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Managing Investment Risks of Insurance 

Contractual Designs 

Section 1: Executive Summary 

Life and annuity markets around the world have seen increasingly complex investment-combined products, 

including universal life, fixed indexed annuities, variable annuities with a wide variety of guaranteed benefits and 

indexed variable annuities. Insurance companies are facing unprecedented exposure to financial risks in addition to 

traditional mortality and longevity risks. The risk assessment and modeling for such complex designs by conventional 

methods often focus heavily on their market competitiveness and profitability. However, there seems to be a lack of 

quantifiable and systematic approaches to assess investment risks associated with investment combined products. 

The objective of this study is to develop a framework for quantifying and analyzing various forms of contractual 

designs and showcase different techniques to assess the trade-off between competitive contractual designs and 

their practical implications with regard to the difficulty of risk management. 

There are four commonly used risk management techniques—risk avoidance, reduction, sharing and retention. The 

latter three are often combined in various ways in contractual designs. Adding to the complexity is the interplay of 

various types of risks such as equity risk, inflation risk and mortality risk. 

In Section 3, we establish a procedure to understand how risks are transferred among various stakeholders including 

policyholders, insurers, reinsurers and capital markets. For each type of product design discussed in this report, we 

aim to understand how each type of risk is managed through a cascade of risk management actions. Then we 

quantify and assess the extent to which the risk is transferred or mitigated through a particular risk management 

action. By dissecting each contractual design into a cascade of risk management actions, we aim to quantify the 

linkage between contractual design and the effect of risk management. 

We introduce in Section 4 a series of variable annuity guaranteed benefits as examples of common contractual 

designs offered in the market. In contrast with current market practice of modeling them through spreadsheet 

calculations or their equivalents in specialized software packages, we take a minimalist approach to quantify 

structural components of these guaranteed benefits through mathematical formulation. In each formulation, we 

can clearly identify all risk factors and how they interact with each other. 

An application of the cascade risk management model is offered in Section 5. Each product design is reviewed and 

analyzed from the lens of both a policyholder and an insurer. The decomposition of the risk-neutral value of an 

investment with each product design into those between a policyholder and an insurer enables us to understand 

the split of profit or deficiency between two parties, in agreement with the no-arbitrage theory. We then 

considerate the risk formulations after each step of risk management. By comparing various risk measures, we 

analyze the financial impact of each risk management action. As a result of this standardized measurement, we can 

compare how risks are absorbed or reduced on the cascade of risk management actions. From a practitioner’s point 

of view, the cascade model can offer a clear view of profitability of each product design through a series of actions. 

While the previous sections focus on the interaction of equity risk and mortality risk, Section 6 offers another 

example of interactions between inflation risk and mortality risk. This section shows a variety of common product 

designs known in the industry. 
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We provide a framework of modeling inflation risk and mortality risk embedded in inflation-linked insurance in 

Section 7. In this section, we take one of the product designs as an example and focus on developing a delta-hedging 

strategy to transfer undiversifiable inflation risk to the capital market. Details of a hedging strategy is offered for 

practitioners interested in implementation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://soa.qualtrics.com/jfe/form/SV_9ZerAUwsqeiQ0rY


6 

Section 2: Introduction 

Over the last few decades, life insurers have introduced a wide variety of insurance and annuity contractual designs 

to appeal to consumers’ changing needs and compete for market share. As these products are often combined with 

investments, different types of risks including equity, interest rate and inflation are embedded in insurers’ product 

portfolios. Many contractual designs offer investment optionalities, often used to protect customers from the 

downside risk of investment. With the growing complexity of contractual designs, it is increasingly important for 

actuaries to understand the impact of these designs and the ease of managing underlying risks. 

The purpose of this report is to develop a quantitative framework in which we can quantify and assess the 

connection between various contractual designs and associated risks.  

As a general principle, we think of a contractual design as a mapping from the dynamics of the underlying risk(s) to 

an insurer’s financial obligations. Suppose an investor has $100 to invest either directly in a stock or in a variable 

annuity contract linked to the same stock. See Figure 1, where GMXB represents various types of guaranteed 

minimum benefits, including guaranteed minimum death benefit, guaranteed minimum maturity benefit and 

guaranteed minimum withdrawal benefit. 

Figure 1 

A MAPPING FROM THE DYNAMICS OF EQUITY RISK TO AN INVESTMENT GUARANTEE 

 

The left panel shows the evolution of stock prices over a period of five years. If left unprotected, the investor is fully 

exposed to equity risk and her investment varies exactly by the same amount as stock price. The VA contract offers a 

guaranteed minimum maturity benefit, which guarantees a minimum balance of $100 after five years. The cash flow 

is now split between the policyholder and the insurer who underwrites the variable annuity contract. The right panel 

shows the new set of cash flows between the policyholder and the insurer. In compensation for the guaranteed 

benefit, the policyholder pays 10% of her account value on an annual basis to the insurer. For example, in the first 

year, the policyholder has a total of $100 in her account prior to any fee deduction. The insurer receives $10. The 

remaining $90 is linked to stock prices on the left panel. Since the stock price drops about 10% at the end of first 

year, the policyholder ends up with $81. The fee charge at time 1 (the beginning of the second year) is given by 10% 

of the then-current balance, $81. The calculation can carry on as such. Even though the investor’s investment still 

varies in proportion to the stock price, she receives a boost to her investment due to a benefit payment from the 

GMMB at maturity. Therefore, the equity risk is partially transferred from the policyholder to the insurer, who 

receives annual fee incomes and carries the financial obligation to absorb some of the policyholder’s loss. 

While this is well known, we take a theoretical viewpoint that each contractual design can be viewed as a set of two 

mappings, one of which maps to an insurer’s cash flow and the other to a policyholder’s cash flow. 

0 1 2 3 4 5

Stock Price 100 90 60 120 110 60

0 1 2 3 4 5

10.00 8.10 4.86 8.75 7.22

-64.57

90.00
72.90

43.74

78.73
64.95

100.00
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Section 3: Risk Management Techniques 

The purpose of a contractual design is to split the risks involved between the insurer and the insured so that the 

financial impacts of losses are acceptable to both parties. Without any investment guarantee, an insurer merely acts 

as a steward of its policyholders’ investment funds and hence equity risk lies entirely with policyholders. When a 

certain investment guarantee is offered, a portion of equity risk is transferred from policyholders to the insurer. 

Therefore, how to manage risk is a critical component of an insurance business. In this report, we investigate 

contractual designs from the viewpoint of an insurer. We first break down contractual design into mechanical 

components by various risk management techniques. Then we gauge how much risk the insurer retains with each 

type of contract design by different measures. 

In general, all techniques of risk management in the financial industry fall into one or more of the four categories. 

3.1 RISK AVOIDANCE 

An insurer may establish a risk management strategy to avoid a policy design that carries risk beyond a certain level 

of tolerance. For example, an inflation-linked insurance product may offer annuity payments increased by a fixed 

percentage each period, which is intended to keep up with rising cost of living. An alternative is to link the payments 

to the consumer price index, which measures the changes in consumer goods. While the CPI adjustment offers the 

best protection for policyholders, it involves significant inflation risk for the insurer. Assessing the difficulty with 

dealing with the uncertainty, the insurer may choose only to offer a fixed percentage increase to avoid inflation risk. 

3.2 RISK REDUCTION 

This may include a variety of approaches to reduce risk, such as providing policyholders with coverage or incentives 

for preventive health care in expectation of lowering the likelihood of health problems for policyholders and 

expensive bills for the insurer. However, in this report, we do not consider any external factor that may influence 

the probability distribution of risks involved. Instead, we are interested in the reduction of uncertainty due to the 

aggregation of contracts. The diversification of mortality risk among a large pool of contracts makes the average loss 

much more predictable and manageable. 

3.3 RISK SHARING 

This includes any design of insurance or financial product where certain risk is packaged and transferred from one 

party to another. An example would be the dynamic hedging of variable annuity contracts with a guaranteed 

minimum death benefit rider. While the mortality risk can be diversified in a large pool of policies, the equity risk 

cannot as all policies are linked to the same set of equity indices. The insurer may choose to transfer the 

undiversified risk to the capital market by developing a hedging program. When the equity indices perform poorly 

and the GMDB is in-the-money, the insurer can offset losses with payoffs from a hedging portfolio. More details will 

be offered later in this section. 

3.4 RISK RETENTION 

This means to accept a risk and absorb any loss from the risk with one’s own resources. In the insurance industry, a 

common approach of risk retention is to set aside some resources, known as reserve or capital, to cover potential 

losses in the future.  

3.5 CASADE MODEL OF RISK MANAGEMENT 
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We want to understand how the three most important tools of risk management—risk reduction, risk sharing and 

risk retention—are integrated in product design and development. Here we take a minimalist approach to only 

consider essential elements so that we can focus on the core principle of risk management. See Figure 2. 

Figure 2 

RISK MANAGEMENT TECHNIQUES EMBEDDED IN EQUITY-LINKED INSURANCE 

 

 

Figure 2 shows the various steps in which a product is engineered to deal with risks facing a policyholder. The first 

step of risk transfer from a policyholder to an insurer is of most interest to the policyholder, as it measures how 

much uncertainty is taken away when buying a product. One may also argue that such a quantitative analysis is 

useful for marketing purpose, as it reveals the degree to which a product improves a policyholder’s risk profile. The 

second and third steps are of utmost interest to an insurer, as they show the insurer’s capacity of coping with risks 

ceded by the policyholder. Hence, the report tends to focus on metrics of the last two steps from an insurer’s 

viewpoint. In the figure, while 𝑋0 and 𝑋1 represents the policyholder’s financial position by purchasing the product 

without and with the guarantee respectively and 𝑋2 represents the insurer’s financial position by selling the product 

with the guarantee. The conditional expectation 𝐸[𝑋2|𝐹𝑇] gives the insurer’s financial position when the mortality 

risk is absorbed. The exact mathematical formulation of these quantities shall be introduced in Section 5 for each of 

three types of investment guarantees. The dissection of these quantities is used to understand how investment risk 

and mortality risk are re-distributed and absorbed by various stakeholders of each contract. 

