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Potential Impacts of Climate Change on U.S. 
Wildfire Risk by Mid Century 

Executive Summary 
Impacts to U.S. Property losses from future climate change influences on U.S. Wildfire Risk are evaluated using the 
AIR Wildfire Model for the United States (AIR 2018) for the year 2050 under an assumed Representative 
Concentration Pathway (RCP) 8.5. The AIR Model captures the current risk for the western half of the U.S. across the 
thirteen U.S. states where property losses are generally largest (AZ, CA, CO, ID, MT, NM, NV, OK, OR, TX, UT, WA, 
WY). The RCP 8.5 greenhouse gas concentration-based climate scenario is a business-as-usual (Fossil-fueled 
development) scenario and one that society have been following since 2005. The period through 2050 is relevant for 
practice of Society of Actuaries members. The basic approach for this study involves first defining targets of how 
climate change is expected to alter the wildfire hazard risk and then creating 50,000-year climate change catalogs by 
subsampling the 100,000-year catalog in the AIR Model according to the defined targets. The latter is a file that 
contains information on stochastically generated wildfire events defined in terms of burned area, flame length, time 
of year, stochastic year, etc. which the loss-component of the AIR Model uses to generate losses by location. Each 
years-worth of stochastic events is generated using a historical seed year where the events are influenced by the 
climate of that seed year. Any one of the events in the 100,000-year catalog can occur today. Thus, AIR’s 100,000-
year catalog reflects the current climate, while the 50,000-year climate change conditioned catalog reflects the 
climate at RCP 8.5 2050. 

The recent literature of wildfire (wildland fire) dependence on climate is reviewed. The latest studies show a strong 
dependence of burned forest area to a quantity of atmospheric aridity called vapor pressure deficit (VPD), which is a 
measure of how far the atmosphere is from being saturated. A high VPD (drier air) means that the atmosphere can 
more quickly, and more thoroughly, dry the land surface, including the fuel (e.g., vegetation) on and in the surface. 
A drier fuel load (i.e., the total amount of combustible material in a defined space) in turn increases flammability of 
a forest or other ecosystem leading to the generally positive relationship between fire and VPD. VPD has been 
increasing in the recent historical past and burned area has increased at the same time. Climate change modeling 
studies show that VPD will continue to increase because the saturated vapor pressure will increase more than the 
actual vapor pressure in the western US. Saturated vapor pressure is principally determined by the temperature 
while actual vapor pressure is determined by the available precipitation. Increasing temperature increases the 
amount of moisture needed for saturation, so even no change in precipitation yields an increase in VPD. Because 
high VPD reflects a combination of low relative humidity and high temperature it is typically a better predictor of fire 
incidence than either factor alone. 

Annual totals on wildfire burn area from the Fire Occurrence Database (FOD) from 1992–2015 are used in 
conjunction with VPD calculations from summertime (June–August) reanalysis data over the same period to develop 
annual burned area-VPD relationships for each of the 30 ecoprovinces in the AIR Model. Ecoprovinces are 
geographic units intended to represent groupings of uniform climate and physical geography landforms that are 
typically characterized by similar or related ecosystems across the unit. The fitted Generalized Linear Models (GLMs) 
show that burned area tends to increase with summertime VPD, but the degree of sensitivity varies considerably 
between ecoprovinces. Some ecoprovinces are highly responsive to increasing summertime VPD; others show a 
weak to no response; while the rest are mildly responsive with high uncertainty associated with their behavior.  

Several general circulation models (GCMs) were reviewed (eighteen were available from the fifth phase of the 
Coupled Model Intercomparison Project (CMIP5)). Two were selected that represent low and high dryness 
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projections for 2050 relative to 2018, the representative or “base” year of the AIR model.) A mean VPD projection, 
taken as the average of low and high projections, was combined with the historical annual burned area-VPD 
relationships to create an annual burned area target for each ecoprovince for 2050. The targets are redefined as the 
relative change in burned area from the present-day burned area distributions before being used for subsampling. 

Significant increases in area burned were projected by 2050. Changes in California are among the smallest 
percentage wise at 100% by 2050 whereas changes in Colorado are over 600% by 2050. The extreme increases in 
Colorado punctuate the expected largest increases in area burned over the intermountain west (area between 
Sierra Nevada and Cascade Range on the west and Rocky Mountains on the east). The projected several-fold 
increases in annual area burned are consistent with results from a prior study done independently and published 
earlier by the National Research Council (2011). 

Climate change conditioned catalogs were created using the 2050 burn area targets for each ecoprovince. Entire 
years-worth of stochastic events in each ecoprovince were swapped to achieve the target. Each swapped years-
worth of events has the same historic seed year as the one it replaced, in order to retain the climate information 
baked into each stochastic year. All targets were achieved in the subsampling procedure. No explicit provision was 
made for the possibility for the exact same area to be burned twice in the same or consecutive years. However, the 
likelihood is very small given that the total amount of burnable area is typically three orders of magnitude larger 
than what is projected to burn, even for ecoprovinces that are projected to have significant increases in annual 
burned area. 

The climate change conditioned catalogs were used to evaluate climate change impacts (relative change in losses) to 
the AIR Worldwide U.S. Industry Exposure Database, with all factors other than area burned held constant. The 
database contains information on all property considered insurable from a structural and use standpoint including 
buildings for residence, commerce, and industry and includes mobile homes, automobiles, and contents within 
structures. Estimates of average annual loss across the AIR Model domain increases 125% by 2050. Loss increases in 
California are relatively modest at 50% but for some states like Colorado the average annual loss triples. For most 
states the losses double. Percent changes in return period losses are also high: higher than those for average annual 
loss (AAL) at low return periods but less at high return periods. More granular results show that the biggest 
increases in risk do not coincide with areas that currently have the highest exposure and suggest areas where 
mitigation efforts should be focused. 

The results of this study yield useful information about how wildfire risk and loss may change in the western U.S. in 
the future because of climate change under the assumptions of a particular RCP scenario, which is a subset of 
climate projection information from GCMs. No changes in ecoprovince vegetation, industry exposure, fire 
management practices, other ignition sources, and climate-wildfire relationships (other than VPD) were considered 
in this study. Future studies are recommended to address some, or all of the limitations noted above. 
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Section 1. Introduction 
Wildfire activity has increased during the last several decades with very extreme activity punctuating the last few 
years across many parts of the western United States. Several studies indicate a connection to climate variability and 
change and a big concern therefore is that as climate change continues the wildfire risk will worsen. This report 
provides results from a recently conducted study using the AIR Wildfire Model for the United States and available 
climate and climate change information to estimate how climate change may influence wildfire losses to U.S. 
property by mid-century. Losses here refer to the costs incurred to the insurer to replace and repair damaged 
buildings and contents, and to remunerate businesses for loss of revenue stemming from damaged property. The 
exposure at risk is all property in the western U.S. considered insurable from a structural and use standpoint 
including buildings for residence, commerce, and industry and includes mobile homes, automobiles, and contents 
within structures.  

In this study we examine how climate change will affect the average annual burned area from wildfires. Other 
factors that may vary over time, such as how vegetation types may change, exposure changes, or mitigation 
strategies may evolve, are held constant and are based on present-day. A new catalog representing the possible 
wildfire risk by 2050 is created by sub-sampling wildfire events from the AIR Model. Comparing the loss probability 
distributions between the current and future climates allows us to quantify the possible impact of climate change on 
wildfire risk by 2050. 

We begin with a discussion of the relevant literature, some of the recent extreme fires, and the connection between 
climate and wildfire.  

1.1 SOME HISTORICAL PERSPECTIVE 
Fires are a natural process in most terrestrial ecosystems and probably have been occurring for several hundred 
million years (Scott & Glasspool, 2006). While wildland fires occur naturally, they do cause significant damage to 
properties, with losses becoming increasingly large in western U.S. in recent years. Several factors have contributed 
to this. One of the most important is the fact that many wildlands are considered desirable places to live and 
construction of properties in fire-prone wildlands, namely the wildland-urban interface (WUI), occurred at rapid 
rates in recent decades (Radeloff et al., 2018), with little indication that this activity will be curtailed in the near 
future (Mann et al., 2014). This has been a major factor driving property losses in recent decades.  

A second factor is the policy for many decades of fighting as many forest fires as possible in the western states. This 
has resulted in the buildup of plant biomass (the fuel for wildfires) and altered forest structure in ways that can 
promote more devastating wildfires (Keane et al., 2002). Because it is widely recognized by the wildfire science 
community that forest fire suppression can lead to worse fires in the future, the U.S. Forest Service is changing its 
strategies for forest management, including the use of prescribed fires1, to reduce future risk of damaging wildfires.  

A third factor is the introduction, intentionally or unintentionally by human actions, of invasive plant species that 
significantly affect fire behavior from the perspective of risk to properties2. 

Causes of wildfire are varied, but in the western states, humans are responsible for most fires by number in recent 
decades (Balch et al., 2017). Lightning caused the most burned area in the western states (but not California) since 
2001 (Statistics | National Interagency Fire Center (nifc.gov)) and during 2020 lightning was a major cause of wildfire 

 

 

1 https://www.fs.usda.gov/science-technology/fire; https://smokeybear.com/en/about-wildland-fire/benefits-of-fire/prescribed-fires 
2 e.g.: https://www.usgs.gov/centers/werc/science/invasive-plants-and-fire-0?qt-science_center_objects=0#qt-science_center_objects; 
https://theconversation.com/invasive-grasses-are-fueling-wildfires-across-the-us-126574 

https://www.nifc.gov/fire-information/statistics
https://www.fs.usda.gov/science-technology/fire
https://smokeybear.com/en/about-wildland-fire/benefits-of-fire/prescribed-fires
https://www.usgs.gov/centers/werc/science/invasive-plants-and-fire-0?qt-science_center_objects=0#qt-science_center_objects
https://theconversation.com/invasive-grasses-are-fueling-wildfires-across-the-us-126574
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ignitions throughout the west. In California, AIR estimates that area burned in 2020 in lightning-caused fires was 
more than 10 times the annual average during the previous 19 years. Another cause can be structural failure of the 
electricity utility distribution network, especially in California3 but other states as well4.  

Practices both during construction of new properties (for California see, e.g., https://www.hcd.ca.gov/building-
standards/state-housing-law/wildland-urban-interface.shtml) and during maintenance of existing properties may 
have quantitatively important effects on property damage sustained in the event of a nearby wildfire5. For new 
construction (and retrofits), structures can be hardened against embers (flying pieces of burning plant biomass), 
which are reportedly the main cause of structural damage caused by wildland fires. For property maintenance, the 
‘defensible space’ surrounding structures can be an important barrier against wildfires and an aid to firefighting 
actions6. 

