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A reconciliation of the top-down and bottom-up approaches to risk

capital allocations: Proportional allocations revisited

Edward Furman∗ Yisub Kye†, Jianxi Su‡

Abstract

In the nowadays reality of prudent risk management, the problem of determining aggregate risk capital in

financial entities has been intensively studied for quite long. As a result, canonical methods have been developed

and even embedded in regulatory accords. While applauded by some and questioned by others, these methods

provide a much desired standard benchmark for everyone. The situation is very different when the aggregate risk

capital needs to be allocated to the business units (BUs) of a financial entity. That is, there are overwhelmingly

many ways to conduct the allocation exercise, and there is arguably no standard method to do so on the horizon.

Two overarching approaches to allocate the aggregate risk capital stand out. These are the top-down al-

location (TDA) approach that entails that the allocation exercise is imposed by the corporate centre, and the

bottom-up allocation (BUA) approach that implies that the allocation of the aggregate risk to business units is

informed by these units. Briefly, the TDA starts with the aggregate risk capital that is then replenished among

the BUs according to the views of the centre, thus limiting the inputs from the BUs. The BUA does start with

the BUs, but it is, as a rule, too granular, and so may lead to missing the wood for the trees.

Irrespective of whether the TDA or the BUA is assumed, it is the proportional contribution of the riskiness of

a stand-alone BU to the aggregate riskiness of the financial entity that is of central importance, and it is routinely

computed nowadays as the quotient of the allocated risk capital due to the BU of interest and the aggregate risk

capital due to the financial entity. For instance, in the simplest case when the mathematical expectation plays

the role of the risk measure that generates the allocation rule, the desired proportional contribution is just a

quotient of two means. Clearly in general, this quotient of means does not concur with the mean of the quotient

random variable that captures the genuine stochastic proportional contribution of the riskiness of the BU of

interest. Inspired by this observation, herein we reenvision the way in which the allocation problem is tackled

in the state of the art. As a by-product, we unify the TDA and the BUA into one encompassing approach.

Keywords: Risk capital allocation, proportional allocation, weighted allocation, Dirichlet distribution, mixed-

gamma distribution.
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1 Introduction

Let the random variable (RV) X ≥ 0 denote an insurance risk and let the set X denote a collection of such risks.

Also, for n ∈ N, let the RV Xi, i = 1, . . . , n, denote the risk due to the i-th business unit (BU) of a financial

entity, and let S =
∑n
i=1Xi stand for the aggregate risk RV in this entity. Then risk measure, H, is a map that

assigns a (monetary) value in [0, ∞) ∪ {+∞} to any risk in the set X . We refer to Wang (1996); Artzner et al.

(1999); Furman and Zitikis (2008a) and references therein for axiomatic treatments of risk measures, and to Guillén

et al. (2013); Bernard et al. (2017); Miles et al. (2019) and references therein for some recent developments on risk

aggregation.

After the aggregate risk capital, H(S), has been determined, the question arises as to what is a meaningful way

to allocate it to the BUs. This problem is significantly more involved than the one of computing H(S), but an

acceptable solution is of great importance, as it would shed light on, e.g., profitability testing, cost sharing, pricing,

among other aspects of practical interest. In the state-of-the-art, the allocation rule, A, assigns a (monetary) value

in [0, ∞) ∪ {+∞} to the Cartesian product of the set X with itself, such that A(X, X) = H(X) for all X ∈ X

(e.g., Denault, 2001; Furman and Zitikis, 2008b; Balog et al., 2017, for theory and applications). From the above,

it is clear that the allocation rule A is generated by the risk measure H. The only other assumption on the map A

that we need - and indeed make in what follows - is full-additivity, which formally means
∑n
i=1A(Xi, S) = A(S, S),

and so
∑n
i=1A(Xi, S) = H(S).

Clearly, there are numerous ways to allocate the aggregate risk due to the RV S having cumulative distribution

function (CDF) FS(s), s ∈ [0, ∞), and inverse CDF F−1
S (p) = inf{s ∈ [0, ∞) : FS(s) ≥ p}, p ∈ [0, 1). Some of

these ways are very simple, such as the hair-cut allocation, Ap,

Ap(Xi, S) = H(S)
F−1
Xi

(p)∑n
i=1 F

−1
Xi

(p)
, i = 1, . . . , n, (1)

where F−1
Xi

(p), p ∈ [0, 1) is the inverse CDF of the RV Xi, i = 1, . . . , n. Others are more sophisticated, e.g., the

allocations that hinge on, respectively, the distorted and weighted probabilities

Ag(Xi, S) = E [Xig
′(FS(S))] , i = 1, . . . , n, (2)

where g : [0, 1]→ [0, 1] is a continuously differentiable distortion function (Tsanakas and Barnett, 2003), and

Aw(Xi, S) =
E[Xiw(S)]

E[w(S)]
, i = 1, . . . , n, (3)

where w : [0, ∞) → [0, ∞) is a non-decreasing weight function (Furman and Zitikis, 2008b); we assume that all

the quantities above are well-defined and finite. Yet others are even more intricate, such as the recently proposed

allocation method based on finding the unique center of a non-empty convex weakly compact subset of a Banach

space (Grechuk, 2015). There are admittedly many ways to classify the existing risk capital allocation rules, the list
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Risk type 1

Risk type 2

...

Risk type m

Copula STDA H(STDA)

A(X1, STDA)

A(X2, STDA)

...

A(Xn, STDA)

Figure 1: The top-down approach allocates the aggregate risk RV, STDA, and then the risk capital, H(STDA), which
are to this end obtained by integrating distinct risk types via a suitable copula function and according to the views
of the corporate centre.

of which is vast and grows quickly. Of particular interest to us is the simple taxonomy into the top-down allocation

(TDA) rules and the bottom-up allocation (BUA) rules, which is arguably the one that stands out in applications.

Specifically, the TDA allocates the aggregate risk RV, STDA, and then capital, H(STDA), which are to this end

obtained by integrating distinct risk types (e.g., market, credit, (non-)life underwriting, health underwriting; see,

EIOPA, 2010) via a suitable copula function, according to the views of the corporate centre (Figure 1). An example

of the TDA is the hair-cut allocation given in Equation (1). It is fairly simple to compute and transparent to

convey to the upper management. That said, the hair-cut allocation disregards the inter-dependencies among the

BUs X1, . . . , Xn. As such, the hair-cut allocation fails to reflect on the fact that these BUs are constituents of a larger

structure, and it treats them as stand-alone objects instead. Consequently, the TDA may miss such desired details

as the inter-dependencies between BUs and, sometimes, even the BUs’ stochastic characteristics. Nevertheless, with

the Own Risk and Solvency Assessment being progressively implemented in the insurance industry, the TDA has

evolved as a predominant standard (Grundke, 2010).

Unlike the TDA rules, the BUA rules start with a comprehensive multivariate CDF that describes the risks due

to distinct BUs as well as the inter-dependences between these risks. Therefore, all of the: aggregate risk RV, SBUA;

aggregate risk capital, H(SBUA); and allocated risk capital, A(Xi, SBUA), i = 1, . . . , n, can be computed at a stroke

and with no input from the corporate centre (Figure 2). Weighted allocation (3) is an example of the BUA rule. It

is considerably more granular than the already-mentioned hair-cult allocation rule in the sense that it starts with

the joint multivariate CDF of the risks due to the BUs X1, . . . , Xn, and so accounts for both the inter-dependencies

among these risks and the joint behavior of the pair (Xi, S) ∈ X × X , i = 1, . . . , n, from which the allocated risk

capital is obtained. The weighted allocation rule is consistent, satisfies no undercut and consistent no undercut

properties (Furman and Zitikis, 2008b), and it is optimal in the sense of Dhaene et al. (2012). That said, unless

very special distributional structures are considered (Furman et al., 2018), the weighted allocation is rather difficult
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X1, . . . , Xn

The joint CDF of the BUs

(Xn, SBUA)

...

(X1, SBUA)

SBUA

A(Xn, SBUA)

...

A(X1, SBUA)

H(SBUA)

Figure 2: The bottom-up approach starts by specifying the joint CDF of the business units in a financial entity and
then computes the aggregate risk capital and the allocated risk capitals at once.

to compute, even for special choices of the weight function, w, let alone in general. To illustrate the computational

complexity, we refer to Dhaene et al. (2008) for elliptically distributed risks; Cai and Li (2010) for phase-type

distributed risks; Furman and Landsman (2010) for Tweedie distributed risks; Vernic (2006, 2011) for skew-normal

and Pareto distributed risks; Cossette et al. (2013) and Cossette et al. (2018) for the risks with the dependence

structures described by the Farlie-Gumbel-Morgenstern copula and the Archimedean copula, respectively. All these

works compute Aw for the special weight function w(s) = 1{s > F−1
S (p)}, p ∈ [0, 1), where 1{·} denotes the

indicator function.

We note in passing that one may think that the RVs STDA and SBUA, which are clearly not equal almost surely

by construction, are at least equal in distribution. This is because the two aforementioned RVs both aim to proxy

the true aggregate risk RV S. However, given the increasing complexity involved in today’s insurance companies’

business structure, it is rather challenging, if not practically infeasible, to match the distributions of the RVs STDA

and SBUA in reality, and we indeed distinguish between these two RVs in what follows.