Section 4: Equity-linked Insurance and Annuity 
To facilitate the discussion of cash flow models, we introduce the following notations to be used in this report. 

• 𝑺𝒕. The market value of the underlying equity index or fund at t. If more than one fund is involved, this is 

considered to be the portfolio value of all funds. 

• {𝓕𝓽: 𝟎 ≤ 𝒕 ≤ 𝑻}. The filtration with which a stochastic process {𝑆𝑡: 0 ≤ 𝑡 ≤ 𝑇} is defined. The filtration 

represents the accumulation of market information over time. 

• 𝑭𝒕. The market value of the policyholder’s sub-accounts at t ≥ 0. 𝐹0 is considered to be the initial premium 

invested at the start of the contract. 

• 𝑮𝒕. The guaranteed base used to determine the amount of payment to the policyholder from various riders 

at time t ≥ 0. Examples will follow in the next section. 

• 𝐧. The number of valuations per year. 

• 𝐦. The nominal annualized rate at which asset-value-based fees are deducted from sub-accounts. 

Although we do not explicitly indicate the frequency of fee payments, we typically assume that the 

payment period matches the valuation period. We shall first consider m to be a nominal rate compounded 
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n times per annum in the discrete time model and then a nominal rate compounded continuously in the 

continuous time model. 

• 𝒎𝒆 and 𝒎𝒅. Rider charges for GMMB and GMDB, respectively. The portion available for funding the 

guarantee cost is called margin offset or rider charge and is usually split by benefit. We denote the 

annualized rate of charges allocated to the GMMB by 𝑚𝑒 and that of the charges allocated to the GMDB by 

𝑚𝑑. Note that in general, m > 𝑚𝑒 +𝑚𝑑  to allow for overheads, commissions and other expenses. 

• 𝐫. The continuously compounding annual risk-free rate. This typically reflects the overall yield rate of assets 

in the insurer’s general account backing up guaranteed benefits. 

• 𝐓. The target value date (or called maturity date), typically a rider anniversary on which the insurer is liable 

for guarantee payments. 

• 𝑻𝒙. The random variable representing the future lifetime of the policyholder of age x at inception. 

• 𝐾𝑥. The random variable representing the curtate future lifetime of the policyholder of age x at inception. 

• 𝐋. The net present value of future liabilities at the start of the contract. The techniques to be introduced in 

the notes can be used to analyze liabilities at any other valuation date. We shall focus on the start of the 

contract for simplicity. 

Let us first consider the cash flows of a stand-alone variable annuity contract. Consider a discrete time model with a 

valuation period of 1/n of a time unit, where n represents the frequency of payments each period, such as quarterly 

(n = 4), monthly (n = 12) or daily (n = 252), the number of trading days each year. In other words, cash flows are 

expected to occur only on time points t = 1/n,  2/n,  ⋯ ,  k/n,  ⋯ ,  T. The fees and charges by annuity writers are 

typically taken as a fixed percentage of the-then-current account values for each period. The equity-linked 

mechanism for variable annuity dictates that at the end of each trading day, the account value fluctuates in 

proportion to the value of the equity fund in which it invests and is deducted by account-value-based fees: 

𝐹𝑘/𝑛 = 𝐹0
𝑆𝑘/𝑛

𝑆0
(1 −

𝑚

𝑛
)
𝑘

, 𝑘 = 1,2,  ⋯ , 𝑛𝑇, (1) 

where m is the annual rate of total charge compounded n times per year, and all charges are made at the beginning 

of each valuation period. 

Observe that the income from the insurer’s perspective is generated by a stream of account-value-based payments. 

To understand the effect of particular contractual design, we usually split fee incomes by benefit. Here we take for 

example the fee income collected to fund a particular rider; its present value up to the k-th valuation period is 

denoted and given by 

𝑀𝑘/𝑛 =∑𝑒−𝑟(𝑗−1)/𝑛
𝑘

𝑗=1

(
𝑚𝑥
𝑛
) 𝐹(𝑗−1)/𝑛 , (2) 

where 𝑚𝑥 represents the rate of fee charged by the insurer and there are three common riders, namely guaranteed 

minimum maturity benefit, guaranteed minimum death benefit and guaranteed minimum withdrawal benefit. 

 

4.1 GUARANTEED MINIMUM MATURITY BENEFIT 

The GMMB guarantees the policyholder a minimum monetary amount G at the maturity T. Recall the definition that 

𝑇𝑥  and 𝐾𝑥  are the random variables representing the future and curtate lifetime of the policyholder, where the 

relationship between them is given by 

𝐾𝑥
(𝑛) =

1

𝑛
⌊𝑛𝑇𝑥⌋. 
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As the insurer is only possibly liable for the amount by which the guarantee exceeds the policyholder‘s account 

balance at maturity, the present value of the gross liability to the insurer is  

𝑒−𝑟𝑇(𝐺 − 𝐹𝑇)
+𝐼(𝐾𝑥 > 𝑇), (3) 

where (𝑥)+ = max{ x, 0} and I(Kx > T) = {
1, 𝑖𝑓𝐾𝑥 > 𝑇
0, 𝑖𝑓𝐾𝑥 ≤ 𝑇

.  

Consider the individual net liability of the guaranteed benefits from the insurer’s perspective, which is the gross 

liability of guaranteed benefits less the fee incomes. The present value of the GMMB net liability is given by 

𝐿𝑒
(𝑛)(𝑇𝑥) ≔ 𝑒−𝑟𝑇(𝐺 − 𝐹𝑇)

+𝐼(𝐾𝑥 > 𝑇) − 𝑀𝑇∧𝐾𝑥 , 

where x ∧ 𝑦 = min{ x, y} and the margin offset is given by equation (2). 

In practice, the insurer’s liability is often determined under each economic scenario by recursive calculation of 

surplus or deficiency from period to period, whether carried out in an Excel spreadsheet or by other software 

packages. The expression above is a stochastic representation of a simplified version of such a liability under the 

GMMB rider. Under such a representation, one can generate a sample of net liabilities under different scenarios by 

running Monte Carlo simulations of equity returns and death events. 

We shrink the valuation period to zero by taking n to , reaching the limiting continuous-time model. Recall that 

lim
𝑛→

 (1 −
𝑚

𝑛
)
𝑛

= 𝑒−𝑚 , (4)  

where m in this case should be interpreted as the continuously compounded annual rate of total charges. As a 

result, for each sample path, the continuous-time analogue of equation (1) is given by 

𝐹𝑡 = lim
𝑛→

𝐹⌈𝑛𝑡⌉
𝑛

=
𝐹0
𝑆0
lim
𝑛→

𝑆⌈𝑛𝑡⌉
𝑛

[(1 −
𝑚

𝑛
)
𝑛

]

⌈𝑛𝑡⌉
𝑛
= 𝐹0

𝑆𝑡
𝑆0
𝑒−𝑚𝑡 . (5) 

Using the definition of Riemann integral, we observe that the limit of the margin offset is given by 

𝑀𝑡 = lim
𝑛→

𝑀⌈𝑛𝑡⌉
𝑛

= lim
𝑛→

∑
1

𝑛
𝑒−𝑟(𝑗−1)/𝑛

⌈𝑛𝑡⌉

𝑗=1

𝑚𝑒𝐹(𝑗−1)/𝑛 = ∫ 𝑒
−𝑟𝑠𝑚𝑒𝐹𝑠𝑑𝑠,

𝑡

0

 

where 𝑚𝑒 is interpreted as the continuously compounded annual rate of rider charge allocated to the GMMB rider. 

The limit of L leads to a continuous time model. In the case of the GMMB, 

𝐿𝑒
(∞)(𝑇𝑥) = 𝑒

−𝑟𝑇(𝐺 − 𝐹𝑇)
+𝐼(𝑇𝑥 > 𝑇) − ∫ 𝑒−𝑟𝑠𝑚𝑒𝐹𝑠𝑑𝑠

𝑇∧𝑇𝑥

0

. (6) 

The net liabilities L should be negative with a sufficiently high probability, as the products are designed to be 

profitable. However, in adverse scenarios, the net liabilities can become positive. Note that L depends on the path 

of equity values as well as mortality.   

4.2 GUARANTEED MINIMUM DEATH BENEFIT 
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The GMDB guarantees the policyholder a minimum monetary amount G upon death payable at the end of the 1/n-

th period following his/her death. In other words, the insurer is responsible the difference between the guaranteed 

amount G and the actual account value at the time of payment, should the former exceed the latter. Figure 3 shows 

a particular scenario of account value falling below a guaranteed level at the time of death 𝑇𝑥, which represents a 

liability for the insurer. 

Figure 3 

GMDB GROSS LIABILITY 

 

 

It is fairly common that the guarantee amount accumulates interest at a fixed rate ρ > 0, which is known as a roll-

up option. The present value of the insurer’s gross liability is 

𝑒−𝑟
(𝐾𝑥
(𝑛)
+1/𝑛) (𝐺 (1 +

𝜌

𝑛
)
𝑛𝐾𝑥

(𝑛)

− 𝐹
𝐾𝑥
(𝑛)
+1/𝑛

)

+

𝐼(𝐾𝑥
(𝑛) < 𝑇). 