New terminology is being used to describe the largest of recent wildfires. The term ‘gigafire’ is now used to refer to 
fires burning more than a million acres (Gabbert, 2020). (The term megafire was already being used to denote 
100,000-acre fires, even though the prefix ‘mega’ means million in scientific usage.) Much of the media coverage 
implies that gigafires are a new phenomenon, but we know of several million-acre wildfires from the late 1800s and 
early 1900s in the United States, and there may be lessons to be learned from that history about the potential for 
even larger fires today. For example, within the period 100 to 150 years ago, episodes of very dry and very windy 
conditions (related to past climate variability) were associated with what would now be called gigafires. Examples 
are the Great Fire of 1910 in Idaho and Montana that burned 3 million acres (Peterson, 1994/95); the Peshtigo Fire 
of 1871 in northeastern Wisconsin the burned 1.2 million acres in a day (Brown, 2004); the Great Michigan Fire, also 
in 1871, that burned 2.5 million acres (Brown, 2004); the Thumb Fire in Michigan in 1881 that burned over a million 
acres in less than a day; and in 1898, the 3 million acres burned in South & North Carolina in two days (Hairr, 2002). 
These examples are for fire complexes composed of multiple fires burning (nearly) simultaneously in close 
proximity, which is also the case for today’s gigafires. This raises the issue of whether labeling today’s largest wildfire 
complexes as ‘record’ is a result of recency bias and possibly reducing an awareness of the probabilities of even 
larger individual wildfires and wildfire complexes in the near future. 

A similar consideration may be needed in terms of assessing changes in total annual area burned in the United 
States. One analysis of historical wildfire data (Littell et al., 2009) indicates recent wildfire activity, in terms of fire 
size in the western United States in recent years, is not new. Rather, area burned at least 100 years ago may have 
been like the area burned in recent years, with a long-term downward trend in annual area burned, bottoming out 
in the 1960s, and since then increasing to areas burned 100 years ago. Are we, therefore, moving through a normal 
centennial cycle for wildfire area burned, and if so, are we reaching the peak or can we expect a continuation of 
increasing area burned, and for how long? 

On an even longer time scale (the last 3000 years), there is good evidence of cycles of fire activity (biomass burned 
in this case) with periodicity on the scale of multiple hundreds of years (Marlon et al., 2012). There are many factors 
underlying these longer-term historic cycles, but one question especially relevant for this project is: will a new, 
future climate disrupt the older cycles of wildfire activity, perhaps increasing the amplitude of the area burned, or 
altering the frequency of the cycle, or both. And as a possible specific ‘warning’ about the future, it appears that 
biomass burned in the western U.S. was extensive during the Medieval Warm Period—from 1000 to 800 years 

 

 

3 https://www.fire.ca.gov/stats-events/; https://www.levinsimes.com/electrical-power-3rd-most-common-cause-of-wildfire/ 
4 https://wildfiremitigation.tees.tamus.edu/faqs/how-power-lines-cause-wildfires 
5 e.g.: https://www.sacbee.com/news/california/fires/article227665284.html; https://www.mdpi.com/2571-6255/2/3/49/pdf;  
https://firesafesanmateo.org/resources/california-wildland-urban-interface-code-information; https://www.denverpost.com/2019/04/11/california-
building-code-wildfires/ 
6 https://www.ready.gov/sites/default/files/2020-03/home-builder-guide-construction-defensible-space.pdf 

https://www.hcd.ca.gov/building-standards/state-housing-law/wildland-urban-interface.shtml
https://www.hcd.ca.gov/building-standards/state-housing-law/wildland-urban-interface.shtml
https://www.fire.ca.gov/stats-events/;%20https:/www.levinsimes.com/electrical-power-3rd-most-common-cause-of-wildfire/
https://wildfiremitigation.tees.tamus.edu/faqs/how-power-lines-cause-wildfires
https://www.sacbee.com/news/california/fires/article227665284.html;%20https:/www.mdpi.com/2571-6255/2/3/49/pdf
https://firesafesanmateo.org/resources/california-wildland-urban-interface-code-information
https://www.denverpost.com/2019/04/11/california-building-code-wildfires/
https://www.denverpost.com/2019/04/11/california-building-code-wildfires/
https://www.ready.gov/sites/default/files/2020-03/home-builder-guide-construction-defensible-space.pdf
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ago—while biomass burned was low during the Little Ice Age—about 400 years ago (Marlon et al., 2012). In that 
context, and from a western U.S. wildfire-caused property damage perspective, a warmer future, akin to the 
Medieval Warm Period contrasted with the Little Ice Age, may be undesirable. 

Finally, ongoing and expected future climate changes (and increased climate variability) have the potential to 
increase the frequency, intensity, and/or areal extent of wildfires in the western states. Among many factors, we 
already see a lengthening of the ‘fire season’ in parts of the west due to changes in temperature and precipitation 
amount and timing (Schweizer, 2019). Any increase in the frequency or severity of drought—either past, present, or 
future—might also play a key role in wildfire activity, as could any changes in local or regional climatologies of winds. 
Importantly, climate change will almost certainly not be uniform across the western states, and different 
ecosystems (ecoprovinces—see Appendix B) will respond differently to climate change, so regional perspectives will 
be important to considerations of future changes in wildfire risk due to climate change. 

1.2 RECENT EVENTS 
The period 2017 to 2020 is thus far the most destructive wildfire period in recent U.S. history. The California 
wildfires of 2017 collectively burned over 1.5 million acres and caused the most property damage in the state ever 
at the time. It was a record setting year for the state. Damages of US$18 billion exceeded by a factor of three the 
previous record set in 1991. Five of the 20 most destructive wildfires in the state's history burned between October 
and December: #1 Tubbs, #6 Nuns, #7 Thomas, #11 Atlas, and #17 Redwood Valley Complex. 

Then, it happened again in 2018—and even worse, with nearly 2 million acres burned. Total damages exceeded 
US$26 billion. The Carr Fire in July and August 2018 caused more than US$1.5 billion in property damage. The 
Mendocino Complex Fire burned more than 459,000 acres (186,000 ha), becoming the largest fire complex in the 
state's history at the time, with the complex's Ranch Fire surpassing the Thomas Fire and the Santiago Canyon Fire 
of 1889 to become California's single-largest recorded wildfire.  

Although there was a reprieve in 2019, the U.S. Wildfire season returned with a vengeance in 2020. A combination 
of factors including moisture from the remnants of tropical cyclone Fausto that energized a cold front that 
generated numerous lightning strikes, were responsible for inducing the fires in mid-August across California, 
Oregon, and Washington. Other factors including a large scale-pressure ridge over the western U.S. that contributed 
to strong down-sloping winds during the 2020 fire season as well as to record setting heat that primed the fuel early 
on, ultimately contributed to wildfires that burned more than 8.2 million acres (33,000 square kilometers) of land. In 
September 2020, the August Complex (composed of 38 individual fires) surpassed the Mendocino Complex to 
become California's single-largest recorded wildfire complex. 

The wildfires in California, and to a lesser degree the western U.S. contribute the majority of the damage and loss in 
the U.S. and also contribute significantly to acres burned. Figure 1 indicates the number of fires and acres burned 
annually across the U.S. since 1992. Two points are noteworthy. One is that the number of fires has been 
decreasing. The second is that the total number of acres burned has been increasing. The two points together 
indicate that the average fire size has been increasing. 

1.3 WILDFIRE DEPENDENCE ON WEATHER AND CLIMATE 
There is a definite connection between climate, weather and wildfire. However, it is not as simple as saying dry 
areas are at high risk. Collins et al. (2006) note the importance of an oscillation between wet and dry periods for 
growing vegetation and then drying it to create the fuel for wildfires. That study provides an excellent overview of 
the connection between wildfire and climate, and we have excerpted below for convenience some key comments 
from that paper. As one extreme example of this phenomenon, following two years of exceptionally heavy rain in  
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Figure 1 
ANNUAL TOTAL NUMBER OF WILDFIRES (BLUE LINE) AND ACRES BURNED EACH YEAR IN THE UNITED STATES 
DURING THE PERIOD 1991–2020. 

 
Source: Data from National Interagency Fire Center (NIFC). 

Australia, which produced ample fuel, 15% of the continent burned in the 1974/75 summer – almost three times 
the area of California. 

Several fire scar dendrochronological studies of multi-century fire patterns, and studies of recently recorded fire 
area and weather in the western United States, have shown that an antecedent increase in moisture, followed by 
drought, leads to extensive synchrony in fires (Swetnam and Betancourt 1998; Brown and Shepperd 2001; 
Westerling et al., 2003; Stephens and Collins 2004). The effect of this wet-dry sequence is a net increase in fuel 
readily available for burning. The connection between moisture availability and fire varies across vegetation types, 
depending on the fuel dynamics. In areas where fine fuels (grasses, forbs, light shrubs, etc., found in grasslands and 
shrublands) are prevalent, fuel accumulation is responsive to antecedent climatic conditions (1– 2 years previously). 
In forest systems, which typically carry a significant fuel load, drought during the current fire season is often 
positively related to area burned, which is thought to be due to drying of fuels increasing flammability. In those 
systems, precipitation amount in the previous 1– 4 years may be relatively unrelated to area burned. 

In addition to linking fire directly with moisture availability, several studies have shown that synoptic-scale climatic 
processes relate to increased fire activity. In the southern and to a lesser extent the central Interior West, the El 
Nino-Southern Oscillation (ENSO) has been shown to relate to both yearly burned area and historically 
reconstructed fire events (Swetnam and Betancourt 1990; Swetnam and Betancourt 1998; Veblen et al. 2000). 
Additionally, recent work has shown that the Pacific Decadal Oscillation (PDO) can enhance the connection between 
widespread fire and ENSO in these regions (Westerling and Swetnam 2003). Both ENSO and PDO influence moisture 
availability by altering precipitation and temperature patterns throughout the Interior West (Cayan 1996; Mantua et 
al. 2001; Dettinger et al. 1998; McCabe and Dettinger 1999). Thus, the connection between these processes and 
fuel is driven by fluctuations in moisture availability, which ultimately affect fuel moisture and fuel quantity. 

Both the ENSO and the PDO cycle back and forth between warm (positive) and cool (negative) phases caused by 
episodic fluctuations in Pacific Ocean sea-surface temperatures (SSTs). In the Interior West the climatic effects of 
these warm and cool phases are reversed between the southern and northern regions. During warm-phase ENSO, 
or El Nino conditions, and warm phase PDO, the southern Interior West experiences substantially wetter and slightly 
cooler winters, while in the northern Interior West, winters tend to be warmer and drier than usual (Cayan 1996; 
Western Regional Climate Center 1998). The effects of cool-phase ENSO, or La Nina conditions, and cool-phase PDO 
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are opposite to those associated with the warm phases. The strength of ENSO-related climatic effects can depend 
on the PDO phase, which shifts at 20- to 30-year intervals (Brown and Comrie 2004). As a result, the effects of ENSO 
and PDO vary at annual to decadal time scales, but in general the effect of ENSO on climate is more consistent in the 
southern Interior West, while the effect of PDO is more consistent in the northern Interior West (Mantua et al. 
1997). 