In summary, the TDA is intuitive yet often oversimplified, and the BUA is meticulous yet may hit against too

many parameters. In practice, the two approaches are often conducted separately and are sought to complement

each other. The question that arises then is whether it is possible to unify the TDA and the BUA rules to allocate the

aggregate risk so that the end-result is intuitive, detailed and would not add computational complexity beyond the

one associated with computing the risk factors-based aggregate risk capital, which is recommended, and sometimes

even mandated by regulatory authorities. Putting forward a theoretical groundwork for such an encompassing

approach to allocate risk capital is a natural call, and it is a goal that we aim to achieve in the present paper.

Another goal of this paper is to revisit the very way, in which the allocation of risk capital is envisioned nowadays.
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2 Motivation and some preliminaries

Assume that the risk measure H is positively homogeneous, that is, for all λ > 0 and X ∈ X , we have H(λX) =

λH(X). Then all of the allocation rules mentioned hitherto, if well-defined and finite, can be written as the

proportional allocation A(Xi, S) = H
(
Sri
)
, i = 1, . . . , n, where ri ∈ [0, 1] is the ratio of: Hp(Xi) = F−1

Xi
(p) and∑n

i=1Hp(Xi) - in the context of the hair-cut allocation; Ag(Xi, S) = E [Xg′(FS(S))] and
∑n
i=1Ag(Xi, S) - in the

context of the distorted allocation; Aw(Xi, S) = E [Xw(S)] /E [w(S)] and
∑n
i=1Aw(Xi, S) in the context of the

weighted allocation. In other words, for all of (1)-(3), we have

ri =
A(Xi, S)

A(S, S)
=
A(Xi, S)

H(S)
, i = 1, . . . , n. (4)

Ratios (4) can be reformulated with the help of the language of compositions (e.g., Aitchison, 1982, for de-

tails; also, Belles-Sampera et al., 2016; Boonen et al., 2019 for recent applications of compositional methods in risk

management). That is, let Sn denote the n-dimensional simplex (see, Section 2.1 for technical details), and let

C = (C1, . . . , Cn) ∈ Sn and X = (X1, . . . , Xn) ∈ Xn denote its elements and basis, respectively. Then we call

C : Xn → Sn a compositional map, if
∑n
i=1 Ci = 1 holds almost surely. Clearly, Ci(X) = Xi/

∑n
i=1Xi, i = 1, . . . , n,

which represents the relative risk contribution of the risk due to the i-th BU in a financial entity, is a legitimate

compositional map. Then we can immediately rewrite Equation (4) as

ri = Ci(A(X1, S), . . . , A(Xn, S)), i = 1, . . . , n,

and so H (S × Ci(A(X1, S), . . . , A(Xn, S))) recovers allocation rules (1)-(3) for the appropriate choice of the map

A. Further, acknowledging TDA / BUA, we arrive at

H (STDA)× Ci(A(X1, SBUA), . . . , A(Xn, SBUA)), (5)

which recaps, with the help of the language of compositions, the way in which the allocation exercise is usually

realized nowadays.

Equation (5) is in fact an attempt to unify the TDA and the BUA rules into one universal method to allocate risk

capital. However, unifications à la Equation (5) imply a somewhat naive two-stage procedure, which assumes that

the TDA and the BUA are conducted independently and do not impact the outcome of each other (see, Chong et al.,

2019, for another similar discussion). Also, Equation (5) reiterates that allocation rules (1)-(3) are all proportional

allocations that seek to quantify the relative contribution of the risk due to the i-th BU to the aggregate risk of

the financial entity. Hence, the basic stochastic object of interest when computing the allocated risk capital under

allocation rules (1)-(3) must be the ratio RV Ri = Xi/S, i = 1, . . . , n.

Consequently, in the present paper we propose to carry out the allocation exercise in the relative, rather than

absolute, terms. Namely, for v : [0, ∞) × [0, ∞) → [0, ∞) such that v(s, s) = s, s ∈ [0. ∞), we put forward the
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allocation rule

A
(
STDA × Ci(X), v(STDA, SBUA)

)
, (6)

as an alternative to Equation (5). There are a few good reasons for this substitution. First, Equation (6) allocates

risk capital due to the product RV, STDA ×Xi/SBUA, which captures the desired stochastic phenomenon of relative

contribution and, also, accounts for non-trivial interactions among the random components arising from the TDA

and the BUA approaches. Second, Equation (6) admits the fact that the real aggregate risk RV of the financial

entity is seen differently through the lens of the TDA and the BUA approaches, and so the allocation exercise is to

be realized with respect to a combination v(STDA, SBUA) of the two aggregate risk RVs. We note in passing, that

if STDA = SBUA almost surely and so v(s) = s, s ∈ [0, ∞), then the values of the allocated risk capital due to

Equations (5) and (6) agree, but this does not happen otherwise. Finally, Equation (6) paves the way to a genuine

unification of the TDA and the BUA approaches into one consolidated method to allocate risk capital, since - unlike

in Equation (5) - the syntheses now occurs at the level of the random notions of interest.

Admittedly, allocation rule (6), even when confided to the context of the weighted allocations, Aw, raises a

number of questions, each of which deserves a stand-alone study. For instance, one may wonder as to how the

function v is chosen; obviously, the choice of this function would involve weighting the RVs STDA and SBUA with

respect to, e.g., the credibility of data when constructing each one of these RVs and their CDFs. Another natural

question may be as to what the dependence between the RVs STDA and Ci(X) is; clearly, these two RVs must have

strong positive dependence.

Mainly, and this is the question that we address in the present paper, it is critical to comprehend what the pro-

posed shift from the allocation rules in absolute terms as per Equation (5) to the allocation rules in the relative terms

as per Equation (6) ensues. In the context of the weighted risk capital allocations, which include the conditional tail

expectation (CTE)-, Esscher- based allocations (Furman and Zitikis, 2008a), and under some regularity conditions

even the distorted allocations, as special cases, this means examining the map Acw : [0, 1] × [0, ∞) → [0, 1], such

that

Acw(Ri, S) =
E[Riw(S)]

E[w(S)]
, i = 1, . . . , n, (7)

which is finite and well-defined as long as the expectation E[w(S)] is finite and well-defined. As the maps Aw and

Acw operate on very different domains, the latter map requires very special distributional tools that are put forward

and studied in Section 4 of this paper.

Similarly to how the indicator weight function 1{s > F−1
S (p)}, p ∈ [0, 1), plays a prominent role within

the framework of the weighted allocation rule, Aw, so does it in the context of the new allocation rule, Acw, by

emphasizing the extreme scenarios in the sample space of the aggregate risk RV S. Interestingly, computing the

compositional variant of the noble CTE-based allocation rule is not difficult (Section 5); such variant is formally

given by

CTEcp(Ri, S) = E[Ri| S > F−1
S (p)], i = 1, . . . , n, (8)
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which is finite and well-defined if P(S > F−1
S (p)) 6= 0, as opposed to the well-acclaimed CTEp[Xi, S] that requires

the finiteness of the mean of the RV Xi ∈ X .

The rest of the paper capitalizes on the just-outlined ideas. Specifically in Section 3, we reveal a new multivariate

distribution that is able to model an arbitrary continuous multivariate distribution with non-negative support

arbitrarily well, and so is a natural choice to serve as the distribution of the risk RVs X1, . . . , Xn ∈ X . The

inventions presented in Section 3 are further employed in Section 4 to construct a flexible yet tractable framework

to formulate and model the vector of random proportions R = (R1, . . . , Rn) ∈ Sn as well as the corresponding

joint CDF, which gives birth to a particularly versatile variant of the well-known Dirichlet distribution on the

n-dimensional simplex. Finally in Section 5, we sketch an expectation maximization (EM) algorithm to facilitate

applications of our constructions and provide an example borrowed from the context of the risk capital allocation

problem. Section 6 concludes the paper.

2.1 Preliminaries

We work with an atomless probability space (Ω,A,P), which in our context means that there exists at least one RV

with a continuous distribution in this space. Let Lr denote the set of all RVs on (Ω,A,P) with finite r(∈ [0, ∞))-th

moment, and let L∞ denote the set of all essentially bounded RVs. Unless stated otherwise, we assume that RVs

are in L1. Throughout the paper, for every X ∈ L0, we denote by FX the CDF of the RV X. For Xn denoting the

n-fold Cartesian product of X with itself, we call the RV X = (X1, . . . , Xn) ∈ Xn, basis. Besides the convex cone

X , which is a subset of L0, in this paper we deal with the open n-dimensional simplex space

Vn = {(r1, . . . , rn) : ri ≥ 0, i = 1, . . . , n, and r1 + · · ·+ rn < 1}

and the already-mentioned boundary space

Sn = {(r1, . . . , rn) : ri ≥ 0, i = 1, . . . , n, and r1 + · · ·+ rn = 1} .

Our main constructions are then random compositions R = (R1, . . . , Rn) that are special maps C : Xn → Sn, such

that Ci(X1, . . . , Xn) = Xi/
∑n
i=1Xi, i = 1, . . . , n. Finally, N0 and R0,+ denote respectively the zero-augmented

sets of natural, N ∪ {0}, and positive real numbers, R+ ∪ {0}; the sets Nn0 and Rn0,+ denote the corresponding

multivariate counterparts.

