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This paper concerns optimal new business written premium mix at the firm and 

state levels under varying competitive conditions. We address three common 

problems as well as a new result in linear algebra, shown in an appendix. The first 

is to determine a company’s optimal new business written premium mix for a 

given geographical area such as a state. The approach we present incorporates the 

idea of mean-variance optimization, an important attribute of competitive firms. 

We develop an optimizing function that maximizes return on equity. The second 

problem concerns predicting statewide product mixes under varying rate 

regulation scenarios involving profit caps. Knowing the effects of proposed rate 

regulations will help regulators encourage adequate capacity in particular lines of 

business in their respective states. The results also help a company know when to 

exit a line of business in a given state. The third problem, also a regulator’s 

problem, involves measuring and testing a market’s competitiveness for a given 

line of business. Generally speaking, competitive markets require less rate 

regulation. Our fourth theorem provides necessary and sufficient conditions for 

market competitiveness. We use hypothetical data to demonstrate the usefulness 

of our results, but, in practice, one can easily generate them with widely available 

company level and, where appropriate, industry-level data. The presented 

solutions link to company reserves and can be updated along with reserve 

parameters as new data come into play. The methods we present fit well with 

current annual (or more frequently occurring) reserve reviews and rate filings—an 

advantage for both companies and regulators. The scope of the paper is 

international, and we use the United States as a base example to make our points. 

The model applies to any line of business where there is risk transfer and hence 

triangulation of data is possible. This includes property liability, individual and 

group life, individual and group health, disability and accidental insurance.  
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Section 1: Introduction 

The managers of any insurance company operating in any country know about at 

least some of the complexities presented by state insurance regulation. These 

include differences in rating laws and regulations and, thus, competitive 

environments among the different states and across lines of insurance. For 

example, auto insurance rate regulations in Michigan differ from those in Illinois, 

and homeowners’ rate regulations differ from commercial property owners’ rate 

regulations in Texas.  

Rate regulations affect a company’s ability to cover losses, pay expenses and 

sufficiently compensate capital providers for the risk that they assume. Thus, 

trating regulations should and will influence an insurance company’s managerial 

decisions regarding whether to write a line of business in a given geographic 

region and, if so, how much to write and at what rate.  

When regulators set rate caps too low, companies may reduce their writings in a 

state or choose to withdraw altogether from a line of business in a state’s market. 

Either way, market disruptions occur, and in some cases, rates may actually go up 

in the long term—the opposite of what was hoped for with rate suppression (see, 

for example, Regan, Tennyson and Weiss 2008). Farmers Insurance Group, one of 

Texas’s largest homeowners insurance companies, stopped writing new 

homeowners insurance in August of 2002 following arguments with state 

regulators over policy pricing, resuming writing several months later on a limited 

basis (Associated Press 2003). The short-run effect was fewer markets for 

homeowners when seeking coverage. More recently, State Farm announced in 

2009 that they planned to leave Florida’s homeowners insurance market (Simpson 

2009), subsequently striking a deal with the state to remain, but shedding 125,000 

policies (Patel 2011). Many of State Farm’s policyholders shifted to Citizens 

Property Insurance, Florida’s state homeowners insurer of last resort (Patel 2011). 

Some point to rate suppression as a primary reason that Citizens eventually grew 

to insure approximately 1.5 million policies in 2005 before a plan for depopulating 

it to a more reasonable size was adopted (Patel 2011; Vinson 2015). Citizens 

Property Insurance Corporation presents its own problems because it is largely 

underfunded (Vinson 2015). The case of Citizens shows what can happen to 

market structure when the combination of public market capital and rate 

suppression crowds out private market risk-bearing capital. 
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In their defense, determining what rates should be charged for a given line of 

insurance in a particular jurisdiction is not an easy task for regulators. Although 

they possess the guiding principles that rates should be “adequate, not excessive 

and not unfairly discriminatory,” the challenge of implementing them with the 

information provided by insurance companies in rate filings can be significant.  

Considering what rates seem reasonable for a given line of insurance in a state 

market presents a vexing challenge, not just for regulators, but for actuaries and 

insurance company managers too. In this paper, we present some tools for doing 

just that. 

In the section that follows, we introduce the foundation for the rest of the paper, 

including an equation for profits, key definitions and case study. The third section 

focuses on our basic result on optimization when perfectly competitive markets 

exist and expected profits vary freely. There we specify a company’s optimizing 

function and show necessary but not sufficient conditions for market efficiency at 

the company level. The fourth section concerns regulated markets, and it is here 

that our major contributions to the literature begin. Employing a constrained 

optimization problem, we enlist a result by Gotoh (2001) to find optimal product 

mix weights using eigenvectors, using Theorem 2 to describe the circumstances. 

The results help in understanding when a company should exit a line of business in 

a particular state. Next, we turn our attention to the case of optimal premium mix 

in statewide markets. The third and fourth theorems culminate in the major 

contributions of this paper. Our third theorem, which shows how the statewide 

premium mix can be found from company-level information even if firms are not 

mean-variance optimizers, should prove especially useful to state insurance 

regulators charged with reviewing company profit filings. The development is 

made feasible by proving a new result in linear algebra that is shown in Appendix 

C. Our fourth and last theorem gives regulators a mathematical way to measure 

competitiveness of insurance markets in their respective states even when at least 

one firm is not a mean-variance optimizer. This has not been done before in the 

literature and is a major contribution of this paper. In summary, the mathematical 

derivations presented in the paper are not an exact or minor variation of mean-

variance portfolio theory; rather, we present new mathematical results and an 

insurance setting that is applicable to regulators. The novel mathematical results 

and concepts will be made obvious in the paper in bold italicized font. 
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Although we use hypothetical data to demonstrate the usefulness of our results, 

in practice, one can easily generate them with widely available company-level and, 

where appropriate, industry-level data aggregated for a particular jurisdiction. 

Hence, the model proves very practical in implementation. Also, the presented 

solutions link to company reserves and can be updated along with reserve 

parameters as new data come into play, adding another source of usefulness to 

the model. The methods we present fit well with current annual (or more 

frequently occurring) reserve reviews and rate filings, an advantage for both 

companies and regulators. 

Before proceeding, understand that our intent is not to investigate the 

competitive structure of the U.S. insurance industry. Other researchers, including 

Cummins and Xie (2013), Choi and Weiss (2005), Cummins, Weiss and Zi (1999), 

Tombs and Hoyt (1994), Mayers and Smith (1988), and King (1975), to name a 

few, have one already done so using data aggregated by firm across the 

jurisdictions in which they operate. Critically, their methods do not let them 

determine which line(s) of business a company should expand (or contract) in a 

given state or territory. Our methods allow for companies to do just that under 

different rating environments. 

Our paper is not about determining underwriting profit provisions by line, and 

these are assumed to be known for companies. These underwriting profit 

provisions are determined as a result of a process that is part science, part art and 

regulation. See Myers and Read (2001) for one such approach based on capital 

allocation. 

Taylor (1987) found that constant unit expense rates lead to optimal premium 

rates of substantial negative profitability, and the adjustment to reflect marginal 

expenses properly can cause very significant changes to these low premium rates. 

