj(t)], (5) 

where ~h, is a parameter vector, and %,o is the 
"baseline" intensity function. Under this model, the 
transition intensity functions for different values of  a 
fixed covariate are proportional. For example, if 
Z)(t), the first component of the covariate vector for 
resident j ,  is 0 if the individual is a female and 1 if a 
male, then the model assumes that the male transition 
intensity function is exp([3~,) times the female transi- 
tion intensity function, where 13~ is the first compo- 
nent of [3h,. 

To fit a model of this type, we must estimate the 
components of ~h, and the baseline intensity function. 
It can be argued (see Cox 1972) that little information 
about [~h, is provided by the transition times since the 
baseline transition intensity function could be very 
small, except near the transition times where it could 
be very large. Hence, most of the information about [3h, 
is provided by the knowledge of which individuals 
made transitions given the transition times and the in- 
dividuals at risk of transitions just prior to these times. 
This is the motivation for the partial likelihood, 

L(~hi) = ~ ~ exp[ITh, Z~(Th~.)] 
j = l  ~ 7 = ,  exp[lTh, Z~Thijk)]Yh~Th,jk)' 

where Th,jl, Thai2 . . . .  are the h ~ i  transition times for 
individual j.  The components of ~h~ can be estimated 
by maximizing L(I]he). Inferences can then be made 
about I]h, as in the usual maximum likelihood setting 
(see Hogg and Craig 1995). An advantage of  using the 
partial likelihood is that the effect of covariates on the 
transition intensity can be estimated without specifying 
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a functional form for the baseline intensity function. 
This differs from the approach discussed by London 
(1988, p. 208) in which the baseline intensity is as- 
sumed to be a simple (constant) function, and param- 
eters are estimated by maximizing the full likelihood. 

Once the estimates [~i have been determined, the 
estimated baseline cumulative intensity function is 

.4hio(t, [~h,) = Z exp[l~h, Zj(T,,,)]Yhj(Th,,) . 
k: T h i k g t  

(6) 

This generalizes the Nelson-Aalen estimator and is 
often referred to as the Breslow estimator. 

The traditional actuarial approach to handling data 
with covariates is to group the data into homogeneous 
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cells. All data in a given cell would have the same (or 
approximately the same) values of the important co- 
variates. Separate estimates are then obtained for each 
cell by using only data from that cell. Some smoothing 
across cells can then be done. 

The Cox regression approach offers some advan- 
tages. Statistical tests can be performed to determine 
which covariates are important. Accuracy is improved 
since transition intensity functions are estimated by us- 
ing all the data, not just the data from a given cell. The 
only cost is that we must be willing to assume that the 
transition intensity functions have the multiplicative 
form given in (5). This assumption should, of course, 
be tested. Methods of performing such a test are dis- 
cussed by Andersen et al. (1993). 

The statistical package S-PLUS can be used to fit a 
Cox regression model. 

4. Estimation of Transition 
Intensity Functions Using the 
Pilot Study Data 

This section illustrates the techniques of Section 3 
by using the pilot study data described in Section 2. 
The goals are to demonstrate the methods of estimation 
and to identify variables that may be significant in 
modeling transition intensity functions. The results of 
this analysis are used to determine probabilities in Sec- 
tion 5. 

Note that the pilot study data are not sufficient to 
estimate all the intensity functions with reasonable ac- 
curacy. In practice, we should consult other sources of 
information when faced with this situation. Since my 
objective is to demonstrate the methods described ear- 
lier and to find estimates to be used later in the paper, 
I am content with estimates based solely on the pilot 
study data. In addition, in using the Cox regression 
model, I do not perform a thorough regression analysis. 
My goal is simply to gain an understanding of what 
covariate information may influence the transition in- 
tensity functions. I use the regression coefficients that 
result to illustrate the nature of the intensity estimates 
that might be obtained. Tests of the multiplicative in- 
tensity assumption and analyses of  residuals, which are 
beyond the scope of this paper, should be undertaken 
if this approach is used in practice (see Andersen et al. 
1993, sec. VII.3). 