3 Constructing random compositions via a class of mixed-gamma dis-

tributions

We recall at the outset that as Ri = Xi/S, i = 1, . . . , n, the compendium of the distributions on the simplex, and in

particular the most popular member therein, the Dirichlet distributions, seem natural to evoke (e.g., Chang et al.,
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2010; Ng et al., 2011, and references therein). To start off, recall that the RV Γi is said to be distributed gamma

with the shape and scale parameters γi ∈ R+ and βi ∈ R+, respectively, if it has the following probability density

function (PDF)

fΓi(x) =
1

Γ(γ)
e−x/βixγi−1β−γii for all x ∈ R+, i = 1, . . . , n. (9)

Succinctly, we write Γi ∼ Ga(γi, βi), i = 1, . . . , n. Then assume that the RVs Γ1, . . . ,Γn are mutually independent,

denote by Γ+ =
∑n
i=1 Γi their sum, and set βi ≡ β ∈ R+. The joint distribution of the RV R = (R1, . . . , Rn), Ri =

Γi/Γ+, i = 1, . . . , n is Dirichlet. Namely, the joint PDF of the RV R is

fR(r1, . . . , rn) =
1

B(γ1, . . . , γn)

n∏
i=1

rγi−1
i , (r1, . . . , rn) ∈ Sn, (10)

where B(γ1, . . . , γn) is the multivariate beta function

B(γ1, . . . , γn) =
Γ(γ1)× · · · × Γ(γn)

Γ(γ1 + · · ·+ γn)
. (11)

The Dirichlet distribution is convenient to work with, but unfortunately, it barely suits our needs for many

reasons. For example, the assumption that the risks due to all the BUs of a financial entity are distributed gamma

is very questionable, and so is doubtful the conclusion that the RVs Ri = Xi/S, i = 1, . . . , n and S are independent

(e.g., Ng et al., 2011, for a discussion). Therefore, in the rest of this section we seek a suitable class of distributions

to model the risks due to the BUs X1, . . . , Xn and so to serve as a basis for the desired compositional map. In

particular, we are interested in such classes of distributions that: (a) are flexible to the extent that they can model

well any CDF with non-negative support; (b) allow for a dependence among X1, . . . , Xn; (c) contain the gamma

distribution as a special case; (d) inhere the tractability of the gamma distributions; and (e) relax the assumption

of independence of the RVs Ri, i = 1, . . . , n, and S, as well as some other rather restrictive notions of independence

on the simplex that characterize the class of Dirichlet distributions (e.g., Aitchison, 1982).

3.1 A multivariate mixed-gamma distribution

The class of univariate mixed-Erlang distributions (e.g., Tijms, 1994; Willmot and Lin, 2011) is an immediate

candidate to model the distribution of the risk Xi ∈ X , i = 1, . . . , n. Indeed, mixed-Erlang distributions are

dense in the space of the CDFs with non-negative support, fairly tractable, and ensure straightforward multivariate

extensions (e.g., Lee and Lin, 2010). That said, when chosen as a basis for a compositional map, mixed-Erlang

distributions cannot incorporate PDF (10), hence adjustments have to be made. This is achieved in the following

definition.

Definition 1. Let κ ∈ N0 denote a discrete RV with the probability mass function (PMF) pκ(k), k ∈ N0. Also,

let γκ = γ + κ and γk = γ + k. Then we say that the RV Γ(κ) is distributed mixed-gamma (MG), succinctly
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Γ(κ) ∼MG(γ, β, pκ), if its PDF is given by

fΓ(κ)(x) =
∞∑
k=0

pκ(k)
1

Γ(γk)
e−x/βxγk−1β−γk for all x ∈ R+. (12)

Note 1. Recall that the size-biased of order k ∈ N0 variant RV of a non-negative RV, X ∈ Lk, is defined via (e.g.,

Patil and Ord, 1976, for a thorough discussion of the notion of size-biasing)

P
(
X(k) ∈ dx

)
=

xk

E [Xk]
P (X ∈ dx) , x ∈ R+.

In view of this, the class of mixed-gamma distributions can be considered a size-biased mixture, so the notation Γ(κ)

where κ is the random order of the size-bias operation, is natural.

Definition 1 leads to a variety of attractive properties for the MG class of distributions. We start with the

Laplace transform of PDF (12). To this end, let Pκ(z) = E [zκ] , |z| ≤ 1, denote the probability generating function

(PGF) of the RV κ and recall that, for Γ ∼ Ga(γ, β), the Laplace transform is

f̂Γ(t) = (1 + βt)
−γ

, t ∈ R0,+.

Then we have the following assertion; the proof of which is relegated to the Appendix.

Theorem 1. The Laplace transform that corresponds to the RV Γ(κ) ∼MG(γ, β, pκ) is given by

f̂Γ(κ)(t) = f̂Γ(t)Pκ

(
1

1 + βt

)
, t ∈ R0,+.

Therefore, we have Γ(κ) d
= Γ + Sκ, where Sκ =

∑κ
k=1Ek, S0 = 0, and Ek, k ∈ N, denotes a sequence of indepen-

dent and identical RVs distributed exponentially with the scale parameter β ∈ R+; here “
d
= ” means equality in

distribution.

The class of MG distributions is closed under rescaling. This is clearly so, as is seen from

f̂λΓ(κ)(t) = E
[
exp

(
−tλΓ(κ)

)]
= f̂λΓ(t)Pκ

(
1

1 + λβt

)
, t ∈ R0,+.

We next use the Laplace transform of the RV Γ(κ) to show that the class of MG distributions is a good modeling

tool. The proof is again relegated to the Appendix.

Theorem 2. The MG distributions are dense in the class of all continuous distributions with non-negative support.

As the risks X1, . . . , Xn in the basis X must not be mutually independent, it is critically important for us

to consider a multivariate extension of the MG distributions in Definition 1. The extension that we put forward

next is inspired by the multivariate mixed-Erlang distributions studied in Lee and Lin (2012); Willmot and Woo
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(2014); Verbelen et al. (2016). Namely, the multivariate mixed-gamma distributions presented in Definition 2 below,

generalize the just-mentioned mixed-Erlang distributions by allowing for arbitrary non-negative shape parameters

as well as for heterogeneous scale parameters of the margins.

Let κ = (κ1, . . . , κn) be a vector of discrete RVs, κi ∈ N0, i = 1, . . . , n, and denote the joint PMF of k =

(k1, . . . , kn) ∈ Nn0 by pκ(k) = P (κ1 = k1, . . . , κn = kn).

Definition 2. The RV Γ(κ) = (Γ
(κ1)
1 , . . . ,Γ

(κn)
n ) is said to be distributed n-variate mixed-gamma (MGn) if the

corresponding joint PDF is given by

fΓ(κ)(x1, . . . , xn) =
∑
k∈Nn0

pκ(k)
n∏
i=1

1

Γ(γki)
e−xi/βix

γki−1

i β
−γki
i , (x1, . . . , xn) ∈ Rn+, (13)

where γki = γi+ki and βi, γi ∈ R+, i = 1, . . . , n. Succinctly, we write Γ(κ) ∼MGn(γ,β, pκ), where the coordinates

of the vectors of parameters γ and β are, respectively, γki and βi, i = 1, . . . , n.

A thorough study of the class of the multivariate MG distributions is beyond the immediate interest of the

present paper. Herein we only present a few basic properties that are of central importance to our subsequent study

of the compositional maps that arise from the basis vectors distributed MGn. The proof of the Theorem 3 is in the

Appendix.

Theorem 3. Consider the RV Γ(κ) ∼MGn(γ,β, pκ), then the following assertions hold.

(i) The joint Laplace transform that corresponds to the RV Γ(κ) is

f̂Γ(κ)(t1, . . . , tn) =

n∏
i=1

(1 + βi ti)
−γi Pκ

(
1

1 + β1t1
, . . . ,

1

1 + βntn

)
,

where (t1, . . . , tn) ∈ Rn0,+ and Pκ denotes the joint PGF of the RV κ = (κ1, . . . , κn).

(ii) The marginal coordinate of Γ(κ), Γ
(κi)
i ∼ MG(γi, βi, pκi), i = 1, . . . , n, admits the stochastic representation

Γ
(κi)
i = Γi +

∑κi
j=1Ei,j, where Γi ∼ Ga(γi, βi) and {Ei,j}j∈N denotes a sequence of independent and identical

RVs distributed exponentially with the scale parameter βi ∈ R+.

(iii) If κ1, . . . , κn are independent, i.e., pκ(k) =
∏n
i=1 pκi(ki), then the RVs Γ

(κ1)
1 , . . . ,Γ

(κn)
n are independent.

(iv) Choose 1 ≤ i 6= j ≤ n and consider the pair (Γ
(κi)
i ,Γ

(κj)
j ) ∼ MG2(γ,β, pκ), where γ = (γi, γj), β = (βi, βj)

and κ = (κi, κj). Then, assuming that κi, κj ∈ L2, the Pearson correlation coefficient is given by

Corr(Γ
(κi)
i ,Γ

(κj)
j ) = Corr(κi, κj)

√
Var(κi)Var(κj)√

(Var(κi) + E[κi] + γi) (Var(κj) + E[κj ] + γj)
. (14)

Note 2. Correlation formula (14) suggests that the multivariate MG distributions proposed herein can cover the

full range of bivariate dependence, when it is measured by the Pearson coefficient of correlation. Namely, the sign
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of the Pearson coefficient of correlation of the pair (Γ
(κi)
i ,Γ

(κj)
j ) can be both positive and negative, stipulated by the

sign of the correlation Corr(κi, κj), 1 ≤ i 6= j ≤ n. Since the random pair (κi, κj) is allowed to have any dependence

structure, including comonotonicity and counter-comonotonicity, Corr(Γ
(κi)
i ,Γ

(κj)
j ) can attain any value in the in-

terval [−1, 1]. In addition, by choosing random pairs (κi, κj) with sufficiently large variances, Corr(Γ
(κi)
i ,Γ

(κj)
j ) can

be made arbitrarily close to Corr(κi, κj).