The present value of the GMDB net liability is given by 

𝐿𝑑
(𝑛)(𝑇𝑥) ≔ 𝑒−𝑟

(𝐾𝑥
(𝑛)
+1/𝑛) (𝐺 (1 +

𝜌

𝑛
)
𝑛𝐾𝑥

(𝑛)

− 𝐹
𝐾𝑥
(𝑛)
+1/𝑛

)

+

𝐼(𝐾𝑥
(𝑛) < 𝑇) − ∑ 𝑒−𝑟(𝑗−1)/𝑛 (

𝑚𝑑
𝑛
) 𝐹(𝑗−1)/𝑛

𝑛(𝑇∧𝐾𝑥
(𝑛)
)

𝑗=1

, 

where 𝑚𝑑 is the rate of fees per period allocated to fund the GMDB rider. Bear in mind that the rider fees are not 

charged separately, but rather as part of the mortality and expense, or M&E, fees, that is, m > 𝑚𝑑 . Similarly, using 

the same argument as above, it is easy to show that the continuous-time version of the insurer’s GMDB net liability 

is given by 

𝐿𝑑
(∞)(𝑇𝑥) = 𝑒

−𝑟𝑇𝑥(𝐺𝑒𝜌𝑇𝑥 − 𝐹𝑇𝑥)
+
𝐼(𝑇𝑥 < 𝑇) − ∫ 𝑒−𝑟𝑠𝑚𝑑𝐹𝑠𝑑𝑠

𝑇∧𝑇𝑥

0

. (7) 

Note that there are two sources of randomness in the formulation, namely the future lifetime 𝑇𝑥  and the path of 

equity returns {𝐹𝑠, 0 ≤ 𝑠 ≤ 𝑇}. The interaction of both risks affects the severity of potential losses. 

4.3 GUARANTEED MINIMUM WITHDRAWAL BENEFIT 

The GMWB guarantees the policyholder the return of initial premium, typically through systematic withdrawals, 

regardless of the performance of the underlying equity funds. The policyholder is allowed to withdraw up to a 

maximal percentage of the initial premium per year out of the sub-account without penalty. The withdrawals are 

guaranteed to last until the initial premium is fully refunded, at which point any remaining balance of the 

investment account would be returned to the policyholder. Figure 4 shows a scenario with systematic withdrawals 

where the wiggly line at the bottom represents the balance of a policyholder’s investment account and the staircase 

line at the top shows the remaining part of the initial premium to be withdrawn. While both lines drop by the same 

amount on each policy anniversary due to the systematic withdrawal, they can be far apart because the account 
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value moves with the equity investment. As shown in the figure, when the market performs poorly, the investment 

account is depleted before the premium is fully returned. The GMWB rider enables the policyholder to continue 

receiving payments of the pre-specified withdrawal amount until the premium is refunded. 

Figure 4 

GMWB GROSS LIABILITY 

 

Let us examine the cash flows for both the insurer and a policyholder. In practice, most policyholders choose to 

withdraw the maximum amount without penalty, denoted by w, which is typically a fixed percentage applied to the 

initial premium. Then it takes T = 𝐹0/w periods before the initial premium is fully refunded, at which point the 

GMWB rider expires. Note that w is represented as the absolute amount. For example, if the maximum is 10% per 

year and the initial deposit is 𝐹0 = 1,000, then the withdrawal amount is w = 100 and the maturity is in 

1,000/100 = 10 years. The margin offset per time unit used to fund the GMWB rider is denoted by 𝑚𝑤. 

Although withdrawal activities can vary due to policyholders’ behaviors, SOA and LIMRA’s 2015 experience study 

(Drinkwater, Iqbal and Montiminy 2014) shows that “the majority of owner stake withdrawals through systematic 

withdrawal plans (SWPs). ... When owners use SWPs, they are likely to make withdrawals [for lifetime] within the 

maximum amount allowed in their contracts.” This phenomenon has been observed consistently for many years by 

SOA and LIMRA’s annual experience studies. The 2015 experience study shows that “79% of owners who took 

withdrawals in 2013 withdrew income that was below or close to the maximum amount calculated—up to 100%” 

and roughly 55% of policyholders who took withdrawals withdrew income between 90% and 110% of the maximum 

amount. The same report also states that “owners rarely add premium after the second year of owning a 

[guaranteed lifetime withdrawal benefit].” Therefore, in this paper, we make simplifying assumptions that are 

satisfied in the majority of cases in practice: 1) The policyholder under consideration starts taking withdrawals 

immediately at the time of valuation, although the results in this work can be easily extended to address the 

accumulation of an investment account in a waiting period until the first withdrawal; 2) the policyholder takes 

withdrawals at the penalty-free maximum amount every year; and 3) there is only an initial purchase payment 

(premium) at the start of the contract and no additional deposits are considered. 

The pricing and hedging of the GMWB rider are studied in the literature by Milevsky and Salisbury (2006); Kling, 

Ruez and Russ (2011); and Feng and Jing (2016). Risk measures of the GMWB are considered in Feng and Vecer 

(2017) using partial differential equation methods. 

To build up a model for the GMWB rider, we consider the incremental change of the policyholder’s investment 

account over each period,  

𝐹(𝑘+1)/𝑛 − 𝐹𝑘/𝑛 =
𝑆(𝑘+1)/𝑛 − 𝑆𝑘/𝑛

𝑆𝑘/𝑛
𝐹𝑘/𝑛 −

𝑚

𝑛
𝐹𝑘/𝑛 −

𝑤

𝑛
, (8) 

which consists of the financial return from the equity-linking mechanism less the total management fee and the 

withdrawal for that period. Note that this recursive relation does not seem to have a simple explicit solution. To be 

more precise, however, one needs to make sure that the account does not go below zero and hence 
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𝐹(𝑘+1)/𝑛 = max {
𝑆(𝑘+1)/𝑛

𝑆𝑘/𝑛
𝐹𝑘/𝑛 −

𝑚

𝑛
𝐹𝑘/𝑛 −

𝑤

𝑛
, 0} . (9) 

Let us first consider the GMWB liability from a policyholder’s point of view. The systematic withdrawals in the initial 

periods are typically taken directly out of the policyholder’s account. When the equity performs badly, there is a 

chance that the account is depleted prior to time T. In that case, the insurer would have to continue to fund the 

systematic withdrawals out of its own general account. Therefore, the insurer’s liability starts when the 

policyholder’s sub-account is exhausted, called ruin time, that is,  

τ ≔ min {
𝑘

𝑛
> 0: 𝐹𝑘/𝑛 = 0}. 

Note that the ruin time is a random variable and can be greater than T, which means the fund in the sub-account 

will never be exhausted at the expiration time of the GMWB rider. For simplicity, we consider the case where the 

policyholder starts to withdraw immediately after the purchase of the contract. There would possibly be two 

sources of income for the policyholder:  

1. The collection of all guaranteed withdrawals until the initial premium is returned or the time of death. The 

present value of all withdrawals is given by 

∑ 𝑒−𝑟𝑘/𝑛
𝑤

𝑛

⌈𝑛(𝑇∧𝑇𝑥)⌉

𝑘=1

. 

2. The balance of the policyholder’s investment account, if there is any remaining at the maturity or the time 

of death T ∧ 𝑇𝑥. This can be easily represented by 𝑒−𝑟(𝑇∧𝑇𝑥)𝐹𝑇∧𝑇𝑥. Therefore, the total sum of financial 

returns to the policyholder from the investment in the variable annuity contract can be written as 

∑ 𝑒−𝑟𝑘/𝑛
𝑤

𝑛

⌈𝑛(𝑇∧𝑇𝑥)⌉

𝑘=1

+ 𝑒−𝑟(𝑇∧𝑇𝑥)𝐹𝑇∧𝑇𝑥𝐼(𝐹𝑇∧𝑇𝑥 > 0). (10) 

From an insurer’s point of view, the cash flows would look somewhat different. First of all, one has to keep in mind 

that the policyholder withdraws from his/her own account as long as it remains sufficient, and that the insurer only 

picks up the bill after the account plunges to zero prior to T ∧ 𝑇𝑥.  

On one hand, the total present value of the insurer’s liabilities (guaranteed withdrawals) would be the sum of 

present values of all withdrawals after ruin time and before the earlier of the maturity T and the time of death 𝑇𝑥, 

∑ 𝑒−𝑟𝑘/𝑛
𝑤

𝑛

(𝑛τ−1)∨⌈𝑛(𝑇∧𝑇𝑥)⌉

𝑘=𝑛τ

, 

with the convention that ∑𝑚−1𝑘=𝑚 = 0 for any integer m. The symbol ∨ means the greater of two numbers, that is, 

x ∨ 𝑦 = max{ x, y}. The random upper limit is used to make the sum zero when ruin does not occur prior to 

maturity. On the other hand, the insurer collects M&E fees from the start of the contract until the policyholder’s 

account is exhausted and hence the present value of its income stream is given by 

∑ 𝑒−𝑟(𝑘−1)/𝑛𝐹(𝑘−1)/𝑛
𝑚𝑤
𝑛

(𝑛τ−1)∧⌈𝑛(𝑇∧𝑇𝑥)⌉

𝑘=1

. 
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Piecing together both sides of the benefit outgo and the fee income, we obtain the individual net liability of a 

GMWB rider 

𝐿𝑤
(𝑛) ≔ ∑ 𝑒−𝑟𝑘/𝑛

𝑤

𝑛

(𝑛τ−1)∨⌈𝑛(𝑇∧𝑇𝑥)⌉

𝑘=𝑛τ

− ∑ 𝑒−𝑟(𝑘−1)/𝑛𝐹(𝑘−1)/𝑛
𝑚𝑤
𝑛

(𝑛τ−1)∧⌈𝑛(𝑇∧𝑇𝑥)⌉

𝑘=1

. (11) 

The analogue of equation (9) is to impose the restriction that in the continuous-time model the process F is 

absorbed at zero once it reaches zero. 