Rothschild and Stiglitz (1992) discussed the equilibrium in competitive insurance 

markets with imperfect information. They focused on sales offers, which consist of 

both a price and a quantity, a particular amount of insurance that the individual 

can buy at that price. What’s more, fully revealed information for an individual can 

make everyone better off. Paul and Haberman (2005) built the optimal control 

model for general insurance pricing. For two demand functions, an optimal 

premium strategy is well defined and smooth for certain parameter choices, 

especially for a linear demand function that these strategies yield the optimal 

dynamic premium if the market average premium is lognormal distributed. Taylor 
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(2006) paid attention to what individual insurers were attempting to achieve in 

following the market and found that optimal strategies do not follow what might 

be thought the obvious rules. The optimal strategies depend on various factors, 

including the predict time, price elasticity of demand and rate of return. They also 

found when the current coverage market rate lies below the break-even rate, 

return to substantial profitability in the very near future may be possible. Paul 

(2007) analyzed the pricing problems with two forms of constraint: a bounded 

premium and a solvency requirement. A lower bound is placed on the premium 

then an analytic solution can be found, but for solvency constraints, we can get 

numerical results only using control parameters. Taylor (2008) built the dynamics 

model for insurance market, whichs includes 11 essential parameters with physical 

interpretation, some of which can be used as regulatory controls. But these 

regulatory controls need to be applied with great caution lest they induce 

preserve effects. Pantelous, Athanasios and Eudokia (2013) considered the volume 

of business, average market premium, the company’s premium, which is a control 

function, and a linear stochastic disturbance when studying a company expected 

to drop part of the market. In this model, the optimal premium strategy can be 

defined analytically and endogenously by maximizing the total expected linear 

discounted utility of the wealth over a finite time horizon. Pantelous, Athanasios 

and Passalidou (2015) built a discrete-time stochastic dynamic programming 

model to connect a company’s optimal strategy with market competition, which is 

available for both negative and positive effects on the volume of business 

depending on the company’s reputation for non-life insurance pricing. When the 

company has a very great reputation, the company is very flexible to choose any 

premium it wishes. Pantelous, Athanasios and Eudokia (2017) introduced the 

quadratic utility function into a discrete-time stochastic nonlinear premium-

reserve model to optimize the reserve in a competitive insurance market. Besides 

the company’s reserve, for the very first time, the derived optimal premium in a 

competitive market environment is also dependent on the break-even premium, 

the expectation of the market’s average premium as it did in the linear models, 

the income insurance elasticity of demand and other factors. 

Our paper concerns the optimal new business written premium mix at the firm 

and state levels under varying competitive conditions. Our whole discussion is 

around the mean-variance optimizers, and four theorems are derived. We 

propose an extension of mean-variance optimization to the case of an insurer or 

insurers seeking to optimize the mix of premiums across various lines of business.  
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First, we specify a company’s optimizing function and show necessary but not 

sufficient conditions for market efficiency at the company level. Next, employing a 

constrained optimization problem, we enlist a result by Gotoh (2001) to find 

optimal product mix weights using eigenvectors, using Theorem 2 to describe the 

circumstances. Then we show how the statewide premium mix can be found from 

company-level information even if firms are not mean-variance optimizers. Finally, 

we give regulators a practical way of determining whether insurance markets 

remain competitive in their respective states even when at least one firm is not a 

mean-variance optimizer.  

Compared with other research about investigating the competitive structure of 

the U.S. insurance industry, our methods allow for companies to do just that 

under different rating environments. 

In addition, we offer a new way of estimating the profit covariance in Appendix B, 

and our model proves very practical in implementation. We also posit two ways in 

which regulators might impose constraints on insurers in the appendix, which 

offer an interesting and potentially useful extension to the problems cited. 
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Section 2: Foundations 

To develop the paper systematically, we will first introduce foundational material. 

For readers familiar with insurance, this material may look elementary, but some 

statistical enhancements are highlighted.  

A random written premium, P, for a prospective (brand new) policy year can be 

broken into its essential components of losses, expenses, profit and investment 

income offset as follows: 

( _ _ )P Loss Expenses Profit Investment Income Offset     

Similar to the approach taken by Robbin (2004), we add here an investment 

income offset term to account for the fact that investment income earned on 

premiums reduces the amount required to transfer risk.  

The quantity (Profit — Investment Income Offset) equates to the Underwriting 

Profit Provision (UPP). Companies may show UPP charges in their rate filings. 

Hence, we use the equation above. Rearranging the UPP equation to solve for 

profit yields: Profit = UPP + Investment Income Offset. 

Random losses are the undiscounted, ultimate values for a new policy year and 

include allocated loss adjustment expenses. Expenses, also random, include 

company overhead, marketing costs and similar items. Some of these expenses, 

such as sales commissions, depend on the random written premium, P. We treat 

the profit as random, and this is a technical enhancement because the literature 

generally treats profit as a constant. Normalizing the above, 

 _ _
1

Investment Income OffsetLoss Expenses Profit

P P P P
     
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For a new policy year, , referred to as the permissible loss ratio (PLR)1, is 

random. The expense ratio and the investment income offset ratio are assumed 

fixed2 and known as they do not change significantly from year to year. Finally, the 

ratio 
Profit

P
 is random. In symbols for a line of business k = 1, 2, …, n, 

1 k k k kU e R f             (1) 

k

Loss
U

P
 = Random permissible loss ratio 

ke = Fixed expense ratio as a percent of written premium 

k

Profit
R

P
 = Random underwriting profit provision as a percent of written 

premium 

 _ _
k

Investment Income Offset
f

P
 = Fixed investment income offset as a percent of 

written premium.  

Taking expectations, we get the following “totality constraint” with k kEU u , 

:k kER    

1 k k k ku e f             (2) 

For a given line, our dataset includes historical risk faced by the company. In 

Appendix B we briefly describe the estimation of the profit covariance matrix. 

Equations (3)—(7) are found in this appendix. 

 

                                                
 

2 This is the same as target loss ratio. Readers more familiar with the term target loss ratio can replace this when reading the paper.  
3 In actuality, however, these ratios may not be fixed. Various factors may cause these ratios to vary over time. For example, expense 
ratios may vary because of changes in the commission schedules for insurance agents. Also, the investment income offset ratio may 
vary because of changes in interest rates or the returns insurers earn on their investments. Fortunately rate filings are usually done 
annually, and we assume that these changes are small during the one-year period. 

Loss

P
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Section 3: Case Study 

We understand that the information presented above may feel remote to the 

reader. To make the results seems more tangible and accessible, we present a 

case study developed using hypothetical data. We begin with a company writing 

five lines of insurance. Table 1 gives rate filing information for five lines in 

company X.3  

Table 1: 2013 Rate Filing Information 

 

Permissible 

Loss Ratio 

Expense 

Ratio 

Underwriting 

Profit Provision 

Investment 

Income Offset Profit 

Line 1 72.0% 30.0% −2.0% 5.1% 3.1% 

Line 2 65.0 30.0 5.0 −2.4 2.6 

Line 3 62.0 30.0 8.0 −0.1 7.9 

Line 4 60.0 30.0 10.0 3.3 13.3 

Line 5 70.0 30.0 0.0 8.5 8.5 

 

We now provide an intuitive result (Theorem 1) on perfectly competitive markets. 

Although the result itself is not startling, it provides a mathematical basis to prove 

Theorem 4, and this makes it necessary to prove it. Second, Theorem 1 is novel in the 

sense that it shows that perfectly competitive market assumption leads to 

maximization of a certain ratio. Third, Theorem 1 sets the tone to think about the 

problems in this paper. 