To begin, note that the intensity functions corre- 
sponding to certain transitions shown in Figure 1 

should be zero. In particular, the 2---)1, 4---)1, 4---)2, and 
4--->3 intensity functions should be zero in light of the 
permanent nature of states 2 and 4. In addition, the 
1---~4 transition intensity function will be set to zero. 
Only two such transitions occurred. Given the total 
time spent in state 1 by all residents, this suggests a 
very small intensity for this CCRC. 

4.1 Mortality 
Only 126 deaths occurred during the study period. 

However, we have considerable prior knowledge of 
mortality patterns. We expect the intensity (force of 
mortality) to be greater for males than females, and we 
expect the intensity to increase with age and the level 
of care provided. Rather than model the four different 
mortality transitions separately as described in Section 
3.3 and suggested by (5), we can model them together 
by assuming that the intensity functions are propor- 
tional. This leads to the model 

Ot.6j[t; Zj(t)] = o~.60(t ) exp[l~.v6 Zj(t)], 

where a.6o, the baseline intensity function for deaths 
from any state, is a function of age. We can assume 
that the last three components of the covariate vector, 
Zj(t), are variables that indicate (1 if yes, 0 if no) 
whether resident j was in state 2, 3, and 4 just prior to 
time t. If the resident was in state 1, then all three 
variables are zero. Thus, ifZ~(t), the k-th component of 
Zj(t), is the indicator for state 2, then the intensity for 
deaths from state 2 is exp(13.*6) times the intensity for 
deaths from state 1, where 13.* 6 is the k-th component of 

~.6' 
Table 4 shows the results of a Cox regression run 

performed using S-PLUS. Four covariates were in- 
cluded in the model. The first was an indicator of 
whether the resident was a male. The remaining three 
covariates were the indicators corresponding to states 
2 (assisted living), 3 (skilled care temporary), and 4 
(skilled care permanent), as described above. For each 
covariate, the table provides the estimate of the coef- 
ficient, [3.~, the corresponding proportionality factor, 
exp(13.*6), the standard error of the coefficient, the p 
value for a two-tailed test of the hypothesis that the 
coefficient equals zero, and upper and lower 95% con- 
fidence limits for the proportionality factor. At the bot- 
tom of the table are the likelihood ratio and efficient 
score statistics, which can be used for an overall test 
of whether the variables in the model are related to the 
transition intensity. 
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TABLE 4 
C o x  REGRESSION RESULTS FOR MORTALITY 

Covariate Coefficient Exp(Coef) Standard Error p Value Lower 95% Upper 95% 

Male 0.239 1.27 0.240 0.320 0.793 2.03 
Assisted 0.448 1.57 0.394 0.256 0.723 3.39 
Skilled (Temporary) 2.773 16.01 0.292 0 9.042 28.35 
Skilled (Permanent) 2.082 8.02 0.245 0 4.964 12.95 

Likelihood ratio statistic = 123 on 4 dr, p=0 
Efficient score statistic = 166 on 4 df, p=0 

The table indicates that only the two skilled-care var- 
iables are significant. The p values for the male indi- 
cator and the assisted living indicator are 0.320 and 
0.256, respectively, suggesting no evidence against the 
hypothesis that the corresponding two coefficients are 
zero. However, recognizing that this may be due to 
insufficient data, I retained all four variables. I there- 
fore estimate the intensity functions in terms of  the 
estimated baseline intensity function,&.6o(t), a s  follows: 

&,6j[t; Z/(t)] = 6t.60(t), 

&26y[t; Zj(t)] = 1.57&.6o(t), 

&36y[t; Zj(t)] = 16.01&.60(/), 

&461[t; Zj(t)] = 8.028.60(0, 

if  resident j is a female. Each function should be mul- 
tiplied by 1.27 if resident j is a male. 