Akin to the univariate mixed-gamma distributions, the class of MGn distributions are dense, and so can model

any multivariate distribution with positive support arbitrarily well. The denseness property guarantees a desirable

level of flexibility for the proposed MGn distributions, which helps to mitigate the miss-specification risk in the

model selection process. The proof of the next assertion is a straightforward generalization of the proof of Theorem

2 and is thus omitted.

Theorem 4. The multivariate MG distributions form a dense class of continuous multivariate distributions with

non-negative supports.

It is well-known that finite convolutions of the RVs distributed gamma with arbitrary shape and scale parameters

are mixed-gamma. The next theorem is reported for completeness of exposition (e.g., Moschopoulos, 1985, for

details). It has been frequently adopted in the actuarial literature in order to deal with general finite convolutions

within the class of gamma distributions (e.g., Hürlimann, 2005; Furman and Landsman, 2005; Su and Furman,

2017, and references therein).

Theorem 5. For i = 1, . . . , n, let Γi ∼ Ga(γi, βi) denote independent RVs distributed gamma, and let Γ+ =

Γ1 + · · ·+ Γn denote their sum. Then Γ+ ∼MG(γ∗, β∗, pκ∗∗), where γ∗ = γ1 + · · ·+ γn, β∗ =
∧n
i=1 βi and κ∗∗ is

an integer-valued non-negative RV with the PMF given, for k ∈ N0, by pκ∗∗(k) = c δk, where

c =
n∏
i=1

(
β∗

βi

)γi
and δk = k−1

k∑
l=1

n∑
i=1

γi

(
1− β∗

βi

)l
δk−l, for k ∈ N, and δ0 = 1. (15)

We now generalize Theorem 5 - the proof of the validity of the generalization is in the Appendix - by allowing

for (i) summands in the MG class of distributions, and (ii) dependence implied by the class of MGn distributions.

At the outset, we remind briefly that the RV N ∈ N0 is said to be distributed negative binomial, succinctly

N ∼ NB(γ, p), where γ > 0 and p ∈ (0, 1) are parameters, if its PMF is given by

P(N = n) =
Γ(γ + n)

Γ(γ)n!
pγ(1− p)n for all n ∈ N0.

The corresponding PGF is

PN (z) =

(
p

1− (1− p)z

)γ
, |z| < 1/(1− p).

Theorem 6. Consider the RV Γ(κ) = (Γ
(κ1)
1 , . . . ,Γ

(κn)
n ) ∼ MGn(γ,β, pκ) and let Γ

(κ∗)
+ =

∑n
i=1 Γ

(κi)
i denote the

sum of its coordinates. Then Γ
(κ∗)
+ is distributed MG with the parameters γ∗ = γ1 + · · · + γn, β∗ =

∧n
i=1 βi, and

11



pκ∗ such that

pκ∗(m) =
m∑
j=0

∑
k1+···+kn=j

pκ(k)
∑

y1+···+yn=m−j
(y1,...,yn)∈Nn0

n∏
i=1

Γ(γki + yi)

Γ(γki) yi!

(
β∗

βi

)γki (
1− β∗

βi

)yi (16)

for all m ∈ N0.

A by-product of Theorem 6 is that it demystifies the recursive formula presented in Moschopoulos (1985) in the

context of finite gamma convolutions (also, Theorem 5 above). This is stated in the following corollary, which is

proved by choosing pκ(0, . . . , 0) = 1 in Theorem 6.

Corollary 7. Within the setup in Theorem 5, we have κ∗∗
d
=
∑n
i=1Ni, where Ni ∼ NB(γi, β

∗/βi) are mutually

independent RVs having negative binomial distributions. The PMF of the RV κ∗∗ admits the following (non-

recursive) form

pκ∗∗(k) =
∑

y1+···+yn=k
(y1,...,yn)∈Nn0

n∏
i=1

Γ(γi + yi)

Γ(γi) yi!
(β∗/βi)

γi(1− β∗/βi)yi , k ∈ N0. (17)

In the next section, we show how the class of mixed-gamma distributions can be used as a basis for constructing

random compositions R = (R1, . . . , Rn) ∈ Sn.

4 From mixed-gamma to a general distribution on the simplex

Dirichlet PDF (10) is remarkably tractable. For example, let γ∗ = γ1 + · · ·+ γn, γ = (γ1, . . . , γn) ∈ Rn+, and given

that R = (R1, . . . , Rn) ∼ Dir(γ), it is easy to find

E[Ri] =
γi
γ∗

and Var(Ri) =
γi(γ

∗ − γi)
γ∗2 (γ∗ + 1)

, i = 1, . . . , n,

as well as

Cov(Ri, Rj) = − γiγj
γ∗2 (γ∗ + 1)

, 1 ≤ i 6= j ≤ n.

Hence the random pair (Ri, Rj) with the joint Dirichlet distribution must be negatively correlated, which adds an

additional layer of practical inconveniences when it comes to the applications of the Dirichlet distributions in the

context of risk allocations, as well as in other contexts.

In addition, with a little effort, some more intricate properties of the class of Dirichlet distributions can be

derived. For example, it is possible to show that the class of Dirichlet distributions is closed under marginalization

of any order, and that the level curves, for γi > 1, i = 1, . . . , n, are always convex sets (see, Aitchison, 1986, for

details). Further, rather unfortunately, the class of Dirichlet distributions can be seen as an independence extreme

in the world of compositional data, which is the price that the Dirichlet distributions have to pay for the tractability
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they inherit from the class of gamma distributions.

Numerous efforts have been made to generalize the Dirichlet distribution with PDF (10) (e.g., Ng et al., 2011,

among others). The task is, however, not an easy call. Namely, a slight generalization of the setup leads to

considerable complications. For instance, for Γi ∼ Ga(γi, βi), i = 1, . . . , n, let {Γi}ni=1 be a sequence of mutually

independent RVs (note that the scale parameters are arbitrary now), and let Γ+ denote the sum of these RVs.

Then the RV R = (R1, . . . , Rn), Ri = Γi/Γ+ is distributed scaled Dirichlet (e.g., Ng et al., 2011), which is far less

tractable than the one with PDF (10). In particular, even an analytic expression for the covariance was not known

for the scaled Dirichlet distribution.

In this section, we use the class of multivariate MG distributions as the basis to formulate a generalization

of Dirichlet distribution, which is suitable for studying capital allocation problems. Recall that we write Γ(κ) ∼

MGn(γ,β, pκ) when Γ(κ) is distributed multivariate MG with the vectors of parameters γ = (γ1, . . . , γn) ∈

Rn+, β = (β1, . . . , βn) ∈ Rn+ and the associated joint PMF pκ. Also, we denote by Γ
(κ∗)
+ =

∑n
i=1 Γ

(κi)
i the sum of

the RVs distributed multivariate MG.

Following the language of Aitchison (1986), we call the RV Γ(κ) = (Γ
(κ1)
1 , . . . ,Γ

(κn)
n ) ∈ Xn+, basis. Then we are

interested in mapping collections of RVs in Xn to the n-dimensional simplex Sn (see, Section 2.1 for a definition).

In this paper, because of the nature of the capital allocation exercise, our working choice is the map C : Xn+ → Sn,

such that

Ci(Γ
(κ1)
1 , . . . ,Γ(κn)

n ) = Γ
(κi)
i /Γ

(κ∗)
+ = Ri. (18)

Random compositions (18) are the main object of our study in this section.

Recall that B(γ), where γ = (γ1, . . . , γn) ∈ Rn+, denotes the multivariate beta function. The following assertion

establishes the joint PDF of random compositions (18). The proof of this assertion is in the Appendix.

Theorem 8. Let Γ(κ) ∼MGn(γ,β, pκ), namely the distribution of the basis vector is multivariate mixed-gamma,

and let R = (R1, . . . , Rn) be a vector of random compositions (18). Then the joint PDF of the RV R is given by

fR(r1, . . . , rn) =
∑
k∈N0

pκ(k)

B (γk)

n∏
i=1

1

βi

(
ri
βi

)γki−1
(

n∑
i=1

ri
βi

)−∑n
i=1 γki

(19)

for all (r1, . . . , rn) ∈ Sn, where γki = γi + ki, i = 1, . . . , n and γk = (γk1 , . . . , γkn).

Obviously, when, for all i = 1, . . . , n, the RV κi is degenerate in the sense that there exist k ∈ Nn0 , such that

pκ(k) = 1, then PDF (19) reduces to the PDF of the scaled Dirichlet distribution, heuristically studied in, e.g.,

Monti et al. (2011a) and Monti et al. (2011b). If an additional assumption that the scale parameters are chosen

such that β1 = · · · = βn is made, then PDF (19) coincides with PDF (10). Motivated by this observation, we call

the new generalized Dirichlet put forward herein, mixed-scaled Dirichlet. Succinctly, we write R ∼ Dir(γ,β, pκ)

where γ = (γ1, . . . , γn), β = (β1, . . . , βn) are vectors of positive parameters, and pκ is the joint PMF of the RV

κ = (κ1, . . . , κn).

Note 3. It is seemingly worthwhile noticing that since the RV R = (R1, . . . , Rn) admitting stochastic representation
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(18), must be such that R1 + · · · + Rn = 1 almost surely, we can put rn = 1 −
∑n−1
i=1 ri in joint PDF (19). Then,

for the last component of the just-mentioned equation, we have

(
n∑
i=1

ri
βi

)−∑n
i=1 γki

= β
∑n
i=1 γki

n

[
1 +

n−1∑
i=1

(βn/βi − 1) ri

]−∑n
i=1 γki

,

where (r1, . . . , rn) ∈ Sn. It is consequently easy to notice that in the case of the equal scale parameters, β1 = · · · = βn,

we have

1 +
n−1∑
i=1

(βn/βi − 1)ri = 1 for all (r1, . . . , rn) ∈ Sn,

and joint PDF (19) reduces to that of a mixed Dirichlet distribution.