The Atlantic Multidecadal Oscillation (AMO) is yet another influence on moisture availability that could be used to 
further elucidate our understanding of climate-fire relationships. Like ENSO and PDO, AMO alternates between 
warm and cool phases (based on SST anomalies in the North Atlantic Ocean) that differentially affect precipitation 
patterns. During warm-phase AMO much of the Interior West is drier, mainly because of below-average summer 
precipitation (Enfield et al. 2001). This warm-phase AMO may also create a synergistic effect when it coincides with 
cool-phase PDO, resulting in extensive long-term drought (Gray et al. values were as low as −4.6). The PDO and AMO 
indices are based on SSTs in the North Pacific Ocean and North Atlantic Ocean, respectively. However, they differ in 
that the PDO index is constructed from the leading principal component of monthly SST (Mantua et al. 1997), while 
the AMO index is the 10-year running mean of SST anomalies (Enfield et al. 2001). Monthly values of the PDO and 
AMO indices typically range from −3 to 3 and from −0.5 to 0.5, respectively. For both indices, positive values 
correspond to warm phases of oscillation, while negative values correspond to cool phases.  

1.4 UNDERSTANDING TRENDS IN WILDFIRE ACTIVITY 
A number of studies have looked at quantifying relationships between climate and wildfire risk (e.g., burn area) 
either for improving the forecast-ability of large (>1000 acres) or very large fires (>5000 acres); and/or for 
understanding the climate change connection to them. For the current study we are interested in the latter and 
thus cite some of the more relevant and recent publications. 

Abatzoglou and Kolden (2013) examined macroscale climate–fire relationships in forested and non-forested lands 
for eight Geographic Area Coordination Centers in the western United States. They found strong correlations 
between fire and climate earlier in the same year for forested areas and strong correlations between fire and 
climate in the preceding year for non-forested lands. However, despite differences in the role of antecedent climate 
in preconditioning fuels, synchronous regional fire activity in forested and non-forested lands suggests that 
atmospheric conditions during the fire season unify fire activity and can compound or supersede antecedent 
climatic stressors.  

Barbero et al. (2014) used Generalized Linear Modeling to develop separate regression relationships between 
various atmospheric parameters/indices and very large fires (> 5000 acres) by ecoprovince. It is important to note 
that their definitions of ecoprovinces are different than what are in the AIR Model. The relationships included 
indices such as Burning Index, Composite Water Deficit, Energy Release Component, Fosberg Fire Weather Index, 
Initial Spread Index, Effective Precipitation Index, as well as more familiar ones like Palmer Drought Severity Index, 
etc. While the correlations were good, it was difficult to justify physically the different relationships in different 
locations. 

Ficklin and Novick (2017) examined historic and projected changes in atmospheric moisture over the entire US. The 
study used 4 km Gridded Surface Meteorological Data (METDATA) and output from general circulation models to 
examine how vapor pressure deficit (VPD) has been changing and is expected to change. Vapor pressure deficit 
(VPD) is defined as the amount of moisture that is missing from the atmosphere that would lead to saturation. It is 
expressed in terms of pressure units since water vapor is a gas (just like dry air) and so it exerts a pressure. 
Mathematically, it is simply: 

 

𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑒𝑒𝑠𝑠(𝑇𝑇𝑎𝑎) −  𝑒𝑒𝑎𝑎  (1) 
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And the saturation vapor pressure is a function only of air temperature Ta. As air temperature increases, the amount 
of water vapor that can be in the atmosphere (e.g., in vapor form) increases exponentially. The relationship 
between air temperature Ta and saturation vapor pressure es is known as the Clausius Clapeyron relationship. 
Furthermore, the ratio of actual vapor pressure ea to saturation vapor pressure es is basically the relative humidity 
RH as: 

 

𝑅𝑅𝑅𝑅 =  100 × 𝑒𝑒𝑎𝑎
𝑒𝑒𝑠𝑠(𝑇𝑇𝑎𝑎)

 (2) 

 

Vapor pressure deficit VPD can increase simply by an increase in air temperature. A decrease in the amount of 
atmospheric moisture (e.g., through prolonged reduction in precipitation and/or less evaporation from plants) does 
not have to occur but if it does the VPD will further increase. Ficklin and Novick (2017) showed that the seasons 
where VPD has been increasing most since 1979 are spring and summer across the west and southwestern portions 
of the U.S. And, although the actual reason for it is a combination of increases in saturation vapor pressure es and 
decreases in actual vapor pressure ea, the primary driver is from increases in es (see their Figure 1). The increases in 
es are the result of increasing temperatures associated with climate change. The decreases in ea may be related to 
changes in atmospheric circulation patterns (e.g., increasing positive PNA pattern, more frequent/severe La Ninas) 
and may also be related to climate change. 

Williams et al. (2019) also examined historical trends but focused on burned area for California as it correlated to 
several aridity metrics. The study found a five-fold increase in burned area since the early 1970s (see their Figure 1). 
They also examined correlations of burned area with six different aridity metrics: standard precipitation index (SPI), 
antecedent SPI defined as SPI from March of 2 years prior to the fire year through October of the year prior to the 
fire year, number of wet days with precipitation > 2.54 mm, maximum temperature (Tmax), 1000-hr dead fuel 
moisture (FM1000), and vapor pressure deficit (VPD). We do not provide all the detailed definitions here save for 
VPD since it showed the highest correlation (see their Figure 2) with burn area in forested regions. The foundations 
for relationships between VPD and area burned by wildfires are reviewed by Seager et al. (2015). The regressions 
performed by Williams et al. (2019) were with the log of burn area vs VPD. owing to their finding that actual burn 
area is very sensitive to changes in VPD.  Figure 3 in Williams et al. (2019) provides a good example of the sensitivity. 

1.5 EXPECTED IMPACTS FROM CLIMATE CHANGE 
More recent literature has focused on understanding the connection between climate change and wildfire risk. 
Numerous studies have developed regression relationships between burn area and derived aridity metrics that can 
be calculated using historical reanalysis data as well as output from general circulation models. Some of the studies 
have already been mentioned in this section. We note here a subset of available literature and only then going back 
several years. The studies, on the whole, are essentially ingredients-based. That is, the aforementioned connections 
between changes in climate (e.g., over the historical record) affecting available fuel and the assumption is that 
increased fuel correlates with increased wildfire either in terms of frequency or area or both. 

Also, especially because of the time in which the study was conducted, different vintages of climate models were 
used. Early studies used a suite of GCMs called CMIP3 and later ones use CMIP5 (Coupled Model Intercomparison 
Project Phase 3 or Phase 5, respectively). 

The latest suite is called CMIP6 (Phase 6) and is just now becoming widely available for study. The CMIP6 models 
generally have higher resolution in the atmosphere and ocean, improved representation of physics, and improved 
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representation of aerosols and for the most part are the ones informing the latest Intergovernmental Panel on 
Climate Change (IPCC) Report (IPCC 2021). The types of climate change experiments are also more involved, using a 
number of new and updated atmospheric greenhouse gas concentration pathways that explore a wider range of 
possible future outcomes than were included in CMIP5 (Eyring et al. 2016). Published reports available at the time 
of this study (e.g., Li et al., 2021) comparing some precipitation and dryness metric between CMIP5 and CMIP6 s, 
although not the ones used in this study, showed comparable results across the U.S. Despite higher resolution it is 
likely that because wildfire-climate change studies typically focus on large-scale ingredients that results will not 
differ markedly from CMIP5 based ones. 

A study by Liu et al. (2010) used CMIP3 models to identify that wildfire risk would increase because of climate 
change. Increase in the western U.S. would be particularly severe. A lengthening of the wildfire season primarily 
because of warmer but also drier conditions would exacerbate the effect. Barbero et al. (2015) used the 
relationships they derived in a companion paper (Barbero et al. 2014) applied to output from 17 GCMs to evaluate 
how climate change would impact wildfire risk in the U.S. by mid-21st century. A key finding from that study was the 
significant increases in the number of wildfire days on the order of hundreds of percent—especially over the inter-
mountain western region of the US. Ficklin and Novick (2017) evaluated VPD output from a suite of CMIP5 GCMs for 
late 21st century changes and found increases across all of the U.S. that were driven primarily from increases in 
saturation vapor pressure (es) rather than decreases in actual vapor pressure (ea). Moreover, the biggest changes 
they found were for the Midwest – just west of the Mississippi River but still outside the eastern boundary of the AIR 
Model (see their Figure 5). Littel et al. (2018) noted recently that ecosystems that are fuel-limited would not 
necessarily realize the drier conditions from climate change. They looked at 70 different sub-ecoregions in the 
western U.S. and found that flammability-limited regions would more likely achieve the hundreds of percent 
increases in burn area calculated from increased aridity in the GCM projections. 

Section 2: Defining the Climate Change Target 
In this section we describe the methodology for defining the climate change target that is used to guide the sub-
sampling. The targets reflect the time horizon 2050 under the RCP 8.5 scenario. The RCP 8.5 greenhouse gas 
concentration scenario was chosen to explore the consequences of a world with limited action taken to address 
climate change. Although Hausfather & Peters (2020) suggested that greenhouse gas concentrations already 
departed to the low side from RCP 8.5, Schwalm et al. (2020) showed that RCP 8.5 is in close agreement with 
historic emissions and that RCP 8.5 is the best match of the four available RCPs “out to midcentury under current 
and stated [national energy] policies.” Even though greenhouse gas emission rates declined modestly because of the 
COVID-19 pandemic, they may recover quickly post-pandemic. On balance, RCP 8.5 remains a plausible upper bound 
and a useful analytical reference point. 

2.1 HISTORICAL DATA ANALYSIS 
First, we identified the relationship between fire size (e.g., area burned) and VPD in summer (June to August) in each 
ecoprovince within the AIR Model domain which consists of 30 ecoprovinces. A map detailing the ecoprovinces 
along with labels and descriptions are provided in Appendix A. Fifteen of them are dominated by forest (7, 10, 13, 
16, 21, 32, 33, 34, 35, 36, 37, 40, 45, 46, 47), and the rest are considered as non-forest (5, 12, 14, 16, 
18, 20, 24, 25, 26, 28, 29, 31, 41, 42, 48). The fire size data comes from the Fire Occurrence Database (FOD) (Short, 
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2017). It includes every reported fire, no matter how small, during the period 1992– 20157 in all the United States. 
Prescribed/planned fires are included in the FOD.  

The summer VPD values are derived from University of Idaho Gridded Surface Meteorological Data daily values. This 
is a high-resolution (4-km) gridded dataset of daily VPD that spans the continental U.S. for the period 1979–2019. 
This observational dataset, known as METDATA, blends spatial attributes of climate data from PRISM8 with desirable 
temporal attributes from regional reanalysis (NLDAS-2) (Abatzoglou, 2011). 