From a policyholder’s point of view, we obtain the total worth of investment with the variable annuity contract with 

the GMWB rider in continuous-time by taking the limit of equation (10) as n → ,  

∫ 𝑒−𝑟𝑡𝑤dt
𝑇∧𝑇𝑥

0

+ 𝑒−𝑟(𝑇∧𝑇𝑥)𝐹𝑇∧𝑇𝑥I(𝐹𝑇∧𝑇𝑥 > 0). 

Similarly, the continuous-time individual net liability of a GMWB rider from an insurer’s point of view is given by the 

limit of equation (11) as n → , 

𝐿𝑤
() ≔ ∫ 𝑒−𝑟𝑡𝑤

τ∨(𝑇∧𝑇𝑥)

τ

𝑑𝑡 − ∫ 𝑒−𝑟𝑡𝑚𝑤𝐹𝑡𝑑𝑡
τ∧(𝑇∧𝑇𝑥)

0

, 

where the ruin time is defined by τ ≔ inf{ 𝑡 > 0: 𝐹𝑡 ≤ 0}. 

Section 5: Risk Management of Equity-linked Insurance 

In this section, we shall apply the cascade model to the quantification and assessment of equity and mortality risks 

embedded in various variable annuity guaranteed benefits. After all benefits are analyzed under the same 

framework, we shall make a comparison of different product designs. 

5.1 RISK MEASURES 

Risk measures map a risk/loss random variable to a real number. There are several risk measures that are most 

commonly used in practice, including value-at-risk (VaR), 

VaRp(𝑋) = inf{ x: P(𝑋 ≤ 𝑥) ≥ 𝑝}, 

the threshold exceeded by the loss random variable with the probability of at least p; tail value-at-risk (TVaR), 

TVaRp(𝑋) =
1

1 − 𝑝
∫ VaRq(𝑋)𝑑𝑞
1

𝑝

, 

the average value of extreme VaRs with the confidence level [𝑝, 1]; and conditional tail expectation (CTE),  

CTEp(𝑋) = E [𝑋|𝑋 ≥ VaRp[𝑋]], 

the average amount of loss when it exceeds the VaR at the confidence level p. When X is a continuous random 

variable, TVaRp(𝑋) and CTEp(𝑋) are equivalent. Risk measures have been used by the insurance industry for 

setting up reserves and capitals. 
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5.2 GUARANTEED MINIMUM MATURITY BENEFIT 

There are two parties involved at the individual contract level—a policyholder and an insurer underwriting the 

variable annuity contract. Two types of risks are considered for this design—equity risk and mortality risk. The lapse 

risk is not considered here. Let us now consider the split of risks between the policyholder and the insurer at the 

contract level. 

5.2.1 RISK RETENTION AND RISK SHARING AT CONTRACTUAL LEVEL 

The investment with combined risks is split into two components – the policyholder’s account with retained risks 

and the insurer’s account with risks transferred from the policyholder. In the following, we examine financial 

positions of both the policyholder and the insurer. 

 Without investment guarantee. Had a policyholder not purchased a variable annuity, he or she would use 

the initial purchase payment 𝐹0 to buy equity directly and hence be completely exposed to the equity risk 

with the uncertainty of financial returns. To make an easy comparison of the cases with and without 

investment guarantees, we look at economic outcomes at the time of termination T ∧ 𝑇𝑥, which is the 

earlier of some maturity date T or the time of the policyholder’s death. With an analogy to equation (5), an 

investment without any guarantee ends up with 

𝐹0
𝑆𝑇∧𝑇𝑥
𝑆0

= 𝐹𝑇∧𝑇𝑥𝑒
𝑚(𝑇∧𝑇𝑥), 

or written in terms of time-0 value as the risk 𝑋0 ≔ 𝐹𝑇∧𝑇𝑥𝑒
−(𝑟−𝑚)(𝑇∧𝑇𝑥), where F refers to the account value 

process in equation (5). 

 With investment guarantee. In contrast, the equity risk is shared between the policyholder and the insurer 

once a contract with the GMMB rider is in force. The policyholder or beneficiary (heir) is now entitled to the 

balance in the sub-account and additional guarantee benefit in time-0 value, 

𝑋1 ≔ 𝑒−𝑟𝑇max{𝐹𝑇 , 𝐺} 𝐼(𝑇𝑥 ≥ 𝑇) + 𝑒
−𝑟𝑇𝑥𝐹𝑇𝑥𝐼(𝑇𝑥 < 𝑇), (12) 

whereas the insurer collects equity-linked fees and covers the downside of equity risk, 

𝑋2 ≔ ∫ 𝑒−𝑟𝑠𝑚𝑒𝐹𝑠𝑑𝑠
𝑇∧𝑇𝑥

0

− 𝑒−𝑟𝑇(𝐺 − 𝐹𝑇)
+𝐼(𝑇𝑥 ≥ 𝑇). (13) 

Note that with the variable annuity contract the split of risk is complicated by the additional uncertainty with 

the policyholder’s mortality risk. 

 Equivalence of risk-neutral values. Suppose that there is no friction cost in the product design. In other 

words, all fees and charges are used exactly to fund the GMMB rider, that is, m = 𝑚𝑒. We show below that 

the split of equity and mortality risks through contractual design is justifiable in the sense that the 

combination of the risk retained by the policyholder and the risk ceded to the insurer is equivalent to the 

original equity risk in risk-neutral value. In other words, under a risk-neutral measure �̃�, the expected value 

of 𝑋0 is equal to the sum of expected value of 𝑋1 and 𝑋2, that is,  

�̃�[𝑋0] = �̃�[𝑋1] + �̃�[𝑋2]. (14) 
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The calculation in equation (14) confirms the intuition that a VA contract is in essence a re-distribution of 

cash flows generated from the policyholder’s original investment between himself and the insurer. The 

insurer offers some “smoothing” (downside risk protection) on the policyholder’s cash flows in exchange for 

service fees. Regardless of contractual designs, the true value of investment, gauged by a risk-neutral 

measure, would remain the same before and after entering the contract. This is consistent with the no-

arbitrage theory. 

It is easy to prove the equivalence under the Black-Scholes model (independent log-normal model). On the 

left side of equation (14), it follows from martingale property and optional stopping theorem that 

�̃�[𝑋0] = 𝐹0. (15) 

In view of the fact that max{𝐹𝑇 , 𝐺} − (𝐺 − 𝐹𝑇)
+ = 𝐹𝑇 , we must have that 

𝑋1 + 𝑋2 = 𝑒
−𝑟(𝑇∧𝑇𝑥)𝐹𝑇∧𝑇𝑥 +∫ 𝑒−𝑟𝑠𝑚𝑒𝐹𝑠𝑑𝑠

𝑇∧𝑇𝑥

0

, 

where 𝐹𝑡 follows the following geometric Brownian motion 

d𝐹𝑡 = (𝑟 −𝑚)𝐹𝑡dt + σ𝐹𝑡d𝑊𝑡 , 

𝑊𝑡 is a Brownian motion. Then by Itô’s calculus, we know that 

𝐹𝑡 = 𝐹0exp ((𝑟 − 𝑚 −
σ2

2
) 𝑡 + σ𝑊𝑡), 

and �̃�(𝐹𝑡) = 𝐹0𝑒
(𝑟−𝑚)𝑡. Then, by assuming 𝑚𝑒 = m, we have 

�̃� [∫ 𝑒−𝑟𝑠𝑚𝑒𝐹𝑠𝑑𝑠
𝑇∧𝑇𝑥

0

] = ∫ 𝑒−𝑟𝑠𝑚�̃�(𝐹𝑠)𝑑𝑠
𝑇∧𝑇𝑥

0

= ∫ 𝑒−𝑟𝑠𝑚𝐹0𝑒
(𝑟−𝑚)𝑠𝑑𝑠

𝑇∧𝑇𝑥

0

 

= 𝐹0 − 𝐹0𝑒
−𝑚(𝑇∧𝑇𝑥) = 𝐹0 − �̃�[𝑒

−𝑟(𝑇∧𝑇𝑥)𝐹𝑇∧𝑇𝑥]. 

Therefore, on the right-hand side of equation (14), we also have  

�̃�[𝑋1 + 𝑋2] = 𝐹0, 

which proves the identity equation (14) for the decomposition of risks on an individual contract. In practice, 

the total fee rate 𝑚 is always larger than the rider charge rate 𝑚𝑒. Hence, the left-hand side of equation (14) 

is greater than the right-hand side due to the loss of friction cost (overheads, commission, compliance, etc.). 

No-arbitrage pricing is well studied in the literature for variable annuity guaranteed benefits. See, for example, Cui 

Feng and MacKay (2017); Feng and Volkmer (2016); and Marshall, Hardy and Saunders (2010). These techniques can 

be applied to offer a breakdown of investment values between a policyholder and an insurer. 

Let us consider a numerical example to better understand the engineering process of risk management. The model 

assumptions for the variable annuity product under consideration are provided in the Appendix B. The underlying 

equity process is driven by a geometric Brown motion, aka an independent lognormal model. Even though we 

presented the mathematical formulation in a continuous time model, all cash flows are projected on an annual basis 

for simplicity, that is, account balances are evaluated at the end of each year and fee incomes are deducted from 
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the account at the beginning of each year. We only consider a single cohort of 60-year-olds. There is no friction cost 

in the model, that is, m = 𝑚𝑒. 