  

                                                
 

3 Figures 1 and 2 are located in Appendix B and discuss data and estimation of profit covariance matrix. 
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Section 4: Perfectly Competitive Markets 

We assume that expected profit ERk is always given to us by line of business k. 

Market forces or regulation determine the values of ERk. Our ultimate goal in this 

paper is to find the optimal premium mix, , subject to a certain optimizing 

function and constraints. We specify the optimizing function below.  

Section 4.1 Company Optimizing Function 

Suppose that the company prospectively writes a total of  (in U.S. dollars) 

premium for line k. We can define the company-wide profit as4 

          (8) 

           (9) 

From (8),  

Expected company profit =       (10) 

Using (8) again, we can measure the total portfolio risk with proportions

 such that , 

                                                
 

4 This is an abstract quantity because profits are charged only by line. Nonetheless it is mathematically correct to define the company-
wide profit because we are simply aggregating a quantity across all lines. 

kw

0kp 

1

1

1

n

k k n
k

k kn
k

k

k

p R

R w R

p







 





1

k
k n

k

k

p
w

p






1

n

k k

k

w ER




[0 1]k kw w   1
1






nk

k

kw



   14 

 

 Copyright © 2018 Society of Actuaries 

     (11) 

Inspecting the covariance matrix , the contribution of a line l 

variance to the total portfolio variance (component risk),  

         (12) 

The above can be verified by summing across and that will result in :  

 

 Also since , we have 

     (13)      

Therefore (12) can also be written as 

          (14) 

The return contribution for line l is . It can be verified by summing across l,  

  

Define  

Mean-variance ratio of a line =      (15) 

Drawing on standard portfolio theory, we make the assumption that companies 

are mean-variance optimizers and define the optimizing function with respect to 

line weight wi:  

2

1 1 1

( ) cov( , )
n i n k n

k k i k i k

k i k

Var R Var w R w w R R
 

  

   

 
,

cov( , )i k i k k l
w w R R






nk

k

kiki RRww
1

),cov(

l ( )Var R

1 1 1 1

cov( , ) cov( , )
n k n n k n

i k i k i k i k

l k l k

w w R R w w R R VarR
 

   

   







nk

k

kk RwR
1

1 1

cov( , ) cov , cov( , )
k n k n

l l k k k i k

k k

R R R w R w R R
 

 

 
  

 
 

cov( , )l lw R R

)( ii REw

1

( )
n

l l

l

w E R R




( )

cov( , )

l l

l l

w E R

w R R
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      (16) 

The mean-variance optimization assumption is critical and will be carried through 

in the first parts of our paper. Later this assumption is relaxed through deviance 

multipliers (Theorem 3). A practical rationale for companies to adopt equation 

(16) as the optimizing function is whenever pricing capital (Robbin 2004) is strictly 

monotonically increasing in ,  then maximizing 1( , , )nf w w  is equivalent to 

maximizing the return on equity (ROE).  

Section 4.2 Company Behavior 

From standard portfolio theory (Markowitz 1952), equations (15) and (16) are set 

equal under conditions of perfect completion, including in insurance markets: 

 

The rationale is that profits will “set themselves” to satisfy the above equation. To 

see this, suppose that the left-hand side of the above equation exceeds the right-

hand side. In this case, the company will increase wl since it is a mean-variance 

optimizer. If that is not possible due to market forces, the company will lower 

E(Rl), a possibility that exists if markets are perfectly competitive and profits are 

allowed to vary freely. In response, other insurers will change their portfolios to let 

this company increase wl. The equation represents a kind of equilibrium when 

markets are perfectly competitive.  

Using (13), define  

1
1 2

1 1

( )
( ,.. ) :

cov( , )

n

k k

k
n i n k n

i k i k

i k

w ER
E R

f w w

w w R R




 

 

 




2

( ) ( )

cov( , )

l l

l l

w E R E R

w R R 




   16 

 

 Copyright © 2018 Society of Actuaries 

      (17) 

Therefore, 

         (18) 

The above looks like the capital asset pricing model (CAPM), but the quantities are 

completely different.  

Further from (18), 

 

          (19)   

At a company level, the above is a necessary (but not sufficient) condition for 

market efficiency. Note that because of randomness in estimating , it is not 

possible to draw conclusions about market efficiency based on the data of a single 

company. Nonetheless equation (19) is a useful theoretical result.  

Section 4.3 Company Premium Mix  

We calculate optimal weights such that the firm is mean-variance optimized. 

Specifically, we wish to solve for a unique combination of weights such that 

f(w1, …, wn) is maximized,  

 

 

1

2

1 1

cov( , )
cov( , )

:

cov( , )

k n

k l k

l k
l l n k n

l k l k

l k

w R R
R R

w w R R








 

 

 




( ) ( )l lE R E R

1 1

( ) ( ) ( )
n n

l l l l

l l

E R w E R E R w 
 

  

1

1
n

l l

l

w 




l

1 2

( )
( ,.. )n

E R
f w w




2

1ln ( ,.. ) ln ( ) lnnf w w E R  
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Set   

  

Therefore, 

  

Using (18) and (19) we have 

 

Using (17), the right-hand side is precisely the definition of . Thus, we conclude 

that the “no-arbitrage argument” results in optimal firm-wide weights. We state 

the result as a theorem.  

THEOREM 1: Under perfectly competitive insurance markets, a necessary (but not 

sufficient) consequence is that the company is naturally mean-variance optimized, 

and thus, the business mix of a firm is optimal.  

1

1 1 1

ln ( ,.. ) ln ( ) ln cov( , )
k n l n k n

n k k k l k l

k l k

f w w w E R w w R R
  

  

  

1ln ( ,.. )
0; 1...n

k

f w w
k n

w


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

1

1 1 1

cov( , )
( )

( ) cov( , )

l n

l k l

k l

k n l n k n

k k k l k l

k l k

w R R
E R

w E R w w R R


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
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1 1
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( )

cov( , )
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l k
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l k

w R R w E R

E R

w w R R
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
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1 1 1
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1

1 1

( ) cov( , ) ( ) cov( , )
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cov( , ) cov( , )

cov( , )
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This theorem provides a starting point of our paper and addresses only the situation 

where perfectly competitive markets exist. Thus, we now turn our attention to 

regulated markets. 
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Section 5: Regulated Markets 

The mathematical novelty in this section is due to introduction of equal column 

matrix C under unit sum weight constraint. This reduces our problem to the well-

known problem of maximizing a certain ratio  and will be made clear to 

the reader. 

Section 5.1 Company Premium Mix  

Under regulated or less-competitive market situations, we cannot appeal to no-

arbitrage arguments. Instead, we now have a constrained optimization problem. 

Suppose that the expected profits for a given line are capped at  because of rate 

regulation. They are of the form – . We address the issue of profit caps 

more completely in Appendix A. At this point, we need not assume an explicit 

formula for capping and can continue simply by requiring that post-regulation 

capped loads exist. To avoid new notation, we will not introduce “capped” 

notation and assume that E(Rk) is capped and known. We wish to maximize the 

optimizing function and solve for weights:  

 

subject to the totality constraint . This is the constrained optimization 

problem. Let ( )k kE R   so that the problem can be written in matrix notation: 

'
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We want to maximize ( )
w

f w
w w





subject to the constraint 1w i  . Then the 

feasible solutions are found in the set . Now, 

1 1 1 1

1 2 1 2

, , ,

( , , , ) .................. ...