Figure 7 shows the Breslow estimates of  the baseline 
cumulative intensity function as well as kernel function 
estimates of  the baseline intensity function obtained by 
using a bandwidth of  6. The estimated cumulative in- 
tensity function has a convex shape through the 80s 
and early 90s, suggesting an increasing intensity func- 
tion. The smooth intensity function estimates exhibit 
this increasing behavior. To obtain a simple mathe- 
matical expression for the intensity function and to im- 
prove the smoothness, I assumed that the intensity 
function is of  the form et.6o(t ) = a + be" (Makeham's law). 
The corresponding cumulative intensity function is 

at + b ( c ' -  1) 
A.6o( t ) : 

log c 

and I let 

d + at + b ( c ' -  1) 
.4*60(0 = 

log c 
It is necessary^ to distinguish between A.60 and A*.60 
because A.60 is greatly influenced by the fact that there 
are no residents at the younger ages. The latter function 
was fitted to the Breslow estimates by least squares. 
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The resulting parameter values are a=0.01200684, 
b=7.075078x 10 -7, c=  1.122718, and d=  -0.8505983, 
and the function is represented by the dashed line that 
appears along with the baseline cumulative intensity 
estimates in Figure 7. The corresponding intensity 
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function is also plotted along with the smoothed inten- 
sity estimates. 

4.2 Other Transitions 
A similar approach was used to obtain transition in- 

tensity function estimates for the remaining transitions. 
Variables found to be significant in modeling these 
functions were age, sex, duration since entry to the cur- 
rent state, duration since entry to the CCRC, and the 
previous state. 

For transitions from states 1 and 2, the baseline in- 
tensity functions were defined as functions of  age. For 
transitions from states 3 and 4, the baseline intensity 
functions were defined as functions of  time since entry 
to the current state. This was particularly necessary for 
transitions from state 3 because, for a number of age 
intervals, there were no lives exposed (see Figure 2). 
Since stays in states 3 and 4 were rather short, nearly 
all observed stays began during the study period. For 
transitions from states 3 and 4, the significance of  age 
was examined by using a covariate. Similarly, for tran- 
sitions from states 1 and 2, the impact of  duration since 
entry to the current state was analyzed using a 
covariate. 

See Jones (1996) for details on the estimated tran- 
sition intensity functions. 

5. Determining Probabilities and 
Other Quantities 

As stated in Section 1.2, to calculate actuarial pres- 
ent values, we should be able to estimate the probabil- 
ity that a resident is in any given state at any future 
time, as well as the probability that a resident will 
move between any two states during any time interval. 
Depending on the complexity of  the transition intensity 
functions, these probabilities may be difficult to cal- 
culate directly. In this section, I present an approach to 
determining probabilities and other quantities using 
simulation. The method can be used for very general 
forms of the transition intensity functions. The ap- 
proach is described in Section 5.1, and numerical re- 
sults obtained using the intensity functions estimated 
from the pilot study data are discussed in Section 5.2. 

5.1 Simulation Approach 
Consider the general setup in which the transition 

intensity functions are given by (~hi[I'~ Zj(t)]. I assume 

that the components of  Z~(s) are either constant over 
time or depend only on the history of  {Xj(t)} up to time 
s - .  Thus, i f  we know ~( t )  for 0 < t < s, then we also 
know OLh~[t; Zj(t)] for values of  t up to time s. Further- 
more, if we know Xj(t) up to time s, and we assume 
that no transitions occur during the next w years, then 
we know %,[t; Zj(t)] up to time s+w. 

For example, suppose that cq~[t; Zj(t)]=oq~(t, u), 
where t is the age of the individual and u is the time 
since the individual entered state h. Now if, at age s, 
the individual has been in state h for v years, then as- 
suming no transitions occur during the next w years, 
the h--->i transition intensity at age s+w is eth~(S+W, 
v+w). 

Assume that resident j is in state h at time s and we 
wish to determine the probability that this individual 
will be in state k at time r > s. We can do this by 
simulating the time and state entered at each transition 
time up to time r. Then if  we repeat this a large number 
of  times, the proportion of  times that the individual is 
in state k at time r approximates the desired probability. 