When the investor chooses to buy the variable annuity contract with the GMMB rider, her original financial position 

is in essence split into two, one part is retained by the investor and the other ceded to the insurer who underwrites 

the contract. As shown in equation (14), we can quantify the amount of risk-neutral value transfer that occurs with 

such a contract. The calculation is summarized below with parameters given in Table 23 in the Appendix B. 

 Simulate curtate lifetime 𝐾𝑥  by Table 28 in the Appendix B and stock prices 𝑆𝑡 under risk-neutral measures 

at discrete times t = 1,… , T for n scenarios. 

 Determine financial positions of the policyholder 𝑋1 and the insurer 𝑋2 by the discretized version of 

equations (12) and (13) under each scenario. 

 Take sample mean of financial positions at time T for 𝑋1 and 𝑋2 and obtain �̃�[𝑋1] and �̃�[𝑋2]. 

Table 1 shows that the investor retains about 89% of her original financial position while transferring about 11% to 

the insurer. In other words, the investor is expected to give up 11% of the risk-neutral value of her original position 

because she is better off with a protection on the downside risk. 

Table 1 

VALUE DECOMPOSITION BY CONTRACTUAL DESIGN 

 �̃�[𝑿𝟎] �̃�[𝑿𝟏] �̃�[𝑿𝟐] 
Risk-neutral value 1,000 889 111 

 

While the risk-neutral values add up, that is, E[𝑋0] = E[𝑋1] + E[𝑋2], it does not mean that 𝑋0 = 𝑋1 + 𝑋2. The two 

parties are willing to split the risky investment because both can gain some advantages with tail risk distributions. 

We can visualize the net effect of contractual design at the individual contract level in Figure 5. Keep in mind that 

the investor starts with an initial investment of $1,000. The horizontal axis shows the possible range of her financial 

positions with and without the GMMB rider. The blue line represents the probability density function of the 

policyholder’s original financial position without any investment guarantee 𝑋0 at the termination of the contract. 

The other two lines represent probability functions of the two parties after the investor enters into the contract 

with investment guarantee. The green line represents the probability density function of the policyholder’s financial 

position 𝑋1, whereas the red line represents that of the insurer’s financial position 𝑋2. The green dot represents the 

probability mass of 𝑋1 at the level 𝑒−𝑟𝑇G (= 741), which is the present value of minimum guarantee should the 

policyholder survive to maturity. Readers should refer to the right side of the vertical scale for the size of the 

probability mass, which is around 0.63. In other words, the policyholder has the chance of 63% receiving the 

minimum guaranteed balance. The policyholder’s position has higher probability of extremely low financial returns 

and lower probability of extremely high financial returns with investment guarantee than that without guarantee, 

due to fees and charges. However, in general, the probability density of the policyholder’s position with guarantee is 

significantly less than that of the position without guarantee. It shows that the policyholder’s financial position is 

subject to less variability due to the protection from the investment guarantee. It is consistent with the observation 

that each policyholder gives up some potential of upside risk in exchange for a protection from the downside risk. 
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Figure 5 

EFFECT OF RISK TRANSFER AT THE CONTRACT LEVEL 

 

The red line shows the probability density function of the insurer’s financial position. As we shall see throughout the 

report, the feature of two peaks is prevalent in the probability density function of all insurers' positions. The peak on 

the positive side points to the most likely range of fee incomes contributed by policyholders who survive to 

maturity, while the other peak on the negative side indicates the most likely range of insurer’s net loss due to 

benefit payments. It is clear that the insurer carries the majority of downside risk as its probability density function 

centers around near zero levels. The split of the investor’s original risk profile (blue line) into that of an insurer (red 

line) and that of a policyholder (green line) is a reflection of the risk-sharing effect of the GMMB contractual design. 

To better quantify risk sharing at the contractual level, we can demonstrate the reduction in risk measures from the 

viewpoint of a policyholder. As shown in Table 2, we can measure the policyholder’s financial returns by two risk 

measures, namely, value-at-risk and tail-value-at-risk. Since the policyholder gives up some upside profit, we can 

observe about 36% to 39% reduction in her extreme total returns. Since the policyholders receives protection on 

the downside risk of her investment, we also apply the two risk measures to the left tail of the investor’s financial 

position in Table 3. In all cases, the left quantiles of policyholder’s financial position doubled or tripled. This result 

indicates that the policyholder can earn much more under severe adverse scenarios with the GMMB rider than 

without the rider. 

Table 2 

REDUCTION IN VALUE-AT-RISK OF POLICYHOLDER’S RIGHT-TAIL DISTRIBUTION BY RISK SHARING 

𝐩 VaRp(𝑿𝟎) VaRp(𝑿𝟏) Reduction TvaRp(𝑿𝟎) TvaRp(𝑿𝟏) Reduction 

0.975 3,930.4 2,433.8 38.1% 5,946.0 3,652.8 38.6% 

0.95 2,924.8 1,824.1 37.6% 4,652.4 2,868.7 38.3% 
0.9 2,092.3 1,314.3 37.2% 3,551.1 2,201.7 38.0% 

0.8 1,401.6 889.4 36.5% 2,622.6 1,635.8 37.6% 
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Table 3 

INCREASE IN VALUE-AT-RISK OF POLICYHOLDER’S LEFT-TAIL DISTRIBUTION BY RISK SHARING 

𝐩 VaRp(𝑿𝟎) VaRp(𝑿𝟏) Increase TVaRp(𝑿𝟎) TVaRp(𝑿𝟏) Increase 

0.025 102.5 238.2 132.4% 74.5 156.9 110.6% 
0.05 139.2 384.8 176.4% 98.1 234.1 138.6% 

0.1 197.1 727.5 269.1% 133.7 388.5 190.6% 
0.2 298.6 740.8 148.1% 191.2 564.6 195.3% 

 

5.2.2 RISK REDUCTION AT AGGREGATE LEVEL 

Recall from Section 4.1 that the individual net liability of the GMMB is defined to be the present value of future 

outgo less the present value of future income on a stand-alone contract basis. Unlike standardized exchange-traded 

financial derivatives with unit contract sizes, variable annuities are sold to individual investors as a retirement 

planning vehicle. Individuals may choose to purchase annuities with different payments. To introduce an aggregate 

model, let us re-formulate the individual net liability so as to distinguish different policies in a large pool. 

We can write the individual net liability of the GMMB rider for the i-th policyholder where i = 1,  2,   ⋯ ,  n as 

𝐿(𝑇𝑥
(𝑖)) ≔ 𝑒−𝑟𝑇(𝐺(𝑖) − 𝐹𝑇

(𝑖))
+
𝐼(𝑇𝑥

(𝑖) > 𝑇) − ∫ 𝑒−𝑟𝑠𝑚𝑒𝐹𝑠
(𝑖)𝑑𝑠

𝑇∧𝑇𝑥
(𝑖)

0

, (16) 

where  

1. 𝑇𝑥
(𝑖) is the future lifetime of the i-th policyholder of age x at issue; 

2. 𝐹0
(𝑖) is the initial purchase payment of the i-th policyholder; 

3. 𝐹𝑡
(𝑖) ≔ 𝑒−𝑚𝑡𝐹0

(𝑖)𝑆𝑡/𝑆0 is the evolution of the i-th policyholder’s investment account; and  

4. 𝐺(𝑖) ≔ 𝛾𝐹0
(𝑖) is the guaranteed minimum amount at maturity for the i-th policyholder, where γ determines 

the guaranteed amount 𝐺(𝑖) as a percentage of the i-th policyholder’s initial purchase payment.  

Then the aggregate net liability of the GMMB rider for all n policies is determined by 

∑𝐿(𝑇𝑥
(𝑖))

𝑛

𝑖=1

=∑𝑒−𝑟𝑇(𝐺(𝑖) − 𝐹𝑇
(𝑖))

+
𝐼(𝑇𝑥

(𝑖) > 𝑇)

𝑛

𝑖=1

−∑∫ 𝑒−𝑟𝑡𝑚𝑒𝐹𝑡
(𝑖)

𝑇

0

𝑛

𝑖=1

𝐼(𝑇𝑥
(𝑖) > 𝑡)𝑑𝑡. (17) 

While we are interested in the tail risk of the aggregate net liability, it is clear that the total liability scales up with 

the size of the policy pool. To consider the diversification effect, we need to “normalize” the total liability by 

introducing the average net liability 

𝐿
(𝑛)
≔
1

𝑛
∑𝐿(𝑇𝑥

(𝑖))

𝑛

𝑖=1

. (18) 
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If the individual net liabilities (L(Tx
(1)),  L(Tx

(2)),   ⋯ ,  L(Tx
(n))) are exchangeable,1 then we have 

TVaRp (L
(n+1)

) ≤ TVaRp (L
(n)
). 

The proof can be found in Theorem 5.41 and Corollary 5.42 of Feng (2018). The interpretation of this result is very 

similar to that of central limit theorem. When the insurer has a large set of policies, the losses and profits average 

out. The larger the portfolio, the less likely to observe extreme aggregate loss. The TVaR measures the severity of 

tail risk. The TVaR of the average net liability is a decreasing function of the sample size n. In other words, the tail 

risk of average net liability can always be reduced by diversification through a large pool of policies. Furthermore, if 

(𝐿(𝑇𝑥
(1)), 𝐿(𝑇𝑥

(2)),⋯ , 𝐿(𝑇𝑥
(𝑛))) are independent, then the strong law of large numbers implies that as n  → , 

TVaRp [𝐿
(𝑛)
] → 𝐸[𝐿(𝑇𝑥

(𝑖))], 

for all p ∈ [0,1]. 