, , ,

n n

n n n n
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= 1 2( )nw w w w w       

The last line follows from 1.w i   Thus, the problem changes to maximizing 

 subject to the constraint 1.w i   Assuming that  is a nonsingular, 

positive definite matrix, the solution is facilitated by Gotoh (2001):5 

THEOREM 2: Assuming that  is nonsingular positive definite, the maximum of

with respect to  is given by the largest eigenvalue  of the matrix 

 and is attained by the eigenvector  associated with the largest eigenvalue 

of .  

                                                
 

5 We have reduced the problem into a form that can be solved using their theorem. 
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Note that the final solution is given by w
i







, and multiplication by a constant 

still results in  as an eigenvector for  but ensures that the linear constraint is 

satisfied.  

Section 5.2 Decision to Exit a Line from a State  

Sometimes companies need a formal study6 to decide the exit of a line from a 

given state. Since both negative and positive eigenvectors are solutions in 

Theorem 2, the positive components are taken as the solution since weights are 

positive. However, if the sign of the components of 
i




 changes, then some 

weights are necessarily negative, implying an exit from the state. In this case the 

line should be removed and weights redetermined until all component signs are 

the same.  

In some cases, more than one line has an opposite sign. In this case, the choice to 

remove a line could be based on inspecting its ratio 
2

k

k

ER


 with the lowest ratios 

removed first.  

Section 5.3 Case Study Continued (Company Premium Mix) 

Using Table 1 in our case study, in Table 2 we form profit matrix . 

Table 2: Profit Matrix Cs 

3.13% 3.13% 3.13% 3.13% 3.13% 

2.56 2.56 2.56 2.56 2.56 

7.85 7.85 7.85 7.85 7.85 

                                                
 

6 Insurers will consider different factors in making their decisions as to whether to exit a line of insurance in a state. Beyond how rates 
are regulated in that line or state (as well as an insurer’s sense of how rates will be regulated in future years), their considerations 
would include the amount of sunk costs they would lose by exiting a market, how their exit would affect their relationships with 
insurance agents, and any economies of scope they achieve by writing multiple lines of insurance. 

w 

sC
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13.29 13.29 13.29 13.29 13.29 

8.46 8.46 8.46 8.46 8.46 

 

Next, we show below steps to calculate covariance matrix s  based on five lines 

and the corresponding triangles. In Table 3 we show calculation of covariance of 

lines 1 and 2 using triangles. The column “0” is the permissible loss ratio for the 

policy year times its written premium. It is an “inserted” column, and its rationale 

is explained in Appendix B.  

Table 3: Line 1 Data and Error Triangle 

 

 

pol_yr _name_ 0 12                           24                           36                           48                           60                           72                           84                           96                 108               

2000 InsRisk 46626088 48962669 49330414 49160522 49161441 49060192 49008980 48998750 48993364 49017743

2001 InsRisk 54401695 56455375 56539405 56577908 56481454 56379874 56316201 56302856 56369719 0

2002 InsRisk 51737143 50138872 49772205 49722349 49664590 49577476 49549720 49551433 0 0

2003 InsRisk 55136470 53019269 52558149 52329009 52294807 52308224 52290406 0 0 0

2004 InsRisk 58883995 57905328 57304304 57228641 56989183 56967681 0 0 0 0

2005 InsRisk 67767614 66627556 66772152 66919289 66732202 0 0 0 0 0

2006 InsRisk 57902520 57596782 57295053 57111064 0 0 0 0 0 0

2007 InsRisk 64464615 64046763 62294141 0 0 0 0 0 0 0

2008 InsRisk 88926002 88314038 0 0 0 0 0 0 0 0

2009 InsRisk 79038753 0 0 0 0 0 0 0 0 0

Log Ratio 0 - 12 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 

1 2000 0.04890 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 2001 0.03706 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 2002 -0.03138 -0.01 0.00 0.00 0.00 0.00 0.00

4 2003 -0.03916 -0.01 0.00 0.00 0.00 0.00

5 2004 -0.01676 -0.01 0.00 0.00 0.00

6 2005 -0.01697 0.00 0.00 0.00

7 2006 -0.00529 -0.01 0.00

8 2007 -0.00650 -0.03

9 2008 -0.00691

10 2009

LINE 1: DATA AND ERROR TRIANGLE
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The covariance by age (using errors) is calculated using two error triangles in Table 

4. 

 

Table 4: Covariance Matrix by Age 

 

The covariance matrix by line is then assembled similarly for all lines in Table 5. 

We show a single entry pertaining to lines 1 and 2, presented as case study in our 

paper, and other “introduced” lines will have similar calculations. 

Table 5: Covariance Matrix by Line 

 Line 1 Line 2 Line 3 Line 4 Line 5 
Line 1 0.12% 0.07% (sum, as above) 0.24% 0.38% 0.26% 
Line 2 0.07 0.08 0.20 0.37 0.21 
Line 3 0.24 0.20 0.62 1.02 0.67 
Line 4 0.38 0.37 1.02 1.91 1.08 
Line 5 0.26 0.21 0.67 1.08 0.72 

pol_yr _name_ 0 12                         24                         36                           48                         60                         72                         84                           96                   108                 

2000 InsRisk 106899696 107350642 107594689 107725044 107735964 107829442 107876347 107908361 108007128 108002516

2001 InsRisk 111601714 111065524 110824320 110877586 111151159 111084670 111025941 111003944 111026514 0

2002 InsRisk 118155250 116693238 116120634 116186452 116056376 115908761 115849317 115799339 0 0

2003 InsRisk 120253173 116453383 115003098 114579948 114279658 114200316 114078314 0 0 0

2004 InsRisk 121428756 116942681 115243327 114561218 114156392 113967227 0 0 0 0

2005 InsRisk 123305650 119168530 117872337 117333081 116907745 0 0 0 0 0

2006 InsRisk 122456951 121024652 120195487 119443446 0 0 0 0 0 0

2007 InsRisk 127734926 127202366 126394911 0 0 0 0 0 0 0

2008 InsRisk 128204161 127825667 0 0 0 0 0 0 0 0

2009 InsRisk 135788483 0 0 0 0 0 0 0 0 0

Log Ratio 0 - 12 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 

1 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 2001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 2002 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

4 2003 -0.03 -0.01 0.00 0.00 0.00 0.00

5 2004 -0.04 -0.01 -0.01 0.00 0.00

6 2005 -0.03 -0.01 0.00 0.00

7 2006 -0.01 -0.01 -0.01

8 2007 0.00 -0.01

9 2008 0.00

10 2009

LINE 2: DATA AND ERROR TRIANGLE

0 - 12 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96

0 - 12 0.03046% 0.01390% 0.00588% 0.00659% 0.00286% 0.00220% 0.00134% 0.00042%

12 - 24 0.00128% 0.00231% 0.00115% 0.00086% 0.00066% 0.00042% 0.00026% 0.00021%

24 - 36 -0.00075% -0.00011% 0.00004% 0.00001% -0.00008% 0.00000% -0.00006% -0.00015%

36 - 48 0.00185% 0.00069% 0.00036% 0.00018% 0.00012% 0.00002% 0.00003% 0.00006%

48 - 60 -0.00168% -0.00066% -0.00029% -0.00019% -0.00005% -0.00005% -0.00001% -0.00001%

60 - 72 -0.00053% -0.00021% -0.00007% -0.00008% -0.00002% -0.00002% -0.00001% 0.00000%

72 - 84 -0.00010% -0.00004% 0.00000% -0.00002% -0.00001% 0.00000% 0.00000% 0.00000%

84 - 96 -0.00059% -0.00029% -0.00005% 0.00015% -0.00010% -0.00006% -0.00003% -0.00005%

sum 0.07%
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The error covariance matrix can be converted to profit covariance matrix s  by 

multiplying by the permissible loss ratio (PLR) for each line. We skip this step. We 

show in Table 6 the eigenvalues and eigenvectors corresponding to 1

s sC  . 