VPD can of course vary throughout the day, so it is important to state the definition of daily VPD in the present 
study. Here the daily VPD is defined as the difference between Saturation Vapor Pressure (SVP) and Actual Vapor 
Pressure (AVP) where SVP is the mean of the SVP at minimum and maximum daily temperatures and AVP the 
product of relative humidity and SVP. Expressions for SVP and AVP are provided earlier in (1) and (2) in Section 1.4. 

We first temporally aggregate the daily VPD data to give monthly mean VPD grids. An example of the September 
1986 VPD grid from the METDATA is shown in Figure 2. The monthly VPD grids are then spatially averaged across 
each ecoprovince and the average VPD over the summer months (June, July and August) is calculated to give annual 
summer VPD timeseries for each ecoprovince. Summer VPD is a measure of sustained dryness during the height of 
the wildfire season in western US. Fire sizes from FOD were aggregated by year for each ecoprovince and then 
calculated by the following equation:  

per mil (‰) area burned = fire size/ecoprovince size × 1000. 

The VPD summer average for a specific year was defined as the mean of VPD values over the period June, July and 
August. The scaled VPD was defined as below:  

Scaled VPD = VPD summer average of a specific year / VPD summer average of 1992 to 2015. 

The upper bound for the conterminous United States is 16.8‰ (Ecoprovince 23), while the lower bound is 0.03‰ 
(Ecoprovince 1). Within our 13-states model domain, the highest burned area fraction is 11.8‰ (Ecoprovince 13), 
while the lowest is 0.07‰ (Ecoprovince 40). In the southeastern U.S., most fires were prescribed fires, which did not 
cause large losses. 

  

 

 

7 An updated FOD database for 1992-2018 became available during this study (Short, 2021) but time constraints precluded a full re-calculation of VBD-
burned area relationships with it. Some analysis however was done and showed that the relationships by ecoprovince effectively remained unchanged. 
8 Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
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Figure 2 
VAPOR PRESSURE DEFICIT (KPA) OVER THE CONTINENTAL UNITED STATES FOR SEPTEMBER 1986 CALCULATED 
FROM DAILY 4-KM METDATA. 

 

GLM modeling results are illustrated below for six ecoprovinces. Four of them are mostly in California and the other 
two are mostly in Texas. 

Figure 3 
PER MIL (‰) AREA BURNED PER YEAR IN EACH ECOPROVINCE. THE ECOPROVINCE LEVEL ID WERE LABELED. THE 
BLACK BOUNDARY DELINEATED OUR MODEL DOMAIN. 

   

 

 

Ecoprovince 45 (Figure 4), Sierran Steppe-Mixed Forest-Coniferous Forest-Alpine Meadow, is located in Northern 
and Northeastern California and Southern Oregon. This is where most of the fires in California happened in 2020. It 
is mountainous with steep slope, and glaciated mountain ranges from 2,000–14,000 feet. Temperature and 
precipitation vary by elevation, but in general this is a cool province with 80+% of the moisture falling as snow in 
winter. Vegetation across the lower slopes and foothills is dominated by shrubs and conifers. Middle elevations are 
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dominated by pines and subalpine species. Fires are infrequent. High intensity ground or stand-replacing fires kill all 
or most of the living overstory trees in a forest and initiate forest succession or regrowth. The burned area in this 
ecoprovince is 6.9‰, which is in the highest category. 

Ecoprovince 13 (Figure 5), California Coastal Range Open Woodland-Shrub-Coniferous Forest-Meadow, is located in 
southwestern California. The terrain is mountainous with steep slopes. Summers are hot and dry; winters are mild 
and wet. Vegetation is primarily evergreen shrubland, with lesser areas of woodland, consisting of broadleaf species, 
some of which are drought-deciduous (which may lose their leaves during dry seasons, rather than winter-
deciduous plants that lose their leaves in autumn). The burned area of this ecoprovince is 11.8‰, which is among 
the highest of the six discussed ecoprovinces. Compared to Ecoprovince 45, burned area size is less sensitive to the 
VPD change. 

Ecoprovince 12 (Figure 6), California Coastal Chaparral Forest and Shrub, is located in the coastal area of 
southwestern California. It has coastal plains, low mountains and a Mediterranean-like climate of mild wet winters 
and hot, dry summers, with a brief period of drought. Vegetation is a mosaic of woodland, dwarf-woodland, and 
shrubland species that are evergreen and drought deciduous. Fires are common, usually set by lightning during the 
summer dry season. Many species are adapted to fire and regenerate readily after fire. However, in chaparral 
environments of southern California, fires now occur more frequently, and most are human caused. The burned 
area of this ecoprovince is 5.8‰, which is also in the highest category. 

Ecoprovince 14 (Figure 7), Redwood forests, is located in the coastal area of northwestern California. The prevailing 
climate is maritime, which is a Mediterranean type consisting of mild winters and cool summers. Winters are wet, 
with short periods of summer drought. Forests consist of very tall needleleaf, and evergreen trees with smaller 
areas of broadleaf woodlands. Species are adapted to fire and regenerate readily afterward. For example, the 
redwoods here are incredibly resilient trees. They live to over two thousand years old and one of the characteristics 
of identifying old-growth redwoods are signs of fire scarring. The data points are very scattered, which is analyzed as 
a slightly decreasing trend, but it is not strong. The burned area of this ecoprovince is 1.1‰, which is in the second 
lowest category. 

Ecoprovince 48 (Figure 8), Southwest Plateau and Plains Dry Steppe and Shrub, is located in central Texas. It 
contains flat to rolling plains and plateaus. The climate is semi-arid. It is covered mainly by herbaceous plants and 
shrubland with increasing woodland on steeper slopes. Fires vary in frequency and intensity, depending on fuel load 
and moisture. Fire and drought have probably been the principal historical disturbances. Most precipitation falls 
during the growing season but is less than potential evaporation. The burned area of this ecoprovince is 3.1‰, 
which is in the second highest category. 

Ecoprovince 41 (Figure 9), Prairie Parkland (Subtropical), is located in eastern Texas. The landforms are plains with 
low hills, and many of them are part of the Gulf Coastal Plain. The climate is modified maritime subtropical, which is 
a humid climate consisting of relatively warm winters and hot summers. Moderate amounts of precipitation occur 
during summer. The vegetation is dominated by various short and medium-to-tall grasses, which is due to the aridity 
and probably also to fires and grazing. Herbaceous vegetation with areas of deciduous broadleaf woodland is 
typically found along floodplains. The burned area of this ecoprovince is 2.1‰, which is in the middle level. 

In summary, there is a wide variation of burned area size in response to VPD in different ecosystems. Therefore, 
ecoprovinces need to be and are treated separately. 
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Figure 4  
GLM RESULT (UPPER) AND PER MIL (‰) AREA BURNED PER YEAR (LOWER) IN ECOPROVINCE 45: SIERRAN STEPPE-
MIXED FOREST-CONIFEROUS FOREST-ALPINE MEADOW. 

        
 

 

Figure 5  
GLM RESULT (UPPER) AND PER MIL (‰) AREA BURNED PER YEAR (LOWER) IN ECOPROVINCE 13: CALIFORNIA 
COASTAL RANGE OPEN WOODLAND-SHRUB-CONIFEROUS FOREST-MEADOW. 
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Figure 6  
GLM RESULT (UPPER) AND PER MIL (‰) AREA BURNED PER YEAR (LOWER) IN ECOPROVINCE 12: 
CALIFORNIA COASTAL CHAPARRAL FOREST AND SHRUB. 

  

 

Figure 7  
GLM RESULT (UPPER) AND PER MIL (‰) AREA BURNED PER YEAR (LOWER) IN ECOPROVINCE 14: 
REDWOOD FORESTS. 
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Figure 8 
GLM RESULT (UPPER) AND PER MIL (‰) AREA BURNED PER YEAR (LOWER) IN ECOPROVINCE 48: 
SOUTHWEST PLATEAU AND PLAINS DRY STEPPE AND SHRUB. 

  

 

Figure 9  
GLM RESULT (UPPER) AND PER MIL (‰) AREA BURNED PER YEAR (LOWER) IN ECOPROVINCE 41: PRAIRIE PARKLAND 
(SUBTROPICAL). 

    
 

2.2 CLIMATE MODEL ANALYSIS 
The statistical model described in 2.1 Historical Data Analysis that relates summer VPD to annual burn area requires 
summer VPD values by ecoprovince for the present (2018) and 2050 time-horizon. Here we describe how these 
values are derived. 
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The present summer VPD is derived from METDATA as described in 2.1 Historical Data Analysis. Future VPD 
projections are derived from a complementary dataset known as MACAv2-METDATA that draws climate forcings 
from a statistical downscaling of GCM data from the Coupled Model Intercomparison Project 5 (CMIP5) (Taylor et al. 
2012). This dataset uses a modification of the Multivariate Adaptive Constructed Analogs (MACA) method with the 
METDATA acting as a training set (Abatzoglou and Brown, 2012). MACAv2-METDATA contains downscaled, bias-
corrected historical (1950–2005) and projected RCP 8.5 (2006–2099) data for up to 18 GCMs. For the present study 
we use the data from two GCMs to compute a mean view: (1) HadGEM2-ES365 and (2) MRI-CGCM3. These two 
GCMs provide the upper and lower bounds of the projected VPD increases (Ficklin and Novick, 2017). 
Figure 10 shows a comparison of monthly VPD timeseries for ecoprovince 45 (Northern California) from the 
METDATA and HadGEM2-ES365. It shows how VPD peaks in the summer and troughs in the winter and it 
demonstrates that the MACAv2-METDATA for this particular GCM in this particular ecoprovince adequately captures 
the summer peaks. In general, both GCMs used in this study capture the summer peaks well in most of the model 
domain but tend to overestimate in eastern U.S. (outside the domain). A slight overestimation is observed in 
ecoprovinces 35, 37, 41 and 48, all in Texas.  

Figure 10 
COMPARISON OF THE MONTHLY VPD TIMESERIES IN ECOPROVINCE 45 (NORTHERN CALIFORNIA) CALCULATED 
FROM THE OBSERVATIONAL METDATA (RED) AND SIMULATED DATA FROM GCM-01 (HADGEM2-ES365, GREY). 

    

The 1979–2019 summer VPD METDATA is used to calculate a summer VPD that is representative of that in the AIR 
U.S. Wildfire 100,000-year catalog. Normal linear models are fitted to the summer VPD timeseries for each 
ecoprovince and the interpolated 2018 value is read. These are the base VPD values. The summer VPD MACAv2-
METDATA is used to calculate the change in summer VPD at 2050 relative to 2018. An 11-year averaging filter is 
applied to the 1975–2070 data for both GCMs, and the rolling mean is read at 2018 and 2050. An 11-year filter is 
deemed long enough to smooth out interannual variability but short enough to capture interdecadal variability. 
Figure 11 presents an example for ecoprovince 45 showing the observed summer VPD fitted with a linear trend line 
plus the projected rolling mean trends from the two GCMs. The 2018 base value is read from the red line while the 
2018 and 2050 simulated values are read from blue, dark blue and purple lines. 