I use a method known as thinning (see Ross 1990, 
p. 73). As stated above, if  no transitions occur by time 
s+w, then the values of  abe[t; Zj(t)] are known for s < 
t < s+w and i = 1, 2 . . . . .  6, i4:h. Let 

°t=max{i.~*h°thi[t;Zj(t)]}'s~-~r 

assuming that no transitions occur before time r. Now 

~,:,,h o%,[t; Zj(t)] 

is the intensity of  transition out of  state h at time t, and 
ot is no less than this intensity for te Is, r]. To determine 
the first transition time after time s, successively gen- 
erate the event times, Tt, /2, ..., of  a Poisson process 
with intensity or, and accept Tj with a probability equal 
to 

s + 7",; Zj(s + r,) 

i:i*th 

The event times of  a Poisson process with intensity ot 
are easily generated since the times between successive 
events are exponentially distributed with mean 1/or. An 
event time can be accepted with a given probability by 
generating a random number that is uniform on (0, 1) 
and accepting the event time if the number is no greater 
than this probability. Let ,~, the first accepted time, be 
the time until the next transition. The state entered at time 
s + ~  can then be generated based on its conditional 
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distribution. For i* g h, the probability that i* is the 
state entered at time s+ ~7~*equals 

s + Z+(s + 
+ Z,(s + 

i:i~h 

Once the time of and state entered upon the next 
transition are found, we determine the intensity func- 
tions that will apply after this transition, recalculate et, 
and repeat the procedure. We continue until we have a 
transition that occurs after time r, or until death or 
withdrawal. We then know the value of Xj(t) for s < t 
~ r .  

By repeating the procedure a large number of times, 
not only can we estimate various probabilities, but we 
can also estimate other interesting quantities. For ex- 
ample, for each simulation outcome we could compute 
the present value of the fee income that would result. 
Then the average of these present values provides an 
estimate of the actuarial (expected) present value of the 
fee income. 

5.2 Numerical Illustration 
By using the method described in Section 5.1 and 

the intensity function estimates obtained from the pilot 
study data, 10,000 simulations were performed for a 
75-year-old female and for a 75-year-old male, both 
having just entered the CCRC. Table 5 summarizes the 
results of these simulations. The columns of the table 
provide the probability that the resident is in each of 
the six states at the end of each of the next 20 years. 
Since 10,000 simulations were performed, for each 
probability estimate, the standard deviation is at most 
~/(0.5)V10000=0.005. Hence, the estimates should be 
within 0.01 of the true value (that is, true according to 
our estimated intensity functions) with probability at 
least 0.95. 

One interesting observation from Table 5 is that the 
probability that the resident is in state 6 (dead) is higher 
for females than for males. This anomaly suggests that 
revisions to the transition intensity function estimates 
are required. I remind the reader that these estimates 
were obtained by using a small amount of data and are 
shown for illustration only. 

6.  C o n c l u s i o n s  

This paper has described and demonstrated an ap- 
proach., to analyzing CCRC data. I conclude with some 

observations that are relevant to those wishing to con- 
duct such an analysis. 

Given the number of transitions that can be made by 
a given resident and the frequency with which these 
transitions occur, it is natural to use a continuous-time 
multistate stochastic model to capture fully the random- 
ness in resident transitions. It is convenient to charac- 
terize such a model in terms of the transition intensity 
functions. The methods described in Section 3 can then 
be used to obtain estimates for these functions. 

The analysis summarized in Section 4 suggests that 
a model that incorporates the important sources of var- 
iation in resident outcomes will be rather complicated. 
Fitting such a model requires good data and careful use 
of statistical methods. I have introduced some useful 
methods in this paper. 

l pointed out in Section 4 that the pilot study data 
are not sufficient to estimate accurately all the transi- 
tion intensity functions. We should therefore consider 
how much data are required. The accuracy with which 
we can estimate a transition intensity function depends 
greatly on the number of observed transitions. Unfor- 
tunately, for some of the transition types, such as those 
from assisted living to skilled care (permanent), there 
were very few observed transitions, and I have little 
confidence in the estimates. Based on my analysis with 
this dataset, I believe that, with five to ten times as 
much data, all the transition intensity functions could 
reasonably be estimated. 