Table 6: Eigenvalues and Eigenvectors for the Matrix 1

s sC  

Eigenvalues 15.8145411 −5.60E-16 −1.13E-17 −1.13E-17 1.91E-17 

      

Eigenvector
s 

     

 1 2 3 4 5 

1 0.48306088 0.279984683 −0.3210583 −0.3210583 −0.329742014 

2 0.35912127 −0.647776436 −0.430533952 −0.43053395 −0.423579758 

3 0.71265032
7 

0.651957714 0.808127965 0.808127965 0.818208988 

4 0.17284345
5 

−0.277305496 −0.195912974 −0.19591297 −0.174357789 

5 0.31613090
1 

−0.006860464 0.13937726 0.13937726 0.109470574 

 

Note that four out of five eigenvalues are zero in Table 6. To understand this 

mathematically, refer to Appendix C.  

Next, we find the “normalized” eigenvector corresponding to the largest 

eigenvalue of the matrix 1

s sC  shown as “Mix,” short for product mix, in Table 7. 

This result corresponds with Theorem 2. 

Table 7: Normalized Eigenvector and Derived Product Mix 

Line Eigenvalue Derived Mix 
1 0.483060881 23.64% 
2 0.359121275 17.57 

3 0.712650327 34.87 
4 0.172843455 8.46 
5 0.316130901 15.47 

Total 2.043806839 100.00 
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Section 5.4 Statewide Premium Mix  

The theorem proved in this section is novel for two reasons. First, it should prove 

especially useful to state insurance regulators charged with reviewing rate filings 

and considering the effects of different profits on premium mix statewide. Second, 

for mathematicians, this analysis leads to a new result in linear algebra formalized in 

Appendix C. 

We now determine the premium mix at a statewide level. Assume that each 

company is mean-variance optimized and there are s = 1, 2, …, m companies in the 

state. Each company has a current known total premium in dollars ps and known 

eigenvector  of the type discussed in the previous section. The statewide 

premium for all companies combined would be . The statewide premium 

mix is therefore  

        (20) 

 

The above shows that statewide premium mix is a weighted average of company 

premium mix (eigenvectors). Now using the fact that 
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We have the opportunity to choose any matrices on the left-hand side. The 

equality is due to the additivity property of matrices. Now, 1

s sC  is a matrix with 

identical columns. Note that each column is also the eigenvector of the respective
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1, ,
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      (21) 

The eigenvalue k  is the sum of components of 
'
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 . Hence from equation (21), 
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 associated with 

an eigenvalue of 1. The result is stated in the theorem. To prove that remaining 

eigenvalues of M  are zero, note that M  is an equal column matrix with the 

column as the eigenvector. With a single eigenvector and 2 j m  , 
jM   and

M  , so that 
j    and  1 0j   . Thus, the largest eigenvalue 



   27 

 

 Copyright © 2018 Society of Actuaries 

 max max: 1, 0    . Since we seek nonzero eigenvectors, remaining eigenvalues 

 : 0;2j j j n     .  

THEOREM 3: Assuming that each company is mean-variance optimized, the 

statewide premium mix  can be determined from the eigenvector of 

the matrix 
1

1

1

s m
s s s

j m
s

j j

j

r C

r 
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





 associated with eigenvalue of 1. Alternatively, the state 

premium can be obtained directly from  since company premium 

mixes are known.  

Section 5.5 Case Study Continued (Pre-Regulation)  

We present pre- and post-regulation results separately. Only one scenario will be 

presented where expected profits are capped for lines 2 and 3 under post-

regulation. Observed written premium weight  by company for a state Y is given 

in Table 8. 

Table 8: Observed Written Premium Weight 

 Written Premium Weight 

Company 1 $10,400,000 16.4% 

Company 2 20,000,000 31.4 

Company 3 5,200,000 8.2 

Company 4 28,000,000 44.0 

Total 63,600,000 100 

Using the same methods as above with company X, next find eigenvectors and 

company premium mix. The details will be skipped here. In Table 9 we present the 

expected profits by line and company. 
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Table 9: Expected Profits by Line and by Company 

 Company 1 Company 2 Company 3 Company 4 

Line 1 4.87% 4.96% 4.95% 5.50% 

Line 2 5.74 5.11 5.86 5.69 

Line 3 4.94 5.20 5.18 4.59 

Line 4 5.96 5.05 4.83 5.50 

Line 5 5.95 4.83 4.09 4.30 

Using the weights rs above we can combine the calculated company mix to obtain 

statewide premium mix  in Table 10. This result connects to Theorem 3.  

Table 10: Statewide Premium Mix 

 Company 1 Company 2 Company 3 Company 4 
Computed 
Statewide 

Line 1 11.44% 23.39% 19.64% 29.62% 23.87% 

Line 2 13.04 14.88 14.53 31.38 21.82 

Line 3 30.89 22.42 19.64 7.41 16.97 

Line 4 21.57 12.08 34.76 21.98 19.84 

Line 5 23.07 27.23 11.43 9.60 17.50 

Total 100 100 100 100 100 

Section 5.6 Predicting Statewide Regulatory Impact on Premium Mix  

Suppose the state regulator wants to predict the impact of profit caps on 

statewide premium mix. For example, lines with rate caps are expected to have a 

less dedicated capacity, post-regulation. The regulator knows the statewide 

premium mix of each company 1,2 ,s m  before capping. They want to know 

the revised premium mix of the line after capping. We solve this problem below.  
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DEVIANCE MATRIX: Pre-regulation, the regulator can use Theorem 3 and obtain the 

eigenvector . However, Theorem 3 assumes that each company in 

the state is mean-variance optimized. To the extent that this is true, our 

theoretical premium mix will match the current market premium mix. However, 

such a mean-variance optimization assumption is unlikely to hold true in practice. 

If Theorem 3 was applied, we would get a premium mix that would differ from 

actual. Let us call this phenomenon “market deviance.” We use a “deviance 

matrix” with real elements to measure this phenomenon:  

  

After application of Theorem 3 we will have . Suppose we know the current 

observed statewide premium mix . Then  is defined as 

(writing the vectors  and  in component form)  

          (22) 

The usefulness of defining  in this way will be explained later in Theorem 

4.  