However, due to the equity linking mechanism, individual net liabilities (𝐿(𝑇𝑥
(1)), 𝐿(𝑇𝑥

(2)),⋯ , 𝐿(𝑇𝑥
(𝑛))) are not 

mutually independent. Nonetheless, it is shown in Feng and Shimizu (2016) that there is a limit, denoted by 𝐿
()

, 

such that as n  → , 

𝐿
(𝑛)
⟶ 𝐿

()
. (19) 

The convergence above is almost sure, that is, the convergence holds with probability one. Subsequently, one can 

show that tail risks of averages decrease with the sample size and eventually converge to that of an average model, 

that is, as n → , 

TVaRp (L
(n)
) ↓ TVaRp (L

()
). 

The proof can be found in Corollary 5.47 in Feng (2018). In other words, the uncertainty of 𝐿 is entirely attributable 

to financial risk whereas the mortality risk is fully diversified. 

As the insurance product is designed to transfer a certain amount of equity and mortality risks from individual 

policyholders to the insurer, the risks from individual contracts are pooled together in the insurer’s “melting pot”—a 

line of business. In view of definitions and equations (17), (18) and (19), one can show that the insurer’s average 

liability at the corporate level is in essence a conditional expectation of its individual liability at the contract level. 

�̃�[−𝑋2|ℱ𝒯] ≔ 𝑒−𝑟𝑇  𝑇𝑝𝑥(𝐺 − 𝐹𝑇)
+ −∫ 𝑒−𝑟𝑠𝑚𝑒

𝑇

0

  𝑝𝑠 𝑥𝐹𝑠𝑑𝑠, (20) 

where ℱ𝑇 represents the filtration at time T. As defined earlier, 𝑋2 denotes the insurer’s financial position. To avoid 

introducing another symbol, we think of −𝑋2 as the insurer’s net liability. Positive net liability represents loss 

whereas a negative one means profit. 

 
 

1 The random variable (𝑋1, ⋯ ,  𝑋𝑛) is exchangeable if it has the same joint distribution as (𝑋𝑗1 ,⋯ ,  𝑋𝑗𝑛) for all permutations of (1, 2,⋯ , 𝑛). It means that 

all variables have the same marginal distribution and there is a symmetry in their dependence. Such a situation is common in practice even if the 
dependence of random variables is unknown or difficult to model. 
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It is also known that the tail risk of the average liability is reduced compared with that of the individual liability due 

to the diversification of mortality risk, that is, for any p ∈ (0,1), 

TVaRp [�̃�[−𝑋2|ℱ𝑇]] ≤ TVaRp[−𝑋2]. 

Let us now return to the numerical example of the 60-year-old cohort. Suppose there is a sufficiently large number 

of policyholders so that the law of large numbers applies and the mortality risk is completely diversified. Figure 6 

shows that the probability density function of the average liability at the aggregate level (yellow line) is more 

concentrated than that of the insurer’s individual liability at the contract level (red line). In a manner similar to the 

individual model, the two peaks in both density functions for the aggregate model roughly represent the case of no 

benefit payment and that of benefit payment. Note that there are two sources of randomness in the expression of 

individual liability −𝑋2 in equation (13), whereas the mortality risk is fully diversified in the expression of the 

average liability �̃�[−𝑋2|ℱ𝑇] in equation (20). The reason for their difference is that extreme scenarios are more 

likely to occur with the interaction of equity and mortality risk. For example, an adverse scenario may happen in the 

case of individual liability when a policyholder dies after a prolonged period of the underlying equity’s persistently 

poor performance. But this may not happen in the case of average liability because the contract size declines in a 

deterministic fashion due to the survival rate. The distribution function of �̃�[−𝑋2|ℱ𝑇] (red line) represents the 

remaining uncertainty due to the net effect of diversified mortality risk and undiversifiable equity risk. 

Figure 6 

RISK REDUCTION AT AGGREGATE LEVEL 

 

Left tails of probability density functions for −𝑋2 and �̃�[−𝑋2|ℱ𝑇] are shown in Figure 7. Note that we focus on the 

negative part of the liability distribution, which represent the insurer’s possible losses. It is clear from the figure that 

the conditional expectation (yellow line) has a lighter tail than the unconditioned financial position (red line). 

Another angle to look at the same issue is through survival functions in Figure 8. Note that the survival function of 

the insurer’s loss −𝑋2 (red line) dominates that of �̃�[−𝑋2|ℱ𝑇] (yellow line) at the right tail. It indicates that for a 

given level of loss, the probability of losses exceeding the level is greater for the insurer’s loss for each contract than 

that for the insurer’s average liability. Both graphs are consistent with the observation that an insurer can reduce 

the risk in its liability by diversifying its portfolio of policies. 

 

 

 

 



22 

Figure 7 

RISK REDUCTION AT AGGREGATE LEVEL 

 

Figure 8 

RISK REDUCTION AT AGGREGATE LEVEL 

 

Unlike the case of classical insurance where mortality risk can be completely diversified, the equity risk is 

undiversifiable, which explains the remaining uncertainty in the insurer’s financial position in equation (20). The 

significance of pooling effect to diversify mortality effect lies in the left tail of the insurer’s position. Even though the 

two graphs of survival functions do not appear far apart in Figure 8, we can quantify the reduction in riskiness by 

calculating risk measures. Table 4 shows that two risk measures of the insurer’s losses at extreme levels (80%, 90%, 

95% and 97.5% quantiles of losses) have been reduced by 18% to 22%. In other words, this numerical experiment 

shows that an insurer can offset about 20% of its tail risk by the pooling effect and has yet to absorb the remaining 

80% by other means. 

Table 4 

REDUCTION IN RISK MEASURES OF INSURER’S LOSS BY DIVERSIFICATION 

𝐩 VaRp(𝑿𝟐) VaR𝒑(𝑬[𝑿𝟐|𝓕𝑻]) Reduction TVaRp(𝑿𝟐) TVaR𝒑(𝑬[𝑿𝟐|𝓕𝑻]) Reduction 

0.025 –486.7 –382.6 21.4% –523.5 –412.5 21.2% 

0.05 –443.2 –349.7 21.1% –493.7 –388.8 21.2% 
0.1 –377.5 –299.3 20.7% –451.3 –356.0 21.1% 

0.2 –269.8 –220.7 18.2% –387.1 –307.4 20.6% 
 

The pricing and hedging of the GMDB rider are first introduced in Milevsky and Posner (2001). Risk measures of 

insurer’s net liability with the GMMB and the GMDB are studied in greater details in Feng and Volkmer (2012), Feng 
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and Volkmer (2014), Feng (2014), Feng and Huang (2016), Feng and Yi (2019), and Feng, Kuznetsov and Yang (2019) 

under various stochastic models. The impact of policyholder behavior on risk measure is also discussed in Feng, Jing 

and Dhaene (2017). 

5.2.3 RISK SHARING WITH FINANCIAL MARKET 

The remaining undiversifiable aggregate risk is then processed in one of three ways. The insurer may choose to 

retain the aggregate risk by the traditional approach of setting up reserves and capitals. Under adverse 

circumstances, the insurer can use reserves and capitals to absorb losses from underwriting the risks. Keep in mind, 

however, reserves and capitals do not prevent insurers from suffering losses. They are meant for insurers to provide 

a temporary relief for the insurer. Another common approach is to set up a hedging program to offset losses. Under 

this approach, the aggregate risk is effectively transferred to the capital market. The third approach is for the insurer 

to enter into a reinsurance contract, which further splits the aggregate risk between the insurer and its reinsurer. 

Here we consider the effect of dynamic hedging. The following numerical example is based on model assumptions 

and parameters of the GMMB rider listed in the appendix. We establish a discrete hedging program and shall 

illustrate the effectiveness of the program under a particular scenario of equity returns, as shown in Figure 9. 

Figure 9 

SAMPLE PATH OF EQUITY INDEX VALUE 

 
 

There are two methods of hedging against remaining risks in investment guarantees. The commonly used approach 

in practice is what we call gross liability hedging, which views the insurer’s gross liability from investment guarantee 

as an embedded financial option and focuses on eliminating uncertainty from the gross liability. We also consider 

another approach, which we call net liability hedging. The approach also takes into account the interaction of equity 

risk and mortality risk from the income side. While the mortality risk is full diversified, it still affects the cash flows 

owing to the survivorship model. Hence the hedging strategy is developed to remove uncertainty of net liability, 

which includes both incomes and guaranteed liability outgoes. 

1.  Gross liability hedging. We can now inspect the result of a delta-hedging strategy in Figure 10. Details on the 

implementation of such a hedging program can be found in Feng (2018). The gray line represents the 

evolution of the hedging portfolio while the black line shows the path of time-𝑡 risk-neutral value of the 

GMMB gross liability less the accumulated value of its initial value. If the GMMB were to be compensated by 

a single up-front fee, then the value 𝑉𝑡 would represent the net profit or loss of the GMMB rider at time 𝑡. 