The change in VPD at 2050 relative to 2018 is calculated. The HadGEM2-ES365 provides the upper estimate and 
MRI-CGCM3 provides the lower estimate. Since the MACAv2-METDATA is bias-corrected relative to METDATA, these 
relative changes in VPD can be used to scale the base VPD values and project forward for 2050. 
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Figure 11 
SUMMER VPD METDATA (CIRCLES) WITH A LINEAR FIT (RED LINE) AND THE 11-YEAR ROLLING MEAN OF THE 
SUMMER VPD FROM GCM1 (HADGEM2-ES365, DARK BLUE), GCM2 (MRI-CGCM3, LIGHT BLUE) AND MEAN OF BOTH 
GCMS. 

    

 

Figure 12 presents the VPD projections in 2050 based on the mean ensemble. Note that all of the U.S. is shown even 
though the AIR Model currently covers only the western half. The 2050 projections range from 6% to 41% with the 
lowest in ecoprovince 14 and highest in ecoprovince 31. Ecoprovinces 21, 37, 35 and 46 also have projections higher 
than 30%. These five ecoprovinces in eastern Texas occupy a small part of the model domain. Ecoprovinces 41, 47 
and 48 occupy a larger part of the domain and have projections of 20–23%. The VPD in ecoprovinces 29, 34, 32 and 
24 are projected to increase by 15–20% by 2050. The lower GCM projects a 3–18% increase by 2050 across the 
model domain, while the upper GCM projects 8–68%. 

Figure 12 
PROJECTED CHANGE IN SUMMER VPD FOR 2050 RELATIVE TO 2018 BASED ON THE MEAN GCM ENSEMBLE. THE 
BOUNDARY OF THE MODEL DOMAIN IS REPRESENTED BY THE BOLD BLACK LINE. 
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2.3 BURNED AREA TARGETS FOR 2050 
Figure 13 presents all the 30 GLMs together. It is important to note that, in different ecoprovinces, the area burned 
responds differently to the VPD change. Some are quite sensitive, such as ecoprovince 32, while some are much less 
sensitive, such as ecoprovinces 14, 40, 31 and 21. Forest ecoprovinces and non-forest ecoprovinces are not 
statistically significantly different in the response of fire size. Finally, the projected VPD values at 2050 were used to 
determine per million changes in burned area targets. Also, we defined 2018 as our base year, so the fire size 
estimation of 2018 was derived from the model as a baseline for burned area targets at 2050.  

Figure 13 
RELATIONSHIP BETWEEN AREA BURNED AND VPD FOR ALL 30 ECOPROVINCES FROM GLM. 

    

The summer VPD values calculated in the 2.2 Climate Model Analysis section for the present (2018) and future 
(2050) under an RCP 8.5 scenario represent the dryness of the air during wildfire season. They in-turn represent the 
fuel aridity and as demonstrated through the statistical model described in the 2.1 Historical Data Analysis section 
the annual burned area in some ecoprovinces is highly sensitive to this variable. In this section, the average annual 
burned area for each ecoprovince in 2018 and 2050 is calculated using the summer VPD value and statistical model 
for each ecoprovince. The change in average annual burned area for 2050 relative to 2018 provides a burned area 
target, which is used to create the climate change conditioned catalogs, as described in the Section 3: Subsampling 
Methodology section. 
 
The method is illustrated here using ecoprovince 45. The upper panel of Figure 4 is replotted in Figure 14 with tie-
lines that show how the statistical model is used to read-off the expected annual burned area from the summer 
VPDs in 2018 and 2050. The results are summarized in Table 1. In 2018, the current climate, the average annual 
burned area is 0.9% of the ecoprovince area. In 2050, this is projected to increase by 112% to 1.9%. 
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Figure 14 
RELATIONSHIP BETWEEN SCALED VPD AND SCALED ANNUAL BURNED AREA FOR ECOPROVINCE 45. THE 
GENERALIZED LINEAR MODEL (BLUE LINE) IS FITTED TO OBSERVATIONS (CIRCLES). TIE-LINES RELATE THE VPD TO 
THE BURNED AREA IN 2018 (GREY) AND IN 2050 (RED) TAKEN FROM THE MEAN GCM.  

    

Table 1 
SUMMARY OF THE SUMMER VPD AND BURNED AREA ESTIMATES FOR ECOPROVINCE 45 IN 2018 AND 2050 USING 
THE MEAN-GCM. 

Time-Horizon VPD 
(kPa) 

VPD Change Scaled VPD Scaled Burned Area 
(‰) 

Area Change 

2018 1.77 0% 1.07 8.9 0% 
2050 1.95 11% 1.18 18.9 112% 

 

Burned area changes are derived from the FOD but it is assumed that they extend to the AIR catalog. This 
assumption is validated by Table 1, which shows that across almost all ecoprovinces in the model domain, the 
observed average annual burned area in the FOD is directly proportional to the modelled variable in the AIR U.S. 
Wildfire 50,000-year catalog. A relative change predicted by the statistical model can therefore be extended to 
predictions for the AIR catalog. Most ecoprovinces do not lie on the perfect 1:1 line because FOD includes fires of all 
sizes whereas AIR’s catalog contains fires above a minimum size. Some ecoprovinces, colored red in Figure 15 are 
outliers because they are only partially in the model domain. These ecoprovinces are on the eastern sides of 
Oklahoma and Texas. 
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Figure 15 
AVERAGE ANNUAL BURNED AREA BY ECOPROVINCE FROM THE FOD (1992–2015) AND THE AIR 50,000-YEAR 
STOCHASTIC CATALOG. ECOPROVINCES PARTIALLY IN THE MODEL DOMAIN ARE IN RED, WHILE THOSE FULLY IN THE 
DOMAIN ARE IN BLACK. LINE OF BEST FIT (DASHED) IS FITTED TO ECOPROVINCES FULLY IN DOMAIN.  

    

The above method for ecoprovince 45 is applied to all but two ecoprovinces in the model domain using the VPD 
values from the low, mean and high GCMs. The exceptions were ecoprovince 14 and 15 (which is the California 
Central Valley, now dominated by agriculture rather than native vegetation) in western and central California. For 
those ecoprovinces, burned area-increase targets are set to zero (no change) for 2050 for all three GCMs. 
Historically, the relationship between burned area and VPD in these two ecoprovinces was nonexistent (statistically 
insignificant) to slightly negative and AIR’s opinion is that without a better understanding of why the relationship 
might be negative it was judicious to assume no change in burned area with climate change, even though the 
summer VPD is projected to increase in both ecoprovinces.  

The mean-GCM results for 2050 are presented in Figure 16. The burned area target ranges are an order-of-
magnitude larger than the VPD ranges presented in the 2.2 Climate Model Analysis section (see Figure 12) due to 
the sensitive response of some ecoprovinces to VPD changes. In 2050, burned area targets range from 0 to 635% 
and 661% in ecoprovince 32 and 47 respectively. Ecoprovince 34 has a target of 447% and ecoprovince 7 has a 
target of 339%. The targets of 13 ecoprovinces exceed 100%, and the median of all ecoprovinces is 80%. 

Ecoprovinces with the highest targets tend to be northern and inland. Ecoprovince 32 spans eastern Idaho and 
western Montana and belongs to the Temperate Steppe division with ecoprovince 47. As described in 2.2 Climate 
Model Analysis, ecoprovince 32 is projected to see a significant VPD increase of 19% in 2050. Annual burned area 
increases exponentially with summer VPD in ecoprovince 32, which consequently leads to an average annual burned 
area target of 635% in 2050. During the historic period 1992–2015, the maximum summer VPD experienced in 
ecoprovince 32 was 1.51 kPa, which occurred in both 2003 and 2007 (which were associated with burned areas of 
0.8% and 3.2%, respectively). That value was smaller than the 2050 mean GCM value (target) of 1.56 kPa, meaning 
that the 2050 target VPD was outside the range of VPD seen in history and that extrapolation beyond historical 
experience was required. A similar situation arose for ecoprovince 47.  
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Figure 16 
PROJECTED CHANGE IN AVERAGE ANNUAL BURNED AREA BY 2050 RELATIVE TO 2018 BASED ON THE MEAN GCM. 
ECOPROVINCES ARE LABELLED AND THE STATES OF THE MODEL DOMAIN ARE OUTLINED. 

    

 

The percent changes in burn area we have computed may seem extreme, but we note that not only can they be 
justified in terms of the available data and the methods we have used, but that more importantly, the general 
magnitudes of the changes agree with those found in a previous study (National Research Council, 2011). In that 
study, a graphic was shown for expected changes in burn area for a one-degree Celsius increase in global 
atmospheric temperature. For that study, a base period of late 1900s was used but that is not as relevant as the fact 
that under RCP 8.5, global atmospheric temperatures are expected to increase by about another one-degree Celsius 
by 2050. The agreement between that study and our results is in fact remarkable, given the earlier date for the 
study, less fire data was available, and that different methods were used to obtain the result. The graphic is 
reproduced as Figure 17 here as for convenience. While some features may not agree with our result (e.g., the 
relative maximum in ecoprovince 33 in our result does not agree with the relative minimum in that area from the 
NRC 2011 study), the entire intermountain region is an area of expected high increase in both studies and the 
extreme increase of 656% across the mountain range of Colorado agrees remarkably to our estimated increase of 
661% for that same area (ecoprovince 47). A summary of the Climate Change Targets for all ecoprovinces from our 
analysis can be found in Table B.1 of Appendix B. 
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Figure 17 
PERCENT INCREASE (RELATIVE TO 1950-2003) IN MEDIAN ANNUAL AREA BURNED FOR ECOPROVINCES OF THE 
WEST WITH A 1°C INCREASE IN GLOBAL AVERAGE TEMPERATURE. CHANGES IN TEMPERATURE AND PRECIPITATION 
WERE AGGREGATED TO THE ECOPROVINCE LEVEL USING THE SUITE OF MODELS IN THE CMIP3 ARCHIVE. CLIMATE-
FIRE MODELS WERE DERIVED FROM NATIONAL CLIMATIC DATA CENTER (NCDC) CLIMATE DIVISION RECORDS AND 
OBSERVED AREA BURNED DATA FOLLOWING METHODS DISCUSSED IN LITTELL ET AL. (2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: National Research Council 2011, reprinted with permission. 

Section 3: Subsampling Methodology 

3.1 BASIC STRATEGY 
The AIR U.S. Wildfire 100,000-year catalog contains a pool of years of events from which to create new catalogs that 
have the average annual burned areas projected for 2050. This task is performed using a sampling algorithm 
developed by AIR.  
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The algorithm works by swapping events between the current 50,000-year catalog and the 100,000-year pool until 
all the ecoprovince-specific targets are achieved. Some events can occur in multiple ecoprovinces, as many as three, 
which suggests the need to sample on multiple ecoprovinces simultaneously. However, most events only affect one 
ecoprovince, so to simplify the algorithm, events that occur in more than one ecoprovince are tagged with the 
ecoprovince that most of their burned area occurs in. If an equal proportion of area occurs in more than one 
ecoprovince, the assigned ecoprovince is randomly selected. The result is a list of events each tagged with a single 
ecoprovince. This allows the algorithm to work sequentially through each ecoprovince to achieve the targets.  