PREDICTED MATRIX (POST-REGULATION): Revise the appropriate rows of the profit matrix 

 for each company to get a capped matrix . To avoid unnecessary 

notation, we will not introduce any new symbols and assume that in this section 

the matrix is capped through Cs. Next, use Theorem 3 to recalculate the 

eigenvector . The predicted post regulation premium mix is given by  
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         (23) 

The above adjusts for market deviance as long as D remains unchanged between 

pre- and post-regulation periods. The deviance matrix corrects for this violation 

once at the pre-regulation time. If the violation itself changes, then D will also 

change. Note also that the covariance matrices  remain unchanged post-

regulation as the regulator is interested in capping Cs with components of the 

form  rather than the random variable Rks with k = 1, …, n. 

The use of deviance matrix D in equation (22) is an ad hoc adjustment to reflect 

market deviance, because factors driving the deviance come from outside the 

model. Hence, the matrix  will no longer sum to 1 and “normalization” 

is necessary, leading to .  

Section 5.7 Case Study Continued (Post-Regulation)  

Now we cap expected profits at 5% for lines 2 and 3 (see Table 11). 

Table 11: Profit Caps  

 Company 1 Company 2 Company 3 Company 4 

Line 1 4.87% 4.96% 4.95% 5.50% 

Line 2 5.00 5.00 5.00 5.00 

Line 3 4.94 5.00 5.00 4.59 
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Line 4 5.96 5.05 4.83 5.50 

Line 5 5.95 4.83 4.09 4.30 

Using the weights rs above we can combine the calculated (capped) company mix 

to obtain in Table 12 the capped statewide premium mix . 

Table 12: Capped Statewide Premium Mix 

 Company 1 Company 2 Company 3 Company 4 

Computed 
Statewide 

Mix 
Line 1 11.52% 23.34% 21.38% 29.94% 24.15% 

Line 2 11.24 14.45 11.27 29.18 20.15 

Line 3 31.74 22.04 19.86 8.04 17.29 

Line 4 21.94 12.64 35.76 22.41 20.35 

Line 5 23.56 27.54 11.73 10.43 18.06 

Total 100 100 100 100 100 

Now we calculate the final market deviance-adjusted “predicted” statewide 

premium mix (see Table 13). This mix is what should exist if a 5% cap is enacted for 

lines 2 and 3.  

Table 13: Predicted Statewide Premium Mix 

 
Computed 

Statewide Mix Market Deviance Predicted Mix 
Line 1 24.15% 1.05 25.42% 

Line 2 20.15 0.89 17.91 

Line 3 17.29 1.08 18.66 

Line 4 20.35 1.2 24.34 

Line 5 18.06 0.76 13.67 

Total 100  100 
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Section 5.8 Market Competitiveness  

The primary purpose of this section is to provide a mathematically formal way to 

measure market competitiveness because this is lacking in the literature. To do so, 

we need our fundamental result in Theorem 1, which will be used to prove Theorem 

4.  

THEOREM 4: Suppose that there is at least one company s in the industry s > 0 that is 

not mean-variance optimizing its portfolio for line(s) . Then a necessary 

and sufficient condition of perfect market competitiveness for lines  is the 

existence of .  

NECESSITY: We are given that markets are perfectly competitive. Hence, from 

Theorem 1, the subset of lines for each individual company are naturally 

mean-variance optimized. Thus,  since the necessary conditions to 

calculate  are identical to actual market conditions.  

SUFFICIENCY: We are given that  as well as the fact that there is at least 

one company s in the industry s > 0 that is not mean-variance optimizing its 

portfolio for line(s) . We need to show that markets are perfectly 

competitive for lines .  

We claim that the theoretical industry premium mix is given by component set 

 iff each company s is mean-variance optimized. The 

sufficiency of this statement is obvious from our discussion that each mean-

variance optimized company will lead to component set  as the optimal 
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solution for a company. For necessity note that from equation (20) the component 

set  implies that each company has a premium mix given by 

the component set . But this set maximizes the objective function for the 

combination of company and line.  

Hence, if the component set was observed, then each 

company is also actually mean-variance optimized for lines . But such 

mean-variance optimization cannot be due to a company’s own efforts since at 

least one company is not mean-variance optimized. Thus, such optimization is due 

to market conditions.  

To recap briefly, we have “some” market conditions that lead to mean-variance 

optimized portfolios for all companies in the industry. From Theorem 1, we 

recognize this to be “perfectly competitive” market conditions. We now turn our 

attention to a case study to demonstrate how the model might be deployed. 

Section 5.9 Case Study Continued (Pre-Regulation Market Competitiveness)  

Next, we calculate the deviance matrix using actual observed statewide “line 

premiums” and the computed statewide mix above (see Table 14). To calculate 

the observed statewide mix we would require an expanded Table 8 with written 

premiums by both line and company. The expanded figure is not shown here.  

Table 14: Market Deviance 

 
Computed Statewide 

Mix 

Observed Statewide 
Mix Market Deviance 

Line 1 23.87% 25.17% 1.054 
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Line 2 21.82 19.44 0.891 

Line 3 16.97 18.35 1.082 

Line 4 19.84 23.77 1.198 

Line 5 17.50 13.26 0.758 

Total 100 100  

Employing Theorem 4, we see that lines 1 and 3 have a market deviance close to 

1, making them reasonably competitive.7  

Section 5.10 Case Study Discussion 

The observed statewide premium mix (pre-regulation) can be compared to the 

predicted mix (post-regulation) to try to understand the effects of rate caps. As a 

result of rate caps, the predicted rate mix for line 2 suggests a more than 1.5% 

decline in writings in line 2, going from an observed statewide mix of 19.44% to a 

predicted share of 17.91%. The difference for line 3 was much smaller and in a 

different direction, with an observed share of 18.35% adjusting slightly upward 

with the predicted mix of 18.66% to reflect a small shift from line to 2 to line 3 

writings. Likewise, lines 1, 4 and 5 each picked up a small share of the offset from 

line 2 shifts. Further, upon inspecting the market deviances, we note that lines 1 

and 3 are reasonably competitive, with values close to 1. 

  

                                                
 

7 Some subjectivity is involved because market deviances are not exactly equal to one. 
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Section 6: Model Limitations and Discussion 

Since the model is applicable to regulators, we offer observations to place the 

significance of rate regulation in the broader context of the full set of regulatory 

policies and practices. Specifically, we provide discussion on “file and use” versus 

“prior approval” rate regulation laws. First, the empirical literature indicates that 

insurance markets are structurally competitive at the national and state levels. 

This is the case for any market of any significance, such as auto insurance, home 

insurance, workers compensation insurance and the like. It is generally the 

conclusion of academic researchers that strict rate regulation does not improve 

market performance but can create significant market distortions. It is possible 

that insurers in a given state or line may be more “aggressive” in competing with 

each other; that is, competition in a given state or line may exceed the standards 

for workable competition, at least for a limited period of time. Hence, the degree 

of competitiveness could still vary across lines of business in a state with the 

qualification stated above.  

 

Second, in the United States, the type of rate filing system (e.g., prior approval, file 

and use) in a given state and for a given line of business, by itself, is not necessarily 

a good indicator of how insurers’ rates are regulated. In some prior approval 

states, for a given line of insurance, regulators may attempt to constrain insurers’ 

rates, whereas in other prior approval states, for a given line of insurance, 

regulators do not attempt to constrain insurers’ rates. By the same token, in some 

file and use states, regulators do not attempt to constrain insurers’ rates, whereas 

in others they do attempt to constrain insurers’ rates. In our model this is not a 

problem because rate regulation is reflected only in terms of the extent to which 

regulators might attempt to constrain insurers’ rates or profits, which could vary 

by state and line of insurance.  
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Third, other aspects of state regulatory policies and practices may also influence 

insurers’ operations and their decisions regarding what they consider to be their 

optimal mix of business across different lines of insurance. These aspects include 

the regulation of solvency, underwriting and pricing, policy design and claims 

settlement practices, among others.  