We now proceed to study the marginalization properties of the class of mixed-scaled Dirichlet distributions. As

it is rather challenging to integrate joint PDF (19) directly, we make use of the associated stochastic representation

instead (e.g., Ng et al., 2011, for a similar approach within the study of the classical Dirichlet distributions).

Clearly, as R = (R1, . . . , Rn) ∈ Sn, we have that its lower dimensional margins are in Vn (see, Section 2.1 for

details). More formally, for I ⊆ {1, . . . , n}, let RI = {Ri : i ∈ I} ∈ V|I|, where |I| denotes the cardinality of the

set I. When checking the marginalization property for Sn 3 R ∼ Dir(γ,β, pκ), we aim to explore whether the

distribution of the random pair (RI , R
∗
Ic) ∈ S|I|+1, where Ic denotes the complement of I ⊆ {1, . . . , n} and

R∗Ic =

∑
i∈Ic Γ

(κi)
i∑

i∈I Γ
(κi)
i +

∑
i∈Ic Γ

(κi)
i

,

is also mixed-scaled Dirichlet.

Define γ∗A =
∑
i∈A γi and β∗A =

∧
i∈A βi for any A ⊆ {1, . . . , n}. We are now ready to prove - the formal proof

is in the Appendix - that the class of mixed-scaled Dirichlet distributions is closed under the marginalization of any

order.

Theorem 9. The RV R ∼ Dir(γ,β, pκ) with PDF (19) is closed under marginalizations of arbitrary order.

Specifically, we have S|I|+1 3 (RI , R
∗
Ic) ∼ Dir((γI , γ∗Ic), (βI , β∗Ic), p(κI ,κ∗Ic )), where �I = {�i : i ∈ I}, “�” can be

any one of γ,β,κ, and the joint PMF

p(κI ,κ∗Ic )(kI ,m) =
m∑
j=0

∑
∑
v∈Ic kv=j

pκ(k)
∑

∑
v∈Ic yv=m−j
yv∈N0

∏
i∈Ic

Γ(γki + yi)

Γ(γki) yi!

(
β∗Ic

βi

)γki (
1− β∗Ic

βi

)yi (20)

for (kI ,m) ∈ N|I|+1
0 .

An immediate consequence of the just-proved closure under marginalization of any order is that in the context

of the mixed-scaled Dirichlet class of distributions, that is for R = (R1, . . . , Rn) ∼ Dir(γ,β, pκ), the joint k-

dimensional PDFs, k < n, can be derived with the help of Theorems 8 and 9. For an illustration, we next report the
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univariate and bivariate PDFs. Marginal PDFs of higher dimensions can be computed analogously. For notational

convenience, we let N = {1, . . . , n} and N(I) = N \ I for I ⊆ N .

Set I = {i}, then the univariate PDF of the RV Ri, i = 1, . . . , n is

fRi(r) =
∑

ki,k∗∈N0

p(κi,κ∗N(i)
)(ki, k

∗)
(
β∗N(i)

/βi

)γki
B(γki , γk∗)

rγki−1(1− r)γk∗−1

[
1 +

(
β∗N(i)

βi
− 1

)
r

]−(γki+γk∗ )

,

where r ∈ [0, 1], γki = γi + ki, γk∗ = γ∗N(i)
+ k∗ and the joint PMF p(κi,κ∗N(i)

) follows from Equation (20).

To find the bivariate PDF of the random pair (Ri, Rj), i 6= j ∈ {1, . . . , n}, we set I = {i, j} and obtain

fRi,Rj (ri, rj) =
∑

ki,kj ,k∗∈N0

p(κi,κj ,κ∗N(i,j)
)(ki, kj , k

∗)

B(γki , γkj , γk∗)

(
β∗N(i,j)

βi

)γki (β∗N(i,j)

βj

)γkj

r
γki−1

i r
γkj−1

j (1− ri − rj)γk∗−1

[
1 +

(
β∗N(i,j)

βi
− 1

)
ri +

(
β∗N(i,j)

βj
− 1

)
rj

]−(γki+γkj+γk∗ )

,

where (ri, rj) ∈ V2, γki = γi + ki, γkj = γj + kj , γk∗ = γ∗N(i,j)
+ k∗, and the joint PMF p(κi,κj ,κ∗N(i)

) can be again

formulated with the help of Equation (20).

Note 4. RV X ∈ L∞ is said to be distributed generalized three-parameter beta if the associated PDF is given by

(Libby and Novick, 1982)

fX(x) =
λa

B(a, b)

xa−1(1− x)b−1

(1 + (λ− 1)x)a+b
, x ∈ [0, 1], (21)

where a, b, λ > 0 are parameters. Succinctly, we write X ∼ GB(a, b, λ). Some distributional properties of the class

of GB distributions are discussed in (Gupta and Nadarajah, 2004). It is not difficult to see that the univariate

marginal distributions of the mixed-scaled Dirichlet distributions are GB with random shape parameters. Namely,

we have Ri ∼ GB(γi + κi, γ
∗
N(i)

+ κ∗N(i)
, β∗N(i)

/βi) where

κ∗N(i)
=
∑
j∈N(i)

(κj +Nj(κj)),

with the RVs Nj(κj) ∼ NB(γκj , β
∗
N(i)

/βj), j ∈ N(i) are conditionally independent given the RV κ.

Next we proceed to study the moment formulas for the mixed-scaled Dirichlet class of distributions. In this

respect, the hypergeometric function plays an important role, and it is defined as

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; z) =
∞∑
k=0

(a1)k, . . . , (aq+1)k
(b1)k, . . . , (bq)k

zk

k!
, |z| < 1, (22)

where (x)n = Γ(x + n)/Γ(x) denotes the Pochhammer symbol (Gradshteyn and Ryzhik, 2014). We also need the
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Appell’s F1 function, which is given by

F1(a; b1, b2; c;x, y) =
∞∑
m=0

∞∑
n=0

(a)m+n(b1)m(b2)n
(c)m+n

xm

m!

yn

n!
, |x| < 1, |y| < 1.

It is noteworthy that the arguments domains of the aforementioned special functions can be extended by ana-

lytic continuation. Also, there is a rich body of literature devoted to the study of both q+1Fq and F1, and the

corresponding computational methods have been implemented in a variety of software packages.

Theorem 10. Let R = (R1, . . . , Rn) ∼ Dir(γ,β, pκ) be a RV distributed mixed-scaled Dirichlet. Then the r(∈ R+)-

th order moment of the RV Ri, i = 1, . . . , n, is given by

E[Rri ] =∑
ki,k∗∈N0

p(κi,κ∗N(i)
)(ki, k

∗)

(
β∗N(i)

βi

)γki
Γ(γki + γk∗)Γ(γki + r)

Γ(γki + γk∗ + r)Γ(γki)
2F1

(
γki + r, γki + γk∗ ; γki + γk∗ + r; 1−

β∗N(i)

βi

)
,

where γki = γi + ki, γk∗ = γ∗N(i)
+ k∗ and the joint PMF p(κi,κ∗N(i)

) is defined according to Equation (20).

Furthermore, for ri, rj ∈ R+, the joint higher order moments of Ri and Rj, i 6= j ∈ {1, . . . , n}, are given by

E[Rrii R
rj
j ] =

∑
ki,kj ,k∗∈N0

p(κi,κj ,κ∗N(i,j)
)(ki, kj , k

∗)

(
β∗N(i,j)

βi

)γki (β∗N(i,j)

βj

)γkj
Γ(γki + ri)

Γ(γki)

Γ(γkj + rj)

Γ(γkj )

Γ(γki + γkj + γk∗)

Γ(γki + γkj + γk∗ + ri + rj)
h(ki, kj , k

∗),

where

h(ki, kj , k
∗) = F1

(
γki + γkj + γk∗ ; γki + ri, γkj + rj ; γki + γkj + γk∗ + ri + rj ; 1−

β∗N(i,j)

βi
, 1−

β∗N(i,j)

βj

)
,

and γki = γi + ki, γkj = γj + kj, γk∗ = γ∗N(i,j)
+ k∗, with p(κi,κj ,κ∗N(i)

) being per Equation (20).

Note 5. The covariance between any pair of RVs Ri and Rj within the mixed-scaled Dirichlet class can be readily

computed via the moment formulas in Theorem 10. Interestingly, unlike for the classical Dirichlet distribution with

PDF (10), the Pearson coefficient of correlation in the context of the mixed-scaled Dirichlet class of distributions

is not necessarily negative. For instance, consider a simple example in which the RVs κ1, κ2 and κ3 are all zero

almost surely, and γi ≡ 1, i = 1, . . . , 3, β1 = β2 = 1/20, β3 = 1. Then an application of the moment formulas in

Theorem 10 yields Corr(R1,R2) = 0.24.

There is no known closed-form expression for computing the moments of the scaled Dirichlet distribution, that

is of the mixed-scaled Dirichlet Dir(γ,β, pκ) when the RV κi, i = 1, . . . , n, is assumed to be degenerate (e.g.,

Monti et al., 2011a; Ng et al., 2011, for details). In this respect, Theorem 10 provides analytical and conveniently

computable expressions for the desired moment formulas. Specifically, set κi ≡ 0 in Theorem 10, then, for r ∈ R+
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and i = 1, . . . , n,

E[Rri ] =

(
β∗N(i)

βi

)γi
Γ(γi + r)

Γ(γi)

∑
k∈N0

pκ∗N(i)
(k)

Γ(γ∗ + k)

Γ(γ∗ + k + r)
2F1

(
γi + r, γ∗ + k; γ∗ + k + r; 1−

β∗N(i)

βi

)
,

where γ∗ =
∑n
i=1 γi, β

∗
N(i)

=
∧
j∈N(i)

βj , and κ∗N(i)

d
=
∑
j∈N(i)

Nj with the RVs Nj being mutually independent and

Nj ∼ NB(γj , β
∗
N(i)

/βj). The PMF of κ∗N(i)
can be computed directly via (17) or recursively via (15).