Individual events are not swapped but instead whole years-worth of events are swapped to achieve each annual-
based target. The same years-worth of events can be sampled multiple times, which is needed to reach the larger 
targets. To retain the information in the 100,000-year catalog that relates historical seed years to stochastic years, 
sampling is constrained so that years can only be replaced by years that share the same historical seed year. This 
historical-to-stochastic mapping also allows us to assign each years-worth of events in each ecoprovince to the 
original stochastic year they replaced. The final selected catalog is then a table of stochastic year and event IDs 
where the years range from to 1 to 50,000 and the event IDs belong to any events in the 100,000-year catalog. The 
event IDs in the final catalog are not unique. 

3.2 PROCEDURE 
The following contains a brief description of the steps taken by the sampling algorithm. The procedure is analogous 
to dealing a hand from a deck of cards. The initial hand that is dealt is the current 50,000-year catalog. The deck in 
this case is the 100,000-year catalog but unlike in normal card games, the same “card” in the deck can be sampled 
many times, technically known as sampling with replacement.  

1. Starting with the initial hand, move to ecoprovince 5. If the target average annual burned area is different 

to the average annual burned area in the current catalog, then sampling must occur.  

2. Select a year at random from the hand and attempt to swap it with a random year from the deck that has 

the same historical seed year as the year selected from the hand. If the swap gets the ecoprovince closer to 

the target burned area, the swap is made, otherwise another year is picked from the hand. 

3. Step 2 is repeated until the ecoprovince’s target is achieved within a tolerance of 0.1%. The algorithm then 

moves on to the next ecoprovince, e.g., ecoprovince 12. 

4. Steps 2 and 3 are repeated until all ecoprovince targets are achieved.  

The final hand, the 50,000-year climate change conditioned catalog, tells us which years of events occur in each 
ecoprovince. These events are brought into the catalog and are assigned the original stochastic year of the events 
they replaced because both sets of events share the same historical seed year. 

A maximum limit is set on the number of times that a year can be sampled from the 100,000-year catalog in a given 
ecoprovince. If this limit is too low, the larger targets will not be reached, but if it is too high, there will be not be 
enough variability in the catalog for that ecoprovince. A limit of 600 is used because this allowed the algorithm to 
comfortably achieve the mean-GCM 2050 target in ecoprovince 47 but still retain enough variability. Ecoprovinces 
34 and 32 require about 50–100 samples of the same year to reach the mean-GCM 2050 target. The rest of the 
ecoprovinces require 30 or less. No explicit provision is made for the possibility for the exact same area to be 
burned twice in the same or consecutive years. However, the likelihood is very small given that the total amount of 
burnable area is typically three orders of magnitude larger than what is projected to burn, even for ecoprovinces 
that are projected to have significant increases in annual burned area. 
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3.3 CLIMATE CHANGE CONDITIONED CATALOGS 
The stochastic nature of sampling means that multiple climate change conditioned catalogs can achieve the same 
set of burned area targets. The sampling procedure therefore adds some uncertainty to the projected losses. This 
sampling uncertainty is quantified for key loss metrics from an ensemble of catalogs for each scenario. We define 
sampling uncertainty as the ratio of the 95% confidence interval to the median loss of each ensemble.  

An ensemble of 20 catalogs was created for the 2050 climate scenario and the loss impacts were calculated using 
the AIR U.S. Exposure Database. An example of the sampling uncertainty calculated in the 13 states for aggregate 
loss metrics is shown in Figure 18. Loss metrics at higher return periods tend to have higher sampling uncertainty 
and a larger range of state-level uncertainty. This shows that the higher frequency metrics are more robust across 
the catalog ensemble whereas the low frequency metrics are more sensitive to the addition or removal of severe 
events in high exposure.  

Loss metrics at higher resolution tend to have higher sampling uncertainty too. At the portfolio-level, the 
uncertainty is smallest and varies from 0.5–1% up to the 50-year return period, 3-5% up to the 500-year, and up to 
10% at the 1000-year. At the state-level, the uncertainty varies typically from 2-15% across these return periods and 
at the county-level, it varies typically from 5-30% but can be much higher in certain counties. These findings do not 
vary much between GCMs or time-horizons (as demonstrated in Figure 18. 

Figure 18 
LOSS SAMPLING UNCERTAINTY (%) FOR 13 STATES AT KEY AGGREGATE LOSS METRICS CALCULATED FROM A 20-
MEMBER ENSEMBLE OF CATALOGS FOR THE 2050-8.5 MEAN-GCM SCENARIO. HORIZONTAL LINES INSIDE BOXES 
REPRESENT MEDIAN VALUES, BOXES REPRESENT 25-75% CONFIDENCE INTERVALS, AND WHISKERS INDICATE 5-95% 
CONFIDENCE INTERVALS. SAMPLING UNCERTAINTY IS THE RATIO OF 95% CONFIDENCE INTERVAL TO MEDIAN 
VALUE. LOSSES ARE CALCULATED FROM AIR’S INDUSTRY EXPOSURE.  

 
 

Sampling uncertainty is now compared to the uncertainty from the GCMs. GCM uncertainty is defined as the range 
of losses from the low and high GCMs relative to the loss from the mean GCM. For all three losses (low, mean and 
high), the median loss from the 20-member ensemble is used. 

Figure 19 shows the GCM uncertainty for 13 states at key aggregate loss metrics for the 2050-8.5 scenario. GCM 
uncertainty varies by return period and the exact value varies considerably between states. In contrast to sampling 
uncertainty, GCM uncertainty is highest at the lower return periods and decreases with higher return periods. 
Across most return periods GCM uncertainty is an order-of-magnitude higher than sampling uncertainty, but the 
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two uncertainties converge to having similar magnitudes at higher return periods. This suggests that lower return 
periods are more sensitive to different GCM projections than high return periods. This could be because high return 
period losses are constrained by the limited number of high exposure areas near to wildfire fuel, but it could also be 
due to the limited number of high burned area years to sample from. As with sampling uncertainty, GCM 
uncertainty is higher for loss metrics at higher resolution, e.g., county-level. 

Figure 19 
GLOBAL CLIMATE MODEL (GCM) UNCERTAINTY (%) FOR 13 STATES AT KEY AGGREGATE LOSS METRICS CALCULATED 
USING THE MEDIAN LOSSES FOR THE 2030-8.5 (RED) AND 2050-8.5 (BLUE) SCENARIOS. GCM UNCERTAINTY IS THE 
RANGE OF LOSSES FROM THE LOW AND HIGH GCMS RELATIVE TO THE LOSS FROM THE MEAN GCM. LOSSES ARE 
CALCULATED FROM AIR’S INDUSTRY EXPOSURE. 

 
 
Because sampling uncertainty is small compared to GCM uncertainty (for most return periods), we can select one 
catalog for each scenario which is representative of the ensemble. The selected catalogs are those whose county-
level AALs deviate least from the median county-level AALs calculated from the 20-member ensemble. The selection 
is based on AIR’s Industry Exposure. 

Section 4: Results 

4.1 CLIMATE CHANGE IMPACTS ON HAZARD 
Figure 20 illustrates the changes in burn area and frequency that resulted from the mean catalogs generated for the 
2050 scenario as compared to that in the base 100,000-year catalog. The upper left panel represents the mean 
current climate burn area per year by 0.5° × 0.5° grid cell, the upper right panel indicates the mean annual change in 
the burn area. The middle row is somewhat similar, but the left panel indicates mean burn area per event and the 
right panel is the mean change in event burn area. The lower row shows current climate event frequency 
(fires/year) on the left and changes in event frequency on the right. 

Average annual burned area shows moderate to high values (e.g., yellow-red shading) across the eastern two-thirds 
of Washington and Oregon, much of Idaho, much of California, northern Nevada, and much of Arizona. Other 
smaller areas exist in many other states. The annual area burned is a reflection of the product of mean event burn 
area and mean event frequency. The above-mentioned areas for the most part show both moderate to large event  
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Figure 20 
LEFT COLUMN SHOWS CURRENT CLIMATE AVERAGE ANNUAL BURN AREA (UPPER PANEL IN ACRES/YEAR), AVERAGE 
EVENT BURN AREA (MIDDLE PANEL IN ACRES/EVENT), AND ANNUAL FREQUENCY (LOWER PANEL IN EVENTS/YEAR). 
RIGHT COLUMN SHOWS CORRESPONDING CHANGES FOR 2050 CLIMATE CHANGE SCENARIO. 
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size and moderate to high event frequency. Some additional areas not mentioned above experience very large 
infrequent fires such as much of Wyoming and western Montana. The opposite situation also appears: eastern 
Oklahoma experiences a high frequency of relatively small fires. The area and frequency patterns for the Current 
Climate are consistent with the ecoprovince characteristics. For example, mean burned area per event shows 
highest values in the eastern Oregon-western Montana-western Wyoming area, corresponding to ecoprovinces 28 
(Intermountain Semi-Desert and Desert Province), 29 (Intermountain Semi-Desert), and 32 (Middle Rocky Mountain 
Steppe-Coniferous Forest-Alpine Meadow Province). Ecoprovinces 29 and 32 account for the large event burn areas 
in Oregon, Montana, and Wyoming while ecoprovince 28 contributes to the ring-like region of high event burn area 
in Nevada. It is noteworthy that the ecoprovince type does not always explain (correlate) to event burn area or 
frequency. For example, in between the high burn areas of Oregon and Montana there is a low burn area across 
southern Idaho that is also labeled as 29 and 32. A possible reason for this may be the lower elevation because of its 
location in-between the Bitterroot Mountains (e.g., part of the Rockies) to the east and the Columbia Plateau to the 
west. Also, because the climate change targets did not include sub-ecoprovince specificity that the increases in burn 
area for a given ecoprovince are not necessarily uniformly distributed within the ecoprovince.  

The right-hand column in Figure 20 indicates that annual burn area changes are accomplished by changes in both 
mean event area and mean frequency. The result makes sense from the standpoint of the methodology because in 
order to increase the annual burn area as specified by the climate change target, similar years with more annual 
burn area had to replace years that were initially part of the current climate catalog. Because there was no 
restriction on how that should occur, a mix of year types was drawn so that the distribution of individual fire size did 
not change. The strong relationships between VPD (as well as other metrics of aridity in fact) are between extent of 
dryness and area burned. Additionally, because the real focus is on the loss that may occur, it is somewhat 
immaterial whether that happens because ten fires each with a size of 1000 acres burn, or whether twenty fires 
each with a size of 500 acres burn. 