Another important issue in deciding how much data 
are required is the completeness of the data. Unfortu- 
nately, for residents in the pilot study dataset, infor- 
mation was available only for transitions that occurred 
during a three-year study period. It would be ideal to 
have complete health status histories for all residents 
involved in the study. In estimating certain transition 
intensity functions, more data on a given group of res- 
idents may be better than data on more residents. 
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T A B L E  5 

S I M U L A T I O N  R E S U L T S  F O R  7 5 - Y E A R - O L D  N E W  R E S I D E N T S  

Probability of Being in 

Age State 1 State 2 State 3 State 4 State 5 State 6 

Females 

75 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
76 0.7492 0.0407 0.0759 0.0704 0.0284 0.0354 
77 0.5474 0.0802 0.0728 0.1606 0.0566 0.0824 
78 0.3906 0.1050 0.0561 0.2305 0.0804 0.1374 
79 0.2734 0.1095 0.0442 0.2732 0.1002 0.1995 

80 0.1912 0.1087 0.0311 0.2913 0.1167 0.2610 
81 0.1339 0.0954 0.0219 0.2942 0.1315 0.3231 
82 0.0885 0.0833 0.0178 0.2839 0.1434 0.3831 
83 0.0554 0.0691 0.0151 0.2632 0.1528 0.4444 
84 0.0363 0.0577 0.0088 0.2393 0.1609 0.4970 

85 0.0236 0.0443 0.0049 0.2120 0.1668 0.5484 
86 0.0154 0.0349 0.0035 0.1821 0.1718 0.5923 
87 0.0097 0.0261 0.0037 0.1515 0.1754 0.6336 
88 0.0051 0.0203 0.0020 0.1246 0.1771 0.6709 
89 0.0024 0.0154 0.0015 0.1018 0.1790 0.6999 

90 0.0012 0.0107 0.0011 0.0803 0.1802 0.7265 
91 0.0006 0.0069 0.0007 0.0616 0.1811 0.7491 
92 0.0003 0.0052 0.0005 0.0441 0.1817 0.7682 
93 0.0002 0.0032 0.0008 0.0328 0.1819 0.7811 
94 0.0001 0.0020 0.0000 0.0232 0.1819 0.7928 
95 0.0000 0.0013 0.0001 0.0160 0.1819 0.8007 

Males 

75 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
76 0.8198 0.0256 0.0461 0.0417 0.0337 0.0331 
77 0.6650 0.0567 0.0424 0.0949 0.0641 0.0769 
78 0.5311 0.0764 0.0416 0.1327 0.0887 0.1295 
79 0.4195 0.0931 0.0345 0.1551 0.1135 0.1843 

80 0.3283 0.1039 0.0281 0.1639 0.1313 0.2445 
81 0.2500 0.1092 0.0223 0.1746 0.1476 0.2963 
82 0.1908 0.1079 0.0175 0.1691 0.1601 0.3546 
83 0.1443 0.1054 0.0137 0.1585 0.1729 0.4052 
84 0.1022 0.1021 0.0112 0.1465 0.1809 0.4571 

85 0.0762 0.0936 0.0074 0.1328 0.1876 0.5024 
86 0.0572 0.0822 0.0054 0.1162 0.1948 0.5442 
87 0.0403 0.0742 0.0061 0.0985 0.1985 0.5824 
88 0.0289 0.0650 0.0036 0.0841 0.2022 0.6162 
89 0.0189 0.0549 0.0032 0.0691 0.2042 0.6497 

90 0.0121 0.0454 0.0024 0.0582 0.2057 0.6762 
91 0.0084 0.0391 0.0013 0.0438 0.2074 0.7000 
92 0.0058 0.0308 0.0013 0.0319 0.2080 0.7222 
93 0.0029 0.0264 0.0013 0.0236 0.2082 0.7376 
94 0.0019 0.0202 0.0009 0.0176 0.2089 0.7505 
95 0.0013 0.0165 0.0002 0.0119 0.2090 0.7611 
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