Similarly, for ri, rj ∈ R+, i 6= j ∈ {1, . . . , n},

E[Rrii R
rj
j ] =

(
β∗N(i,j)

βi

)γi (β∗N(i,j)

βj

)γj
Γ(γi + ri)

Γ(γi)

Γ(γj + rj)

Γ(γj)∑
k∈N0

pκ∗N(i,j)
(k)

Γ(γ∗ + k)

Γ(γ∗ + k + ri + rj)
F1

(
γ∗ + k; γi + ri, γj + rj ; γ

∗ + k + ri + rj ; 1−
β∗N(i,j)

βi
, 1−

β∗N(i,j)

βj

)
,

where β∗N(i,j)
=
∧
v∈N(i,j)

βv and κ∗N(i,j)

d
=
∑
v∈N(i,j)

Nv with the RVs Nv being mutually independent and Nv ∼

NB(γv, β
∗
N(i,j)

/βv).

The moment formulas above involve infinite series. For computational purposes, one may use the first m + 1

terms of the series, where m ∈ N is such that the desired accuracy is attained. Bounds, Rm(f) =
∑∞
k=0 fk−

∑m
k=0 fk,

for the resulting truncation error can be obtained as

Rm(E[Rri ]) < 1−
m∑
k=0

pκ∗N(i)
(k) and Rm(E[Rrii R

rj
j ]) < 1−

m∑
k=0

pκ∗N(i,j)
(k).

We conclude the discussion in this section with a few more properties of the class of mixed-scaled Dirichlet

distributions. For this, we need two additional definitions.

Definition 3. For I = {i1, . . . , ij} ⊂ N , j < n, the vector

SI =

 Γ
(κi1 )
i1∑

i∈I Γ
(κi)
i

, . . . ,
Γ

(κij )

ij∑
i∈I Γ

(κi)
i


is called a sub-composition. The vector (Γi1 , . . . ,Γij ) is called the basis of the sub-composition.

Definition 4. Let {Ik}mk=1 where Ik = {ik,1, . . . , ik,jk} ⊂ N , j,m < n, denote a disjoint coverage of the set

{1, . . . , n}, that is ∪kIk = {1, . . . , n} and Ik ∩ Ih = ∅ for k 6= h. Each set Ik gives rise to the sub-composition SIk

with the corresponding basis

(
Γ

(κik,1 )

ik,1
, . . . ,Γ

(κik,jk
)

ik,jk

)
. Then the vector

RI =

(∑
i∈I1 Γ

(κi)
i∑n

i=1 Γ
(κi)
i

, . . . ,

∑
i∈Im Γ

(κi)
i∑n

i=1 Γ
(κi)
i

)
, I = {I1, . . . , Im},

is called an amalgamation.
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Roughly speaking, sub-compositions and amalgamations in the context of the probability distributions on Sn

are akin to marginalizations of arbitrary order and convolutions in the context of the probability distributions on

Rn0,+. We next prove that the class of mixed-scaled Dirichlet distributions is closed with respect to both notions.

The proofs are again relegated to the Appendix.

Theorem 11. The RV R = (R1, . . . , Rn) with joint PDF (19) is closed under sub-compositions and amalgamations.

Specifically, we have, for R ∼ Dir(γ,β, pκ),

(i) S|I| 3 SI ∼ Dir(γI ,βI , pκI ), where �I = {�i : i ∈ I} and “�” can be any one of γ, κ and β;

(ii) Sm 3 RI ∼ Dir(γ∗I ,β
∗
I , pκ∗I ), where �I = {�Ij : j = 1, . . . ,m}, “�” can be any one of γ∗, β∗ and κ∗, such

that

γ∗Ij =
∑
i∈Ij

γi and β∗Ij =
∧
i∈Ij

βi for j = 1, . . . ,m.

Also, the RV κ∗I = (κ∗I1 , . . . , κ
∗
Im) has the coordinates

κ∗Ij
d
=
∑
i∈Ij

(κi +Ni(κi)),

where the RVs Ni are conditionally independent given the RV κ = (κ1, . . . , κm) and such that Ni(κi) ∼

NB(γi, β
∗
Ii/βi), i ∈ Ij. For k∗ = (k∗1 , . . . , k

∗
m) ∈ Nm0 , the joint PMF of the RV κ∗I can be computed via

pκ∗I (k∗) =
∑

jv∈{0,...,k∗v}
1≤v≤m

∑
∑
i∈Iv ki=jv
1≤v≤m

pκ(k)
m∏
v=1

qv(k
∗
v − jv),

where qv(z) = P(
∑
i∈Iv Nv,i(ki) = z), z ∈ N0, with the RVs Nv,i being mutually independent and such that

Nv,i(ki) ∼ NB(γi + ki, β
∗
Iv/βi) for i ∈ Iv, v = 1, . . . ,m; the function qv can be computed with the help of

Equation (17).

5 Applications

To summarize the discussion hitherto, we have assumed that n(∈ N) BUs of a financial entity are formally described

by a RV X = (X1, . . . , Xn) that has a mixed-gamma distribution, MGn(γ,β, pκ). With the help of composi-

tional map (18), we have obtained the random proportions R = (R1, . . . , Rn) distributed mixed-scaled Dirichlet,

Dir(γ,β, pκ), where γ = (γ1, . . . , γn) and β = (β1, . . . , βn) are vectors of positive parameters, and κ = (κ1, . . . , κn)

is a RV. Our goal in what follows is to seek to compute the compositional variant of the CTE-based weighted

allocation rule

CTEcp(Ri, S) = E[Ri| S > F−1
S (p)], i = 1, . . . , n, p ∈ [0, 1), (23)
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which can be computed using the joint PDF of the RVs Ri and S:

fRi,S(r, s) =
∑

ki,k∗∈N0

p(κi,κ∗N(i)
)(ki, k

∗)
rγki−1 (1− r)γk∗−1

β
γki
i (β∗N(i)

)γki Γ(γki) Γ(γk∗)
sγki+γk∗−1 e

−s[r/βi+(1−r)/β∗N(i)
]
,

where r ∈ [0, 1], s ∈ R+, β∗N(i)
=
∧
i∈N(i)

βi , γk∗ = γ∗N(i)
+ k∗, and the joint PMF p(κi,κ∗N(i)

) follows from Equation

(20). In a similar fashion, other members of the class of weighted risk capital allocations can be computed for the

random proportions R = (R1, . . . , Rn).

The rest of this section is divided into two subsections. Namely, first, we outline a method to estimate the

parameters of the mixed-scaled Dirichlet distributions put forward in this paper, and second, we present a few

applications to the risk capital allocation problem.

5.1 Estimation of parameters

Consider observations x = (x1, . . . ,xd)
′, with xj = (x1j , . . . , xnj), j = 1, . . . , d, which represent sample losses arising

from n(∈ N) BUs of a financial entity. Our goal is to estimate the parameters γ = (γ1, . . . , γn) and β = (β1, . . . , βn),

as well as the PMF of the RV κ = (κ1, . . . , κn) that characterize the mixed-gamma distributions MGn(γ,β, pκ),

and so the mixed-scaled Dirichlet distributions Dir(γ,β, pκ). To this end, assume that the RV κ has a bounded

support, M ⊂ Nn0 , say. Then the multivariate mixed-gamma distributions establish a class of finite mixtures, and

PDF (13) can be written as

fΓ(κ)(x1, . . . , xn) =
∑
k∈M

pκ(k)

n∏
i=1

1

Γ(γki)
e−xi/βix

γki−1

i β
−γki
i , (x1, . . . , xn) ∈ Rn+.

The expectation-maximization (EM) algorithm is a common choice for estimating the parameters of finite

mixtures. It was proposed in Dempster et al. (1977) (also, Wu, 1983) for statistical estimation in the contexts with

incomplete data. We refer to, e.g., Karlis (2003) and Asimit et al. (2016) for the applications of the EM algorithm to

certain multivariate exponential and Pareto distributions. For obvious reasons, we ground the estimation procedure

herein in the one developed in Lee and Lin (2012) (also, Verbelen et al., 2016) for the class of mixed-Erlang

distributions. However, there are some differences. Namely, besides the natural restriction on the space of shape

parameters, the estimation procedures presented in ibid. assume common scale parameters β1 = · · · = βn and so

have to be adjusted to fit the context of the mixed-gamma distributions proposed in this paper. We sketch the

algorithm next.

Recall that we need to estimate the parameters γ = (γ1, . . . , γn), β = (β1, . . . , βn) and pκ(k), k ∈ M ⊂ Nn0 .