Finally, the difference in the changes of burn area and frequency from 2030 to 2050 reflect a continued northward 
expansion of increasing fire risk. The northward expansion is consistent with the expected continued northward 
migration of the jet stream and storm tracks that would otherwise supply more abundant precipitation further 
south (Tamarin-Brodsky and Kaspi, 2017). 

4.2 CLIMATE CHANGE IMPACTS ON LOSS 
Losses for the AIR industry exposure database were run at the country, state, and county level for the base case and 
the future climate scenario. Losses were analyzed by sub-region. A discussion of the analyses and different crosscuts 
is provided here. 

4.1.1 CURRENT CLIMATE LOSSES 
Figure 21 shows the Average Annual Loss (AAL) for Ground Up (GU) Aggregate Losses for each state in the AIR 
Model for the current climate. California by far has the highest AAL – more than four times the sum of the next 
three highest contributing states, which are Arizona, Texas, and Colorado in decreasing order. Altogether, the top 
four states contribute about 81% to the AAL. The same is true for the individual state return periods. The ground up 
aggregate return period losses for AZ, CA, CO, and TX are shown in Figure 22. The differences in the values and the 
shapes of the RP curves are related to the amount of available fuel, which is a result of the native plant species that 
characterize those regions, which itself is constrained by the climate and soil (climate is a function of many things as 
well). For example, Texas can certainly be wetter than Colorado and Arizona because of its proximity to the Gulf of 
Mexico and its exposure to hurricanes. Even though California contributes to industry loss more than any other 
individual state, we note that it is a very small subset of counties – Los Angeles, Riverside, San Bernadino, and San 
Diego—that account for that loss, as shown in Figure 23. 
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Figure 21 
AVERAGE ANNUAL GROUND UP LOSS RELATIVITIES BY STATE USING AIR INDUSTRY EXPOSURE FOR CURRENT 
CLIMATE. DARKEST (IN CA) TO LIGHTEST (IN WY) SHADES OF RED SPAN A FACTOR OF ~70 IN LOSS. 

 

 
The losses from these counties reflect a combination of high density, high value of exposure, climatic factors that 
can periodically grow and dry the necessary fuel, and influence from Santa Ana Winds that can dramatically and 
quickly spread a fire to the coast. 

A large majority of the number of fires and area burned in Arizona occurs in the mostly coniferous high-elevation 
forests stretched across the state (the average elevation in the state is 4,249 ft). There is little insured exposure 
threatened by those fires. Although a large majority of the number of Arizona wildfires are caused by humans, area 
burned in lightning-caused (generally dry lightning) fires can rival that of human-caused fires, with the main fire 
season spanning May to September. Maricopa County, home to most of the Phoenix metropolitan area in 
southcentral Arizona, accounts for a significant fraction of the state’s exposure. Pima county, which borders on 
Mexico and Maricopa county and which contains most of the Tucson metropolitan area and the southernmost ski 
destination in the continental United States, is next in terms of exposure. When combined with Pinal county, which 
borders with Pima and Maricopa counties, the three account for more than 65% of the loss in the AIR Industry 
Exposure Database for Arizona. 

In Texas the greatest contribution comes from Travis County in which Austin (state capital) is located. The fire risk 
itself is low to moderate and somewhat the opposite situation to El Paso County in Colorado. The contributing 
counties are at the southeastern edge of a large area covering roughly the northwest quadrant of Texas that 
experiences a moderately high frequency of wildfires although the mean fire size is low because of fuel type and 
availability. Basically, there is a lot of grassland with some trees. The fuel grows quickly, and it burns off quickly. 
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Figure 22 
GROUND UP AGGREGATE RETURN PERIOD LOSSES BY STATE FOR TOP FOUR LOSS CAUSING STATES USING AIR 
INDUSTRY EXPOSURE FOR CURRENT CLIMATE. VERTICAL AXIS RANGE OF VALUES IS SAME FOR ALL FOUR PANELS. 

 

 

 

 

 
The most significantly contributing county for Colorado is El Paso, where Colorado Springs is located. The county is 
not the most populated and does not have the most exposure or fuel, but it is where the U.S. Air Force Academy is 
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located (just to the north of Colorado Springs). In terms of fire risk, fires are relatively infrequent (every two to three 
years) although the median fire size tends to be large – on the order of 1600–2500 acres. 

Figure 23 
AVERAGE ANNUAL LOSS BY COUNTY FROM THE AIR MODEL FOR THE CURRENT CLIMATE FOR THE TOP FOUR LOSS 
CONTRIBUTING STATES. 

  

  

 

The concept of only a few counties contributing in any significant way to the state-wide loss holds true for most 
states with a few exceptions. New Mexico shows a slightly more widespread perspective with about half the 
counties contributing. Obviously, the pattern is related to the locations or urban locations as well as climate and 
ecological factors. 

4.1.2 FUTURE CLIMATE LOSSES 
In this portion of the report, we present changes to industry losses at the portfolio, state and county levels for the 
2050 climate change scenario. Changes in the average annual loss as well as selected return periods are included. 
Figure 24shows the RP loss changes in percent for the entire AIR Model domain for the AIR industry exposure for 
occurrence and aggregate losses. 
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Figure 24 
CHANGES IN AVERAGE ANNUAL LOSS OVER THE AIR U.S. WILDFIRE DOMAIN USING AIR INDUSTRY EXPOSURE FROM 
2018 TO 2050 FOR AGGREGATE (UPPER) AND OCCURRENCE (LOWER) LOSSES. 

 

 

 

At the portfolio level, changes in the average occurrence loss almost double from the current value by 2050. 
Changes to the RP occurrence losses are also significant although less percentagewise compared to that of the 
Average Occurrence Loss (AOL). The greater impact to AOL is to be expected as the AOL event may be the result of a 
multi-state wildfire whereas the RP occurrence wildfires may be from single-state events. The lower impact at this 
high RP is likely an influence of the sub-sampling technique. Because of the rather large increases in loss there may 
not be an adequate supply of sufficiently large fires to adequately represent this high RP impact. Thus, it is quite 
possible that even the change at the AOL may be slightly under-represented. 

For aggregate losses, the impacts are larger than those for occurrence losses although the behavior across the RPs is 
identical. While the domain level results may seem large, they are simply an industry-exposure-weighted reflection 
of the climate change targets in burn area. 

Figure 25 shows that at a state level, changes in AAL that reflect the burned area targets by ecoprovince can be seen 
more clearly. Specifically, largest percent changes are located across the intermountain region: NM, CO, WY, MT, 
and ID. By 2050, the top four states still contribute to nearly 80% of the total, although the relative risk has changed. 
Loss increases in California are relatively modest at 50% but for some states like Colorado the average annual loss 
triples. For most states the losses double. 
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Figure 25 
CHANGES IN AVERAGE ANNUAL LOSS BY STATE USING AIR INDUSTRY EXPOSURE FROM 2018 TO 2050. 

    

 
Figure 26 shows the percent changes in the AAL and selected return periods for aggregate losses (the shapes of the 
occurrence loss change curves are similar and not included). Percent changes for California are less than those for the 
other three states, across the return periods. Some other noteworthy features include the fact that changes in low RP 
losses exceed those of the AAL in all three states besides California. This result is likely related to the climate variability 
impact on wildfire risk – specifically how the periods of wet and dry years align to create a year with relatively high 
wildfire risk. The fact that California as a state likely receives rainfall more regularly than the other three states 
because of its proximity to the Pacific Ocean and because of the Sierra Nevada Mountains that not only enhance 
precipitation, but which also cause winter precipitation to fall as snow, may be the reason this effect is suppressed. In 
fact, the effect is most evident in Arizona and in Colorado, which on the whole receive less precipitation annually than 
California or Texas, which is adjacent to the Gulf of Mexico. The last and perhaps the most noteworthy feature occurs 
in Colorado and other states intercepted by ecoprovince 47. We note the extremely high percent increase in the AAL 
for Colorado, especially by 2050. The magnitude of this increase can be traced back to the climate change target for 
ecoprovince 47, which used the FOD, historical reanalysis data, and forward-looking GCM output for VPD to determine 
how changes in VPD would translate to changes in annual burn area. The climate change target for 2050 for 
ecoprovince 47 was 652% and was a combination of relatively large increases in VPD for that region, as well as an 
already sensitive relationship between VPD and burn area from the historical record. 
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Figure 26 
PERCENTAGE CHANGE FROM 2018 TO 2050 IN AGGREGATE GROUND UP RETURN PERIOD LOSSES FOR TOP FOUR 
LOSS CONTRIBUTING STATES (ALPHABETICAL ORDER). 
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At the county level, the changes in industry loss at 2050 are a reflection of the amount of exposure in each county, 
as well as the number of ecoprovinces within a state, as well as how different their climate change targets are. It is 
an important result that, despite the very large percent increases in burned area for some ecoprovinces, that they 
do not coincide with areas of very high exposure. 

Figure 27 shows the percent change in AAL at the county level for the top four loss-causing states. The loss results 
can be explained with the help of Figure 26, which shows the hazard impacts and where we can see similar patterns. 
For example, in southern California, the biggest contributions to loss by area come from ecoprovinces 5 and 13 
although ecoprovince 12 contributes significantly to loss because of its location. The climate change targets for 
these ecoprovinces are only slightly less than those for ecoprovince 45, which exhibits some of the largest percent 
changes in loss – especially for 2050. Thus, the top contributing counties in the current climate remain the top 
contributing ones in 2050 but by lesser margins.  

Figure 27 
PERCENT CHANGE IN AAL BY COUNTY FROM 2018 TO 2050. 

  

 

 

 
 

For Arizona, loss increases are highest in the northern tier of counties. The central and northern parts of the state 
are characterized by ecoprovinces 7 and 20 which have burned area targets of 339% and 124% respectively. The 
impact of these targets is reflected in wildfire frequency and burned area for those regions and results in the highest 
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losses occurring in central and northern Arizona. The shapes and county level granularity limit more precise 
identification of where largest changes in loss are projected to occur. 

In Colorado, a similar inspection-based analysis shows that the western part of the state is expected to have the 
biggest increases in wildfire activity which is related to the fact that much of that portion of the state is 
characterized by ecoprovince 47 with a burned area target of 661. The county-level distribution of losses does 
reflect that with slightly higher (i.e., darker shades) loss changes in the west than in the east. Note that because the 
legend (e.g., range of colors) is capturing the dramatic increases in one small county in Colorado (Lake County) in 
Figure 27 that the changes in loss in the other counties do not appear to be as large or as different from some of the 
others in the state. Largest changes in loss in the western part of the state do show hundreds of percent increase in 
loss.  

Finally, for the three ecoprovinces that cover Texas, we see that south-west Texas experiences the most change, 
followed by central Texas, with Eastern Texas experiencing the least change. This hazard change pattern is reflected in 
the loss change pattern with higher percentage changes in the southwest part of Texas and lower ones in the 
northeast. 