 

The paper provides an extension of mean-variance optimization to the case of an 

insurer or insurers seeking to optimize the mix of premiums across various lines of 

business. However, in practice, an insurer could choose to exit a market or reduce 

its premiums in a given line of insurance for reasons other than achieving its 

optimal set of weights. 

 

Regarding applicability of the paper from a regulator standpoint, we make some 

comments. Generally, what regulators consider to be most important are the 

“affordability” and “availability” of coverage for a given line of insurance. When an 

insurer files for a large rate increase, especially in a market where rates are 

already high, regulators can become concerned that if they approve (or do not 

disapprove) such a rate increase, it would have a significant and negative financial 

impact on consumers. At the same time, regulators are generally aware that if 

they place severe constraints on insurers’ rates, this could negatively affect the 

supply of insurance. Hence, regulators tend to balance considerations with respect 

to both the affordability and availability of insurance. That said, as suggested in 

the Introduction, regulators in a given situation may not be able to predict how 

their decisions on rate filings will affect insurers’ decisions regarding how much 

coverage they will offer, although, in some cases, insurers may inform regulators 

on the consequences of their decisions. The work presented in this paper could 
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serve as a foundation for further work on models that could help regulators to 

predict the effects of their decisions. 

 

Appendix A posits two ways in which regulators might impose constraints on 

insurers: (1) placing a cap on their expected profits and (2) setting a cap on the 

maximum allowable rate increase. The first way seems more likely to happen in 

practice. The second way (i.e., a uniform cap on rate increases that would apply to 

all insurers) may be less consistent with reality. There may be some situations 

where regulators do impose a uniform cap, but the more common scenario is for 

regulators to impose caps on insurers’ rate increases that vary by insurers. 
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Section 7: Conclusion 

The manager’s choice of what products to offer in what quantities in a given state, 

district or territory is an important and highly pragmatic decision. Mean-variance 

optimization provides one way of considering how allocations such as product 

choices ought to be made under risky circumstances. Most would agree that 

underwriting insurance is an inherently risky business. 

Finance theory suggests that returns from firm activities should be sufficient to 

compensate capital providers for their risk. Insurers create returns through two 

primary activities: underwriting and investments. These returns can be 

incorporated into insurance pricing models used by actuaries and regulators alike, 

commonly through a profit term and an investment income offset term.  

We use hypothetical data in showing some practical results of four theorems 

developed in this paper. We begin with the unregulated markets case. Our first 

theorem states that under perfectly competitive markets, a necessary but not 

sufficient consequence is that the company is naturally mean-variance optimized, 

and, thus, the business mix of the firm is optimal. Companies using the optimizing 

function will maximize ROE. Next, we introduce rate-regulated markets. Our 

second theorem enlists a result by Gotoh (2001) to find optimal product mix 

weights by firms using eigenvectors in a constrained optimization problem. The 

results provide guidance in determining whether a company should exit from a 

line of business in a particular state. Next, we turn our attention to the case of an 

optimal premium mix in statewide markets. Our third theorem, which shows how 

the statewide premium mix can be found from company-level information even if 

firms are not mean-variance optimizers, should prove especially useful to state 

insurance regulators charged with reviewing company profit filings. Our fourth 

and last theorem gives regulators a practical way of determining whether 
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insurance markets remain competitive in their state, even if at least one firm is not 

a mean-variance optimizer.  



   40 

 

 Copyright © 2018 Society of Actuaries 

  



   41 

 

 Copyright © 2018 Society of Actuaries 

Appendix A: Determining Capped “Expected Profits” 

Our approach requires the regulator to know capped profits. However, statewide rate 

regulation for any line can take different forms, and not all of them will directly provide 

capped profits. We discuss the two most common types of rate regulations: 

1. Caps on expected profit in rate filings and  

2. Maximum allowable rate increase. 

In the first case, the regulator makes the assumption that absent the regulatory capping, 

profits in the prospective period would have remained unchanged because all companies 

would have obtained the required rate changes. Thus, in the prospective period, the 

profits are impacted only by regulatory capping. This case is handled using the formula 

given in the paper, and we explicitly consider the impact on companies when the current 

(i.e., prospective) expected profits are capped at a certain level.  

The second case requires a discussion. As part of finding the appropriate “allowable” rate 

increase, the regulator conducts statewide rate-level indication and determines a 

statewide permissible loss ratio (PLR). With this information, a hypothetical “maximum 

allowable rate increase” is set for further review. The impact of this “rate increase cap” 

varies by company, with different companies affected differently. We show here how the 

rate increase cap converts to expected profit cap for each individual company. To 

illustrate, suppose that a hypothetical rate increase cap for line 1 is set at +5%, based on 

a statewide rate-level indication of +10% and a PLR = 70%. Consider two companies with 

these profiles: 

COMPANY “A,” PRE-REGULATION PROFILE: PLR = 65%, expense ratio (ER) 30%, 

Underwriting Profit Provision (UPP) = 5% 

Suppose that company “A” files for an 8% rate increase and receives only 5% because of 

the cap. The resulting shortfall is 3%. The new UPP equals 3%: 

PLR = 65%/0.97 = 67% (losses are the same but written premium is deficient by 3%) 

ER = 30% (expense ratio is percentage of written premium and thus remains unchanged) 

UPP = 1−67%−30% = 3% (satisfies the totality constraint) 
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COMPANY “A” PREDICTED PROFILE: PLR = 67%, expense ratio = 30%, and UPP = 3%. 

Note that if the “filed” rate increase is less than 5%, then no impact will be seen (post 

regulation) in the company’s UPP. In all cases Profit = UPP + Investment Income Offset. 
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Appendix B: Estimation of Profit Covariance Matrix  

For notational convenience we shall drop the line subscript k for now and will alert the 

reader when this is added later. 

Data Triangle  

In Figure 1, a data triangle is available for M  (fixed) policy years i = 1, 2, …, M. Row 

entries in the table can be obtained by varying i. However, for any fixed M the quantity 

UM−i+2 provides only the last (diagonal) column entry for row i. The value on the adjacent 

diagonal would be UM−i+1. We do not introduce a variable for the realized part of the 

rectangle because our interest lies in the unknown (missing) cells of the new policy year, i 

= M + 1. We will be content with just naming the values by their specific symbols in the 

realized part. The unrealized part will be referenced by adding a subscript, q = 1, 2, …, i−1 

such that UM−i+1+q will now reference future cells for row i. Define 

Ui,M−i+2 = Ultimate loss for policy year i, estimated at development age M−i+2 

εi,M−i+1 = Error for policy year i and development interval (M−i+1, M−i+2) 

         (3) 

Figure 1 consists of triangle of ultimate losses (Schedule P, Part 2–Annual Statement).8 

Before continuing, we note that the model as presented applies to both catastrophic and 

noncatastrophic lines as long as “triangulation of data is feasible.  