One can hardly distinguish one line from the other in Figure 10, which implies that the daily rebalanced 

hedging strategy closely offsets the GMMB gross liability. However, one should be reminded that the GMMB 

rider is funded by a stream of equity-based fees. When only gross liability is considered, the equity risk on 

the asset generated by fee incomes is not taken into account. Such a hedging portfolio cannot eliminate the 

uncertainty with equity risk remaining on the income side. 
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Figure 10 

SAMPLE PATH OF GROSS LIABILITY HEDGING PORTFOLIO 

 

2.  Net liability hedging. Consider a GMMB contract with the product specification listed in the appendix. The 

survivorship is based on the Illustrative Life Table in the Appendix B, Table 28. Survival probabilities for 

fractional ages are estimated using the uniform distribution of deaths assumption, that is, 𝑠𝑞𝑥 = 𝑠  𝑞1 𝑥  for 

any integer 𝑥 and 0 ≤ 𝑠 ≤ 1. To avoid any friction cost, we set 𝑚𝑒 = 𝑚 in the model. The fee rate 𝑚 is 

determined by the equivalence principle under the risk-neutral measure. In other words, the no-arbitrage 

value of the insurer’s gross liability would exactly match that of the insurer’s fee incomes. 

All illustrations will be based on the sample path of the equity index/fund {𝑆𝑡: 0 ≤ 𝑡 ≤ 𝑇} in Figure 9. 

Following this particular scenario, we develop three hedging portfolios based on the above-described 

method, which are rebalanced on yearly, monthly and daily bases respectively, that is, Δ𝑡 = 1, 1/12, 1/252. 

Path-wise comparison of portfolio values and GMMB net liability values at all time points for all three 

hedging portfolios can be seen in Figure 11. In each graph, the dashed line shows the fluctuation of hedging 

portfolio whereas the dash-dotted line represents the fluctuation of GMMB net liability. Portfolio values of a 

least active hedging program, which is rebalanced on an annual basis and depicted in the bottom graph, 

generally follow the pattern of fluctuation with net liability values. The path of the hedging portfolio and 

that of the net liability are almost indistinguishable for the most active hedging portfolio, which is 

rebalanced on a daily basis and depicted in the top graph. It is not surprising that hedging errors reduce with 

the frequency of rebalancing. However, a word of caution should be made. There is a trade-off between 

hedging error and transaction cost of hedging program. A prudent insurer strives to strike a balance and 

develop an affordable and effective hedging strategy. 
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Figure 11 

EFFECTIVENESS OF HEDGING PORTFOLIOS WITH VARIOUS REBALANCING FREQUENCIES 

 

We can further compare the net liability hedging strategy with the gross liability hedging strategy. In the top 

graph of Figure 12, the dark line represents the evolution of the GMMB net liability whereas the light gray 

line illustrates the evolution of gross liability hedging portfolio. This graph should be compared with the top 

graph in Figure 11. The bottom graph of Figure 12 shows hedging errors from the two portfolios. The 

maximum absolute hedging error of the net liability hedging portfolio 𝑋𝑡
∗ is around $17 while that for the 

gross liability hedging portfolio 𝑋𝑡
∗̃ is clearly greater than $100. It is not surprising that the gross liability 

hedging portfolio does not perform as well as the net liability hedging portfolio to hedge against the net 

liability. The reason is that the equity risk lingers with fee incomes and is not accounted for in the gross 

liability hedging portfolio. 
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Figure 12 

COMPARISON OF GROSS AND NET LIABILITY HEDGING STRATEGIES 

 

This example shows that fee incomes, if not hedged properly, can cause large fluctuation with an insurer‘s 

cash flows. Although gross liability hedging is most common in practice, the best practice for managing 

investment guarantees is to conduct the net liability hedging portfolio. 

While the hedging example is only developed for the GMMB, the same technique can be applied to other riders. For 

example, Feng and Yi (2019) offers detailed analysis of hedging strategies for the guaranteed minimum 

accumulation benefit. 

5.3 GUARANTEED MINIMUM DEATH BENEFIT 

We use similar analysis to understand the contractual design of the GMDB. For comparison, we consider the 

investor who has a choice to make between direct investment in a stock or buying variable annuity written on the 

same equity with a GMDB rider. As shown in the previous section, the financial position of the investor without any 

investment guarantee is known to be 

𝑋0 ≔ 𝐹0
𝑆𝑇∧𝑇𝑥
𝑆0

. 

5.3.1 RISK RETENTION AND RISK SHARING AT CONTRACTUAL LEVEL 

When the investor enters the variable annuity contract, she retains some portion of the upside risk while ceding the 

downside risk to the insurer upon death. For simplicity, we consider a discrete time model with the death benefit 

payable on an annual basis. Therefore, the investor‘s financial position can be written as 

𝑿𝟏 = 𝒆
−𝒓𝑻𝑭𝑻𝑰(𝑲𝒙 > 𝑻) + 𝒆

−𝒓𝑲𝒙𝐦𝐚𝐱{𝑭𝑲𝒙 , 𝑮}𝑰(𝑲𝒙 ≤ 𝑻), 

where the fund value is determined by  

𝑭𝒌+𝟏 = 𝑭𝒌 (
𝑺𝒌+𝟏
𝑺𝒌

−𝒎). 
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The insurer provides a minimum guarantee at the time of the policyholder‘s death. Note however we consider only 

a term contract here. In other words, the investment guarantee expires on a fixed maturity date 𝑇. 

𝑿𝟐 = ∑ 𝒆−𝒓𝒌

(𝑻∧𝑲𝒙)−𝟏

𝒌=𝟎

𝒎𝒅𝑭𝒌 − 𝒆
−𝒓𝑲𝒙(𝑮 − 𝑭𝑲𝒙)+

𝑰(𝑲𝒙 ≤ 𝑻). (𝟐𝟏) 

With analogy to equation (14), it is not difficult to show that the investor ends up with the same risk-neutral value 

with or without the investment guarantee. 

�̃�[𝑿𝟎] = �̃�[𝑿𝟏] + �̃�[𝑿𝟐]. 

We consider a numerical example where a variable annuity contract with a GMDB rider is sold to a cohort of 60-

year-olds. The model parameters are provided in the appendix. As shown in Table 5, by entering this contract, the 

investor gives up 33.8% of the risk-neutral value of her initial investment while maintaining 66.2% on her own. In 

exchange for the value transfer, the insurer is committed to offer protection on the investor‘s downside risk upon 

her death. 

Table 5 

VALUE DECOMPOSITION BY CONTRACTUAL DESIGN 

 �̃�[𝑿𝟎] �̃�[𝑿𝟏] �̃�[𝑿𝟐] 
Risk-neutral value 1,000 662 338 

 

While the risk-neutral value of the investor‘s investment is split between the insurer and the investor herself, the 

two parties end up with different risk profiles. As shown in Figure 13, the probability density function of the 

policyholder‘s financial position has thinner tails on both ends than that of her original position without any 

investment guarantee. In other words, she gives up some portion of upside risk in exchange for protection from the 

insurer for her downside risk. Note that the probability distributions of both insurer and policyholder have two 

peaks, which correspond to two cases depending on whether policyholders survive to maturity. When policyholders 

die prior to maturity, the rider makes pure profit for the insurer. Otherwise, the insurer may suffer loss when 

account values are persistently low. 

Figure 13 

EFFECT OF RISK TRANSFER AT THE CONTRACT LEVEL 

 

Note that in Figure 13 the probability distribution of the policyholder‘s financial position after entering the VA 

contract has a thinner tail than that before entering the contract. Even though in this graph their differences do not 
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appear quite visible, their tail distributions are in fact quite different. Table 6 shows that there is close to 35% to 

39% reduction in profit measured by value-at-risk and tail-value-at-risk. 

Table 6 

REDUCTION IN RISK MEASURES OF POLICYHOLDER‘S RIGHT-TAIL DISTRIBUTION 

𝐩 VaRp(𝑿𝟎) VaRp(𝑿𝟏) Reduction TVaRp(𝑿𝟎) TVaRp(𝑿𝟏) Reduction 

0.975 3,930.4 2,433.8 38.1% 5,946.0 3,652.8 38.6% 

0.95 2,924.8 1,824.1 37.6%  4,652.4 2,868.7 38.3% 
0.9 2,092.3 1,314.3 37.2% 3,551.1 2,201.7 38.0% 

0.8 1,401.6 913.9 34.8% 2,622.6 1,637.3 37.6% 
 

Similarly we can examine changes in the left tail of the policyholder‘s financial position due to entering the VA 

contract with the GMDB rider. It is interesting to observe in Table 7 that most of left-tail quantiles for the 

policyholder‘s position with the GMDB do not improve compared with those without the GMDB. It indicates that the 

policyholder would earn less with the GMDB than otherwise under severe adverse scenarios. This may sound 

contradictory with the fact that the policyholder buys the GMDB rider for the protection of the downside risk. 

However, this result is in fact not surprising because the severe adverse scenarios occur when the policyholder 

survives to maturity and the invest account performs poorly throughout the term. Under such scenarios, the 

policyholder‘s position is dominated by 𝑒−𝑟𝑇𝐹𝑇 with the GMDB rider. In contrast, the policyholder‘s position is given 

by 𝐹0𝑆𝑇/𝑆0. The former is expected to be lower than the latter, due to the deduction of rider charges. In other 

words, the policyholder cannot take advantage of the death benefit but loses the value of rider charges. 