To initialize the parameters, including the choice of the set M ⊂ Nn0 , we adopt the procedure in Lee and Lin

(2012). Then we conduct the “expectation” (E) stage. That is, for s ∈ N0, let Ψ(s) = (p
(s)
κ (k),β(s),γ(s)) denote

the vector of parameters that results from the s-th iteration of the algorithm. The conditional expectation of the
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complete-data likelihood can be computed via

Q(Ψ| Ψ(s))

=
d∑
j=1

∑
k∈M

[
log(p(s)

κ (k)) +
n∑
i=1

(
(γi + ki − 1) log(xij)−

xij
βi
− (γi + ki) log(βi)− log(Γ(γi + ki))

)]
q(k|xj ,Ψ(s)),

(24)

where, for xj = (x1j , . . . , xnj), j = 1, . . . , d,

q(k|xj ,Ψ(s)) = p(s)
κ (k)

n∏
i=1

e−xij/β
(s)
i x

γ
(s)
i +ki−1
ij β

−γ(s)
i −ki

i

Γ(γ
(s)
i + ki)

/ ∑
k∈M

p(s)
κ (k)

n∏
i=1

e−xij/β
(s)
i x

γ
(s)
i +ki−1
ij β

−γ(s)
i −ki

i

Γ(γ
(s)
i + ki)

is the posterior probability function. The aforementioned conditional expectation, Q(Ψ| Ψ(s)), serves as the input

for the “maximization” (M) stage of the estimation procedure. Namely, in order to find the vector of updated

parameters that maximizes (24) subject to the constraint
∑
k∈M p

(s)
κ (k) = 1, we compute the partial derivatives

of Q(Ψ| Ψ(s)) with respect to p
(s)
κ (k), β and γ. Equating these partial derivatives to zero leads to the following

equations, and thereafter to the parameter vector Ψ(s+1) = (p
(s+1)
κ (k),β(s+1),γ(s+1)), associated with the (s+1) ∈

N iteration of the EM algorithm.

• For p
(s+1)
κ (k), we have

p(s+1)
κ (k) =

1

d

d∑
j=1

q(k|xj ,Ψ(s)), k ∈M.

• For β(s+1), we solve

β
(s+1)
i =

∑d
j=1 xij

d
∑
k∈M p

(s+1)
κ (k) (γ

(s+1)
i + ki)

, i = 1, . . . , n.

• For γ(s+1), we arrive at

d∑
j=1

log(xij)− d

log

 d∑
j=1

xij/d

− log

(∑
k∈M

α
(s+1)
k (γ

(s+1)
i + ki)

)
+
∑
k∈M

p(s+1)
κ (k) ψ(γ

(s+1)
i + ki)

 = 0,

where i = 1, . . . , n and ψ(·) denotes the digamma function. The latter system of non-linear equations can be

solved numerically with the help of, e.g., the R package “BB” (Varadhan and Gilbert, 2015).

The E and M stages iterate unless the improvement in the partial log-likelihood between two consecutive stages

falls below a pre-specified threshold.

5.2 A numerical example

In this subsection, we offer a numerical example to illustrate the method to allocate risk capital proposed in

this paper. We briefly recall that the gist of our method is the suggestion to substitute the commonly employed
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“composition of allocations”, Ci(A(X1, S), . . . , A(Xn, S)), with an “allocation of the composition”, Ci(X1, . . . , Xn),

where i = 1, . . . , n.

In order to construct the desired illustration, we consider an insurance portfolio which comprises three BUs. The

RVs representing the risks due to the BUs are distributed Pareto, log-normal, and gamma. More specifically, we set

X1 ∼ Pa(3, 200), X2 ∼ Log-N(4.1, 1), and X3 ∼ Ga(2, 50). The distributions are chosen such that the means are

all equal, that is E[Xi] = 100, i = 1, 2, 3. Also, these distributions are common choices in actuarial practice (e.g.,

Bahnemann, 2015, for examples). Furthermore, we assume that the dependencies among the RVs X1, X2 and X3

are governed by the Gaussian copula with the correlation matrix

Σ =


1.00 0.50 0.25

0.50 1.00 −0.50

0.25 −0.50 1.00

 , (25)

with the entries being motivated by the matrix used in the quantitative impact study published by the European

Insurance and Occupational Pensions Authority (EIOPA, 2010).

Then we simulate 1000 samples from the aforementioned set-up, and we fit the proposed multivariate mixed-

gamma distribution to the simulated samples, pretending that the true distributions are unknown. Using the

estimation method described in Section 5.1, we estimate the parameters of the multivariate mixed-gamma distribu-

tion, which are summarized in Table 1. In addition, Figure 3 depicts the pair-wise log transformed density contours

and the marginal histograms for the fitted multivariate mixed-gamma distribution, which visually confirm that this

class of distributions fits the simulated data well.

i βi γki1 γki2 γki3 γki4 γki5 γki6 γki7 γki8 γki9
1 27.53 0.98 2.98 13.98 1.98 9.98 0.98 3.98 12.98 30.98
2 13.76 4.13 13.13 72.13 28.13 28.13 2.13 6.13 12.13 30.13
3 14.96 3.19 3.19 3.19 1.19 3.19 8.19 7.19 6.19 6.19
pκ 0.2156 0.1396 0.0040 0.0260 0.0238 0.2241 0.2074 0.0377 0.0085

γki10 γki11 γki12
2.98 11.98 35.98
2.13 5.13 6.13
15.19 15.19 14.19
0.0778 0.0277 0.0078

Table 1: The parameters of the multivariate mixed-gamma distribution fitted against the simulated data.

Finally, based on the obtained parameters for the multivariate mixed-gamma distribution, we obtain the mixed-

scaled Dirichlet distribution that describes the joint behavior of the random proportions, and compute the values

of a few risk capital allocation rules, which are presented in Table 2.

Table 2 hints at the following observations.

• The substitution of the “composition of allocations” method with the proposed in this paper “allocation of
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Figure 3: Bivariate log transformed density contours and marginal histograms for the fitted multivariate mixed-
gamma distribution.

# Risk capital allocation Business unit 1 Business unit 2 Business unit 3

1 E[Xi]/
∑3
i=1 E[Xi] 0.335 0.335 0.330

E[Ri] 0.262 (−21.8%) 0.335 (0%) 0.403 (22.1%)

2 CTE0.95(Xi, S)/
∑3
i=1 CTE0.95(Xi, S) 0.559 0.317 0.124

CTEc0.95(Ri, S) 0.546 (−2.3%) 0.319 (0.6%) 0.135 (8.9%)

Table 2: Comparisons of the “composition of allocations” method and the “allocation of a composition” method
with the help of the fitted mixed-scaled Dirichlet distribution; Ri = Xi/S.

a composition” method leads to outcomes of the risk capital allocation exercise that differ in both order and

magnitude (e.g., the case of allocation rule #1). The reason, in that particular case, is that the ratio of

expected values, E[Xi]/E[S], disregards the interdependencies among the risks due to the various BUs, and

hence may yield inappropriate risk capital allocations.

• In the case of allocation rule #2, the orders, as stipulated by the two approaches, agree. The cause is arguably

that the CTE-based risk capital allocation rule accounts for the joint dependence of the risks due to the BUs

of interest, as well as for the dependence of each risk on the aggregate risk.
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• A closer inspection of the CTE-based proportional allocation formula helps to elucidate a subtle differences

between the two approaches studied in case #2. For this, we recall the elementary formula for computing the

conditional covariance of any pair of RVs X, Y ∈ R and an event Σ ⊆ Ω

Cov(X,Y |Σ) = E[X Y |Σ]− E[X|Σ]E[Y |Σ],

given that the expectations are finite and well-defined. Denote by sp = F−1
S (p) the inverse CDF of the

aggregate risk, then for i = 1, . . . , n and p ∈ [0, 1), we observe

CTEp(Xi, S)∑n
i=1 CTEp(Xi, S)

= CTEcp(Ri, S) +
Cov(Ri, S |S > sp)

E
[
S |S > sp

] = TCovp(Ri, S), (26)

where the functional TCovp(·) is known as the modified tail covariance (Furman and Landsman, 2006, and

references therein). Hence, the classic CTE-based proportional allocation rule and its compositional coun-

terpart are explicitly connected, and the sign of the covariance Cov(Ri, S |S > sp), p ∈ [0, 1) is the de-

cisive factor as to the order of magnitude of the two approaches to allocate risk capital. This finding is

reflected in Table 2. Namely, according to the setup of correlation matrix (25), the risk contribution due to

BU 1 has the highest positive conditional correlation Corr(R1, S| S > s0.95) = 0.24 among the three risks

(Corr(R2, S| S > s0.95) = −0.03 and Corr(R3, S| S > s0.95) = −0.31), and this yields

CTE0.95(X1, S)∑3
i=1 CTE0.95(Xi, S)

> CTEc0.95(R1, S).

The same rationale can be used to explain the differences between the two allocation methods for BU 2 and

BU 3.

• Stochastic dependence is not the only driver that dictates the orders of the outcomes of the risk capital

allocation exercise within risk capital allocation rules #1 and #2. These orders are also determined by

the shapes of the distributions of the risks due to the three BUs. Namely, in the context of risk capital

allocation rule #1, the risk distributed gamma draws the largest proportion of the aggregate risk capital, as

this distribution has its mass concentrated around the mean rather than in the tails. On the other hand, in

the case of allocation rule #2, the order flips, and the risk distributed Pareto drags the largest portion of

the aggregate risk capital, since Pareto is the most heavy-tailed of the three distributions employed in the

example.

6 Conclusions

There exist a great variety of distinct ways to allocate the aggregate risk capital to constituents. While the choice

of the most appropriate allocation rule should be dictated by the goals of the exercise, and so may vary from task

to task, all allocation rules nowadays aim at determining the percentages of the aggregate risk capital that have to
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be set aside for the business units of a financial entity. These percentages are risk capital allocations due to the

business units, normalized in order to ensure the full-additivity of the end result.