Figure 1: Data Triangle: [M × M + 1] 
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8 These are on an accident year basis instead of a policy year basis. To that extent, they are an 

approximation.  
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Figure 2: Error Triangle: [M × M]  
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Model Postulates  

In Figure 2, half the rectangle is observed, and the remaining is unobserved. Since our 

randomness will be due to unobserved values, we will ignore the first row because it is 

complete.9 We make no distributional assumptions about the unobserved errors

. More importantly, for estimation purposes, we make the 

following two assumptions (Figure 2):  

(i) For any given column, the errors have the same marginal variance. This 

permits us to use the sample variance to estimate the population variance. 

(ii) Any two columns of errors have the same covariance. This permits us to use 

the sample covariance as an estimate of the population covariance.  

The last two postulates are necessary for calibration of the parameters.  

Note the following caveats. First, as new data come each year, the samples estimates are 

updated. Second, the old “completed rows” (Figure 1) greatly enhance accuracy in 

estimation and should be retained. All estimation completed subsequently will use these 

postulates. For the sake of simplicity, we will not refer to these postulates henceforth. 

Estimation of Profit Covariance Matrix 

We can normalize the data triangle by dividing each row by its respective written 

premium. This provides a triangle of “loss ratios.” Note that this has no impact on Figure 

2 because we are dealing with log ratios (across rows). By construction, the first column in 

Figure 1 is always the permissible loss ratio of the respective policy years (this is why it’s 

labeled as “0” column in our illustrations). For year M + 1, the company charges an 

average permissible loss ratio in its rate filings: UM+1,1 = uM+1. We assume that uM+1 is 

available. Suppose that we have the data for M years and wish to determine the 

permissible loss ratio distribution of year M = 1 (Figures 1 and 2). Adding subscript 

1,2, , 1q i   for the future development period in policy year 1,2 , 1i M   (Figure 2) 

we get 

                                                
 

9 Adding extra rows will later help in estimation (especially for late development periods with few entries in columns), as we will estimate quantities using 

columns in Figure 2.  

 , 1 2i M i i M
     2i M
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          (4) 

Now set i = M + 1 and, for convenience, drop the subscript i = M + 1 because it is 

understood that we are working with future policy years. Instead, we reintroduce a 

subscript for line of business k. We now turn to the estimation of . From 

equation (1), we have 

      (5) 

 

where ek is a fixed expense ratio, Uk is a random permissible loss ratio and fk is a fixed 

investment income offset for line k. Therefore, 

  

 

We wish to compute Cov(Uk,Ul) for two given data sets. Each data set is a triangle of not 

necessarily the same size. Using equation (5) with i = M + 1, 

  

 

We used a Taylor first order approximation of the exponential function, and it is feasible 

as long as the total error εk by policy year is small. To add future errors, we now add the 

development interval subscript:  
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Hence, 

       (6) 

Thus, as long as the expected permissible loss ratio  
1, ,k k n

u


 is available by line, 

Cov(εkq, εlp) can be estimated from the columns of Figure 2. Note that  

        (7) 
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Appendix C: Linear Algebra Results on Average Matrices 

Definition (Average Matrices): The set of average matrices has square members with at 

least one nonzero eigenvalue and eigenvector such that there exist matrices and 

eigenvalues  ,i iM 
 M  , 
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Theorem 5 (equal columns): Let M   be a linear combination of n  matrices 
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eigenvectors  
1, ,

, : 0i i i i n
  


 . Then for any valid choice of ri, the set of average 

matrices 

1 1

1

: , 1
i n n

i i
ij n

i i

j j

j

rM
M M r

r 




 



 
 
 

  
 
  

 


 

has a single nonzero eigenvector  with an associated eigenvalue of 1 (the remaining are 

identically 0) and satisfies 
1

.
n

i i

i

r 


  

Corollary 1: Given that 
1

,
k n

k k

k

r 




  then the total matrix 1

i n

i

i

M





 has eigenvector and 

eigenvalue 
1

, .
j n

j

j

 




 
 
 
  

Corollary 2: A set of average matrices with a common eigenvector has an average matrix 

with eigenvalue 1 and the same associated eigenvector. 

Proof (theorem): 
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Use the fact that i  is the eigenvector of Mi,  

i i
i

i

M 





 

Now, 

1 1 1 1

1 1

i n k n i n k n
i i i i

k k k kj n j n
i k i k

j j j j

j j

rM rM
r r

r r

 

 

   

 
   

 

 
 

      
 
 

  
 

 

We have the opportunity to choose any matrices on the left-hand side. The equality is 

due to the additivity property of matrices. Now pick Mi as a matrix with identical 

columns. Note that each column is also the eigenvector of respective  
1..i i n

M
  . 

Therefore,  

;

;

i i i

i k k k k i

k k i

r k i
M r r

r k i

 
  

 

 
  

          (1) 

The eigenvalue k  is the sum of components of k  . Hence from this equation, 

1 1 1 1 1 1 1

1 1 1

i n k n i n k n i n k n i n
i i k k i i k k

k k i i i ij n j n j n
i k i k i k i

j j j j j j

j j j

rM r r r
r r r

r r r

  
  

  

      

  
      

  

 
 
   
 
 
 

    
  

 

Thus 1

i n

i i

i

r




 
 
 


 is recognized as the eigenvector of 

1

1

i n
i i

j n
i

j j

j

rM
M

r 











 associated with an 

eigenvalue of 1. The result is stated in the theorem. To prove that remaining eigenvalues 

of M are zero, note that M is an equal column matrix with the column as the eigenvector. 

With a single eigenvector and 2 j n  , jM   , and M  . So j  
 and

 1 0j  
, and the largest eigenvalue  max max: 1, 0   

. Since we seek nonzero 

eigenvectors, we have the remaining eigenvalues  : 0;2j j j n    
.  
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Proof (corollary 1):  

Since M   and the fact that 1

k n

k k

k

r 





,  

1 1 1

1

1 1 1 1 1

k n k n i n
k i

k k kj n
k k i

j

j

j n k n i n i n k n

j k i k i k k

j k i i k

r M
M r M

r M M r

  



   

  


  



    

    

 

 
   

 

 


   
 

Again, using 1

k n

k k

k

r 





,  

1 1

j ni n

i j

i j

M   


 

  
   

   
 

 

Hence 1

i n

i

i

M




 
 
 


 has eigenvector and eigenvalue 1

,
j n

j

j

 




 
 
 


. 

Proof (corollary 2): We show that a set of average matrices with a common eigenvector 

has an average matrix with eigenvalue 1 and the same associated eigenvector. The proof 

is identical to the main theorem with the observation that  

;

;

i i

i k k i k

i k

r k i
M r M r

r k i

 
 

 

 
   

    

As in Theorem 1,  

1 1 1 1 1 1 1 1 1

1 1 1 1 1

i n k n i n k n i n k n i n k n k n
i i i i i i i k i i k i i

k k kj n j n j n j n j n
i k i i k k i k i k k

j j j j j j j j j j

j j j j j

rM r r r r r r r
r r r

r r r r r

      
   

    

        

    
         

    

 
 
      
 
 
 

      
    
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Thus 1

i n

i i

i

r 




 
 

 


 is recognized as the eigenvector of 

1

1

i n
i i

j n
i

j j

j

rM

r 








 
 
 
 
 
 




 associated with an 

eigenvalue of 1.  
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