The results presented in this section represent the mean view from our evaluation of the climate change results in 
the GCMs. Recall a range of GCMs was considered but output from only two were actually used for this study. The 
two represent the smallest (low) and the largest (high) increases in VPD for the entire United States by 2050. Our 
mean view was thus an average of these two projections. An extension of the methodology used here could be 
applied to create additional targets, to create additional sub-sampled catalogs, and to evaluate changes in loss 
based on those targets, and to at least at some level, quantify the uncertainty of how climate change will impact 
wildfire risk. 

Section 5: Considerations for Actuaries 
Wildfires have the potential to cause immediate and longer-term elevated risk profiles across many sectors of the 
economy and health of our society. In the short term, their impact may be more acute and localized. Given the 
findings in this paper, the potential for these risks to grow and the resulting downstream affects should be 
considered by actuaries across nearly all business practices: Life, Health, Property, and Casualty. This risk is 
especially problematic for long duration liabilities or assets. This paper is intended to provide more color to our 
fundamental understanding of the physical forces at play, which undoubtedly will have impacts on our general 
society, and more specifically, the actuarial community. 

Climate impacts and changes will not have a uniform impact across markets, but likely have amplified or depressed 
impacts in specific locales. These impacts may have compounding negative impacts on both the assets and liabilities 
projections. These risks are likely to affect the general building blocks approach to assumption setting but may also 
have special correlations which may need to be address. It may be helpful to think of the risk in three dimensions – 
general impact to risks, specific / localized impact, and trend changes between now and 2050. For some actuarial 
practices, it may be hard to implement spatial correlations, while others may be challenged by the temporal risk 
assessment.  
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For the actuary, the impact will vary by product and risk. A select set of the areas we think actuaries should take a 
hard look at their ultimate assumptions would include: 

1. Property insurance – Direct loss to buildings and time element 
a. Risk assessment and adjustments may be able to handle this risk due to the short contract length, 

though the risk is likely to be similar to extreme weather in which loss is hit or miss with high 
spatial correlation 

2. Morbidity and Mortality – Acute impacts from the direct loss of life / injury with long term impacts on 
respiratory illness and cancer because of excess particulates in the air 

a. Current underwriting and risk measurement practices are not adept enough to account for this 
risk 

3. Investment – Acute and macro impacts given overall impact from fires.  
As we think about these risks, it is important to think about the risk at the enterprise level. Especially for companies 
which operate in several domains and have exposure on both asset and liability sections of the balance sheet. 
Developing integrated sensitivity projections or correlated stochastic systems would be warranted. It is likely, the 
combined risk profile is greater than the sum of the individual.  

We encourage actuaries to use these projections and assessments to help them derive, validate, or question their 
ultimate assumptions across product lines and balance sheets. 

Section 6: Closing Remarks 
The study uses historical wildfire data (FOD) from the period 1992-2015 and environmental conditions to quantify 
ecoprovince-specific relationships between vapor pressure deficit (VPD) and area burned in a given year. For most 
ecoprovinces, the Generalized Linear Models (GLMs) show nonlinear relationships such that small changes in VPD 
yield very large changes (e.g., increases) in burn area. The GLM based relationships are used in conjunction with 
CMIP5 climate model output to understand how vapor pressure deficit will change in the different regions by 2050 
because of climate change and how those changes will affect wildfire risk. Although climate change is expected to 
have a steady increase in the summer dryness for the region, considerable interannual variability will also be 
present. Thus, the VPD values used for 2050 were obtained from an 11-year time average centered on the time 
horizons in question. And the mean values were obtained from looking at high- and low- projections of VPD in the 
GCMs and then creating an average (mean) view. The GCM-based uncertainty discussed in the last section and the 
sub-sampling-based uncertainty discussed earlier are two kinds of uncertainty. But there are a couple of others 
worth mentioning as well as some other limitations of what this study shows. 

One type of uncertainty is that in the GLMs developed for each ecoprovince. With a total of only 24 data points for 
each ecoprovince (one datum for each year in the 1992-2015 FOD period per ecoprovince) it is possible that one or 
two additional data points could change the VPD-burn area relationship. AIR believes the effect is relatively small – 
even for ecoprovinces in California with very active years in 2017, 2018, and 2020.9 While record breaking burned 
areas have occurred recently, the VPD-burned area relationships are effectively robust. Additional confidence that 
the relationships are accurate can be instilled by the fact that 2050 burn area targets agree in key ecoprovinces 
between our results and those in NRC 2011. 

 

 

9 In fact, a partial re-analysis conducted as this report was being completed with FOD data that became available through 2018 (Short, 2021) showed little 
change even by ecoregion and over the entire domain the impact was essentially zero. 
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Another type of uncertainty is associated with the RCP scenarios themselves. It is important to recognize that these 
scenarios are not forecasts per se and because of that, it is not appropriate to assign probabilities to them – at least 
not preferentially. From that standpoint they are all equally probable. Although the RCP 8.5 scenario is on the high 
end of the group of 4 RCP scenarios (RCP 2.6 reflects the smallest impact from climate change because of assumed 
changes in emissions) it is a scenario that society have been following over the last 15 years. Related to the 
uncertainty of the RCP scenario is the spread of climate change. For example, an RCP 8.5 is expected to yield a 2.0 oC 
temperature increase +/- 0.5 oC by 2055. However, the selection of high and low GCM projections mostly accounts 
for this aspect of uncertainty. 

One other type of uncertainty worth noting is that associated with changes in conditions to enhance or prohibit the 
realization of wildfire. The underlying premise of the VPD-burn area relationships is that the climate conditions 
provide an environment (e.g., fuel supply) and that fires will ignite at the same frequency and from the same causes 
they do now (e.g., lightning, downed power lines, human carelessness). But that could certainly change. We do not 
address how lightning frequency, intensity, or geographic and altitudinal distribution may change in this study. It is 
hopeful that power lines can become more resilient to high winds, and ice and snow accretion. We also can only 
hope that humans will be more careful, but we cannot say for certain. 

Also, while not sources of uncertainty, there are factors which were held constant, primarily in the interest of 
isolating the impact of climate change. For example, we did not change exposure. Thus, on one hand the study may 
underestimate future loss as there is a low chance that exposure will decline. But on the other hand, we also did not 
change any damage functions and used existing losses in the 100,000-year catalog to reflect changes in building 
codes and hopefully improved resiliency. In the future we (AIR) fully expect that new construction will be hardened 
against embers (the main cause of house ignition) and that mitigation measures such as defensible space will be 
taken more seriously. We expect future damages for ‘the same’ fire might be lower in the future, partly offsetting 
increased exposure. Without better (more wildfire-proof) construction and implementation of defensible space, the 
future looks like significantly more risk. The insurance industry can now support policy and policymakers that will 
reduce risk via better construction codes and their enforcement, for example. 

One other feature we did not account for was changes in vegetation. As the climate changes, it may very well be the 
case that vegetation will acclimate, adapt, or change location – e.g., change its period of leaf display or migrate 
northward. While many studies have addressed the climate change induced migration of species and GCMs even 
attempt to model it, it is hard to say if or how it will keep pace with climate change itself. Also, following a fire, the 
succeeding plant community could differ from the pre-fire community and produce different amounts or types of 
fuels available for future fires. 

In closing, it is important to emphasize that despite the uncertainties and limitations, the study provides useful 
guidance for how climate change likely will affect wildfire risk in the future. As disturbingly large as some of the 
numbers are, we note that at least from a hazard perspective, we have agreement with prior results using different 
methods from different researchers based on different data. And, especially with what a potentially damaging 
future may bring, it is better to have quantitative information on what the changes in hazard mean for U.S. wildfire 
losses now in order to give time to react and protect against the projected losses. 
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Appendix A – AIR Wildfire Model Ecoprovinces in the United States 
 
Table A.1 
 LIST OF ECOPROVINCES IN THE AIR WILDFIRE MODEL FOR THE UNITED STATES 

ID Name 
5 American Semi-Desert and Desert Province 

7 Arizona-New Mexico Mountains Semi-Desert-Open Woodland-Coniferous Forest-Alpine Meadow 
Province 

10 Black Hills Coniferous Forest Province 

12 California Coastal Chaparral Forest and Shrub Province 

13 California Coastal Range Open Woodland-Shrub-Coniferous Forest-Meadow Province 

14 California Coastal Steppe-Mixed Forest-Redwood Forest Province 

15 California Dry Steppe Province 

16 Cascade Mixed Forest-Coniferous Forest-Alpine Meadow Province 

18 Chihuahuan Semi-Desert Province 

20 Colorado Plateau Semi-Desert Province 

21 Eastern Broadleaf Forest (Continental) Province 

24 Great Plains-Palouse Dry Steppe Province 

25 Great Plains Steppe and Shrub Province 

26 Great Plains Steppe Province 

28 Intermountain Semi-Desert and Desert Province 

29 Intermountain Semi-Desert Province 

31 Lower Mississippi Riverine Forest Province 

32 Middle Rocky Mountain Steppe-Coniferous Forest-Alpine Meadow Province 

33 Nevada-Utah Mountains-Semi-Desert-Coniferous Forest-Alpine Meadow Province 

34 Northern Rocky Mountain Forest-Steppe-Coniferous Forest-Alpine Meadow Province 

35 Ouachita Mixed Forest - Meadow Province 

36 Outer Coastal Plain Mixed Forest Province 

37 Ozark Broadleaf Forest - Meadow Province 

40 Pacific Lowland Mixed Forest Province 

41 Prairie Parkland (Subtropical) Province 

42 Prairie Parkland (Temperate) Province 

45 Sierran Steppe-Mixed Forest-Coniferous Forest-Alpine Meadow Province 

46 Southeastern Mixed Forest Province 

47 Southern Rocky Mountain Steppe-Open Woodland-Coniferous Forest-Alpine Meadow Province 

48 Southwest Plateau and Plains Dry Steppe and Shrub Province 
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Figure A.1  
MAP OF ECOPROVINCES IN THE AIR WILDFIRE MODEL IN THE UNITED STATES 
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Appendix B – Hazard Target Summary 
Table B.1  
PERCENT CHANGE IN VAPOR PRESSURE DEFICIT (VPD) AND AVERAGE ANNUAL BURNED AREA (AREA) FOR EACH 
ECOPROVINCE IN 2050 RELATIVE TO 2018 UNDER RCP 8.5.  

Eco-ID VPD 2050 Area 2050 
5 10 47 
7 18 339 

10 22 36 
12 8 94 
13 9 31 
14 6 0 
15 10 0 
16 11 153 
18 17 189 
20 15 124 
21 33 12 
24 20 195 
25 25 77 
26 21 32 
28 14 49 
29 16 182 
31 41 29 
32 19 635 
33 16 240 
34 17 447 
35 36 16 
36 26 84 
37 36 30 
40 9 18 
41 23 102 
42 26 29 
45 11 112 
46 39 41 
47 20 661 
48 21 143 
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