In this work, we have discussed the idea of replacing the aforementioned deterministic percentages with the

random proportions that sum up to one almost surely, thus getting hands directly on the stochastic phenomenon that

underpins the allocation procedure. In order to study the random proportions, we have introduced, in the reverse

order, a new class of multivariate mixed-scaled Dirichlet distributions that govern the stochastic characteristics of

the random proportions, also known as compositions, as well as a class of multivariate mixed-gamma distributions

that serve as a basis for these compositions. We have studied some relevant (closure) properties of the two just-

mentioned classes of probability models and demonstrated that they provide versatile yet surprisingly tractable

tools for risk analysis, and in particular, for the purpose of risk capital allocation. A by-product of our approach

to allocating the aggregate risk capital is that it allows to unify the bottom-up and the top-down threads in the

allocations’ state-of-the-art into one encompassing method.

Our numerical study suggests that the classical approach to the risk capital allocation exercise and the one

studied in this paper lead to results that may differ in both order and magnitude of the obtained values of the

allocated risk capital. A notable observation in this respect relates to the notion of positive dependence. Namely,

in the classical approach to allocating risk capital, e.g., the CTE-based allocation rule, or the class of weighted

allocation rules, stronger positive dependencies of the risk due to a business line on the aggregate risk of the

financial entity assuredly imply larger shares of the aggregate risk capital. This guideline is naturally toned down

when random proportions are considered.
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Appendix A Technical proofs

Proof of Theorem 1. By definition of the Laplace transform and interchanging the order of the summation and

integration, we readily have

f̂Γ(κ)(t) =
∞∑
k=0

pκ(k)(1 + βt)−(γ+k) = (1 + βt)−γ
∞∑
k=0

pκ(k)(1 + βt)−k, t ∈ R0,+.

Also, we have

E [exp(−t(Γ + Sκ))] = f̂Γ(t)E
[(

1

1 + βt

)κ]
= f̂Γ(t)Pκ

(
1

1 + βt

)
, t ∈ R0,+,

which establishes the equality in distribution. This completes the proof of the theorem.

Proof of Theorem 2. The proof of the succeeding assertion is borrowed heavily from Lee and Lin (2010). Fix an

arbitrary positive continuous distribution with PDF f , CDF F and Laplace transform f̂ . Consider the sequence of

Laplace transforms
{
f̂n

}
n∈N0

, such that

f̂n(t) =

(
1 +

t

n

)−γ ∫ ∞
0

(
1 +

t

n

)−bxnc
f(x)dx, (27)

where ‘b·c’ denotes the flooring function. Then, on the one hand side, f̂n(t) is the Laplace transform of an MG

PDF, that is, for β = 1/n and pκ(k) = F ((k + 1)β)− F (kβ), k ∈ N0, Equation (27) is equivalent to

∞∑
k=0

(∫ (k+1)β

kβ

f(x)dx

)
(1 + βt)−(γ+k) = (1 + βt)−γ

∞∑
k=0

pκ(k) (1 + βt)−k = f̂Γ(κ)(t), t ∈ R0,+.

On the other hand side, by the dominated convergence theorem, we obtain

lim
n→∞

f̂n(t) =

∫ ∞
0

f(x)e−xtdx = f̂(t)

for all t ∈ R0,+. The assertion is thus proved by evoking Lévy’s continuity theorem.
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Proof of Theorem 3. We prove (i), as the remaining assertions either follow from it or hold by construction. We

have for (t1, . . . , tn) ∈ Rn0,+,

f̂Γ(κ)(t1, . . . , tn) =
∞∑

k∈Nn0

pκ(k)
n∏
i=1

(1 + βiti)
−(γi+ki) =

n∏
i=1

(1 + βiti)
−γiE

[
n∏
i=1

(1 + βiti)
−κi

]
.

This establishes the joint Laplace transform and so proves (i).

Proof of Theorem 6. Let Ni ∼ NB(γi, β
∗/βi), i = 1, . . . , n, then the associated PGF can be expressed as

PNi

(
1

1 + β∗t

)
=

(
1 + βit

1 + β∗t

)−γi
, t ∈ R0,+.

Furthermore, let Pκ(·) denote the joint PGF of RV κ. For t ∈ R0,+, we have, starting with Point (i) of Theorem

3,

E

[
exp

(
−t

n∑
i=1

Γ
(κi)
i

)]
=

n∏
i=1

(1 + βit)
−γi Pκ

(
1

1 + β1t1
, . . . ,

1

1 + βntn

)

= (1 + β∗t)−γ
∗
E

[
(1 + β∗t)−

∑n
i=1 κi

n∏
i=1

(
1 + βit

1 + β∗t

)−(γi+κi)
]

= (1 + β∗t)−γ
∗
E

[
(1 + β∗t)−

∑n
i=1 κi

n∏
i=1

PNi(κi)

(
1

1 + β∗t

)]
,

where Ni(κi) ∼ NB(γi + κi, β
∗/βi), i = 1, . . . , n, that is the RV Ni(κi) follows the negative binomial distribution

with a random shape parameter. The expectation in the last line is the PGF of the RV κ∗
d
=
∑n
i=1(κi + Ni(κi))

evaluated at (1 + β∗t)−1, so the distribution of the RV Γ
(κ∗)
+ is a mixed-gamma due to Theorem 1. Also, the PMF

of the RV κ∗ follows as

pκ∗(m) =
m∑
j=0

∑
k1+···+kn=j

[
pκ(k) P

(
n∑
i=1

Ni(ki) = m− j

)]
for all m ∈ N0.

This completes the proof of the theorem.

Proof of Theorem 8. We begin with the joint PDF of the basis RV Γ(κ) = (Γκ1
1 , . . . ,Γκnn ) (Definition 2)

fΓ(κ)(x1, . . . , xn) =
∑
k∈Nn0

pκ(k)
n∏
i=1

e−xi/βix
γki−1

i

β
γki
i Γ(γki)

, (x1, . . . , xn) ∈ (0, ∞)n.

For Γ
(κ∗)
+ =

∑n
i=1 Γ

(κi)
i , consider the change of variables Ri = Γ

(κi)
i /Γ

(κ∗)
+ , and so Γ

(κi)
i = Ri Γ

(κ∗)
+ , i = 1, . . . , n.
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Since the corresponding Jacobian is (Γ
(κ∗)
+ )n−1, we have, for (r1, . . . , rn) ∈ Sn and s ∈ R+,

f
R,Γ

(κ∗)
+

(r1, . . . , rn, s) = fΓ(κ)(r1s, · · · , rns)sn−1 =
∑
k∈Nn0

pκ(k)
n∏
i=1

r
γki−1

i

β
γki
i Γ(γki)

s
∑n
i=1 γki−1e−s

∑n
i=1 ri/βi . (28)

The integration

fR(r1, . . . , rn) =

∫ ∞
0

f
R,Γ

(κ∗)
+

(r1, . . . , rn, s)ds

completes the proof of the theorem.

Proof of Theorem 9. We repartition the RV R as follows

Ri =
Γ

(κi)
i∑

i∈I Γ
(κi)
i +

∑
i∈Ic Γ

(κi)
i

, i ∈ I and R∗Ic =

∑
i∈Ic Γ

(κi)
i∑

i∈I Γ
(κi)
i +

∑
i∈Ic Γ

(κi)
i

.

Theorem 6 implies ∑
i∈Ic

Γ
(κi)
i ∼MG(γ∗Ic , β

∗
Ic , pκ∗Ic ),

and

κ∗Ic =
∑
i∈Ic

(κi +Ni(κi)), (29)

where the RVs Ni(κi) ∼ NB(γκi , β
∗
Ic/βi), i ∈ Ic are conditionally independent given the RV κ.

Therefore, we conclude that

S|I|+1 3 (RI , R
∗
Ic) ∼ Dir((γI , γ∗Ic), (βI , β∗Ic), p(κI ,κ∗Ic )),

where the joint PMF of RV (κI , κ
∗
Ic) can be computed via expression (16) in Theorem 6. This completes the proof

of the theorem.

Proof of Theorem 10. The r-th order moment formula follows from Note 4 and Gupta and Nadarajah (2004),

whereas the joint moment formula is obtained directly by the integral representation of the Appell’s F1 function

(see, Equation (9.184) in Gradshteyn and Ryzhik, 2014). This completes the proof of the theorem.

Proof of Theorem 11. Assertion (i) follows immediately from, e.g., stochastic representation (18). To confirm As-

sertion (ii), recall that we have already shown that sums of mixed-gamma distributions are also mixed-gamma.
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That is, due to Theorem 6, we have

∑
i∈Ij

Γ
(κi)
i ∼MG(γ∗Ij , β

∗
Ij , pκ∗Ij

), j = 1, . . . ,m,

where κ∗Ij
d
=
∑
i∈Ij (κi + Ni(κi)) with the RVs Ni being mutually independent and such that Ni(κi) ∼ NB(γi +

κi, β
∗
Iv/βi) that are conditionally independent given the RV κ. The joint PMF of κ∗I = (κ∗I1 , . . . , κ

∗
Im) can be

computed by conditioning as follows:

pκ∗I (k∗) = E
[
E
[
1{κ∗I = k∗}

∣∣κ]] = E

 m∏
j=1

P

∑
i∈Ij

Nj,i(κi) = k∗j −
∑
i∈Ij

κi

 ,
where the RVs Nj,i are mutually independent and such that Nj,i(ki) ∼ NB(γi+ki, β

∗
Ij/βi) for i ∈ Ij , j ∈ (1, . . . ,m),

ki ∈ N0. This yields the closure under amalgamations property. The proof is completed.
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