Table 7 

LEFT-TAIL RISK MEASURES OF POLICYHOLDER‘S POSITION BY RISK SHARING 

𝐩 VaRp(𝑿𝟎) VaRp(𝑿𝟏) TVaRp(𝑿𝟎) TVaRp(𝑿𝟏) 

0.975 102.5 63.5 74.5 46.0 

0.95 139.2 87.5 98.1 61.0 

0.9 197.1 125.4 133.7 84.0 
0.8 298.6 194.2 191.2 122.0 

 

The real benefit of the GMDB rider is materialized when the policyholder dies before maturity. Therefore, we can 

look at the policyholder‘s financial position given that the death occurs during the term of the rider, that is, the 

distributions of 𝑋0 and 𝑋1 given that 𝑇𝑥 < 𝑇. These density functions are more informative of the advantages from 

the GMDB than those in Figure 13 because it filters out cases where the policyholder survives to maturity. It is clear 

from Figure 14 that 𝑋1| 𝑇𝑥 < T has thinner left tail and right tail than 𝑋0| 𝑇𝑥 < 𝑇 . Tables 8 and 9 show the increase 

of left-tail quantiles with the GMDB rider. As expected, the policyholder under the protection of the GMDB rider is 

more likely to receive higher financial returns than otherwise in the case of death prior to maturity. 
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Figure 14 

PROBABILITY DENSITY FUNCTIONS OF 𝑋1 AND 𝑋2 GIVEN THAT 𝑇𝑥 < 𝑇 

 

Table 8  

INCREASE IN VALUE-AT-RISK OF POLICYHOLDER‘S POSITION BY RISK SHARING 

𝐩 VaR𝒑(𝑿𝟎|𝑻𝒙 < 𝑻) VaR𝒑(𝑿𝟏|𝑻𝒙 < 𝑻) Increase 

0.025 125.3 740.8 491.22% 
0.05 153.3 740.8 383.24% 

0.1 246.8 740.8 200.16% 
0.2 377.2 763.4 102.39% 

Table 9 

INCREASE IN TAIL-VALUE-AT-RISK OF POLICYHOLDER‘S POSITION BY RISK SHARING 

𝐩 TVaR𝒑(𝑿𝟎|𝑻𝒙 < 𝑻) TVaR𝒑(𝑿𝟏|𝑻𝒙 < 𝑻) Increase 

0.025 98.7 740.8 650.56% 

0.05 120.9 740.8 512.74% 
0.1 154.0 740.8 381.04% 

0.2 231.8 751.0 223.99% 
 

To show the effect of mortality risk, we plot the same set of risk profiles in Figure 15 when the contract is issued to a 

life of age 75. Keep in mind that it is much more likely for a 75-year-old to make a benefit claim than a 60-year-old. 

Observe that the difference between her financial position with and without the GMDB rider in Figure 13 is smaller 

than that in Figure 15, which suggests the improvement of her risk profile with the investment guarantee is less 

significant than that without the investment guarantee. The insurer‘s probability distribution of profit/loss in Figure 

13 is also more concentrated in Figure 15 due to the fact that most 60-year-olds would survive to maturity and do 

not make benefit claims. Note also that the density functions of both the policyholder‘s and the insurer‘s positions 

are bimodal in the case of 75-year-olds in Figure 15 whereas they appear more like unimodal in the case of 60-year-

olds in Figure 13. The bimodal shape results from the fact that the 75-year-old cohort breaks into two significant 

groups, one of which receive benefits and the other of which does not. But most 60-year-olds survive to maturity 

without any claim, which explains the unimodal nature of financial positions. 
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Figure 15 

EFFECT OF RISK TRANSFER AT THE CONTRACT LEVEL 

 

5.3.2 RISK REDUCTION AT AGGREGATE LEVEL 

In a similar manner to the previous section, we investigate the effect of risk reduction by diversification. It is also 

known in Feng and Shimizu (2016) that when the insurer sells the identical contract to a large number of 

policyholders, the limit of its average liability can be represented by 

�̃�[𝑋2|ℱ𝒯] = ∑𝑒−𝑟𝑘
𝑇−1

𝑘=0

𝑚𝑑  𝑘𝑝𝑥𝐹𝑘 −∑𝑒−𝑟𝑘
𝑇

𝑘=1

  𝑝𝑘−1 𝑥𝑞𝑥+𝑘−1(𝐺 − 𝐹𝑘)+. (22) 

Starting from equation (21), 𝐾𝑥  can take any value among 𝑘 =  1, … , 𝑇 with probability 𝑃(𝐾𝑥 = 𝑘) =𝑘−1 𝑝𝑥𝑞𝑥+𝑘−1. 

By averaging the value in equation (21) with reference to Kx as well as the probability, the mortality risk can be fully 

diversified and we get equation (22). 

It is easy to show by comparing equations (21) and (22) that the mortality risk is fully diversified and the equity risk 

remains. However, it is not to say that the diversified mortality risk has no role in the riskiness of the contract. 

Instead, the equity risk interacts with the mortality risk as the mortality risk imposes a temporal functional form of 

the accumulation of equity risk. 

Figures 16 and 17 represent the probability density function and the survival function of the insurer‘s net liability 

prior to and post diversification. It is clear in Figure 16 that the insurer‘s liability is more concentrated after the 

diversification (yellow lines) than it is before the procedure (red lines). One can also observe in Figure 17 that the 

survival function of the insurer‘s liability after diversification lies below that of the insurer‘s liability before 

diversification after the two intersect. It indicates that probabilities of extremely large loss or large profit are both 

smaller after diversification. Both graphs confirm that the insurer can effectively reduce tail risk by pooling policies. 
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Figure 16 

RISK REDUCTION AT AGGREGATE LEVEL 

 

Figure 17 

RISK REDUCTION AT AGGREGATE LEVEL 

 

We can assess the extent to which tail distributions have changed by looking at risk measures in Table 10. Both 

results show that the diversification at the aggregate level can reduce the tail risk of the insurer‘s net liability by 

106% to 136% at extreme quantile levels (e.g., 𝑝 = 0.025, 0.05). Note that the reduction of riskiness in the case of 

GMDB by risk measure is more significant than that in the case of GMMB. This is likely due to the fact that mortality 

risk interacts with equity risk in all policy years during the term of the GMDB rider whereas the mortality risk only 

affects equity risk at maturity with the GMMB rider. 

Table 10 

CHANGES IN RISK MEASURES OF INSURER‘S NET PROFIT BY DIVERSIFICATION 

𝐩 VaRp(𝑿𝟐) VaR𝒑(𝑬[𝑿𝟐|𝓕𝑻]) Change TvaRp(𝑿𝟐) TvaR𝒑(𝑬[𝑿𝟐|𝓕𝑻]) Change 

0.025 –364.8 50.7 113.90% –460.5 28.8 106.25% 
0.05 –204.7 74.2 136.25% –373.2 45.8 112.27% 

0.1 118.0 105.5 –10.59% –209.3 68.0 132.49% 

0.2 211.5 151.2 –28.51% –14.4 98.2 781.94% 
 

The remaining aggregate risk is undiversifiable and hence is left for other risk management techniques to deal with. 
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5.4 GUARANTEED MINIMUM WITHDRAWAL BENEFIT 

The GMWB is a type of living benefit that offers income payments on a periodic basis.  

5.4.1 RISK RETENTION AND RISK SHARING AT CONTRACTUAL LEVEL 

To understand the split of equity risk between the policyholder and the insurer, we consider an investor‘s financial 

positions with and without the investment guarantee. 

1. Without investment guarantee. If the investor chooses to invest in a stock on his own and draw down its 

principle at the rate of 𝑤 each year, then his account value grows in the same fashion. For 𝑘 = 0, 1,⋯, 

𝐹𝑘+1̂ = max {𝐹�̂�
𝑆𝑘+1
𝑆𝑘

− 𝑤, 0}, 

with the initial investment 𝐹0̂ = 𝐹0. Note that the investor‘s account may run out of money before he can 

recoup his initial investment by time 𝑇 = 𝐹0/𝑤. To facilitate the discussion, we consider the ruin time  

�̂� =  𝑚𝑖𝑛 {𝑡| 𝐹�̂�  = 0}. 

Therefore, the investor‘s financial position without any investment guarantee is made up of his guaranteed 

annual withdrawals and the value of the remaining balance at the earlier of maturity and the time of death: 

𝑋0 = ∑ 𝑒−𝑟𝑘𝑤

(τ̂−1)∧𝐾𝑥

𝑘=1

+ 𝑒−𝑟(𝑇∧𝐾𝑥)𝐹𝑇∧𝐾𝑥
̂. 

2. With investment guarantee. As shown in an earlier section, the GMWB guarantees that the policyholder 

can take withdrawals until his initial investment is fully refunded regardless of the equity performance. In 

other words, even if the account is exhausted before 𝑇 the policyholder is still entitled to annual 

withdrawal of amount 𝑤. The rider offers some protection on the downside risk of the investment and in 

exchange the investor gives up some portion of his financial returns as fees. The rider expires at time 𝑇. In 

this case, the account value grows in a different manner than the previous case. For 𝑘 = 0, 1,⋯, 

𝑭𝒌+𝟏 = 𝐦𝐚𝐱 {𝑭𝒌 (
𝑺𝒌+𝟏
𝑺𝒌

−𝒎) − 𝒘, 𝟎}. 

The policyholder is expected to receive two sources of incomes, namely the guaranteed stream of 

withdrawals and the balance of his account at the end of the guaranteed period, 𝑻 ∧ 𝑲𝒙. Therefore, the 

present value of the policyholder‘s income with investment guarantee is given by 

𝑋1 = ∑ 𝑒−𝑟𝑘

𝑇∧𝐾𝑥

𝑘=1

𝑤 + 𝑒−𝑟(𝑇∧𝐾𝑥)𝐹𝑇∧𝐾𝑥 . 

The insurer is responsible for the policyholder‘s withdrawals and also loses future fee incomes if his account 

runs out of money prior to the end of the guaranteed period, 𝑇 ∧ 𝐾𝑥. In other words, the insurer is only 

compensated by fee incomes before τ ∧ 𝑇. 

𝑿𝟐 = ∑ 𝒆−𝒓𝒌

(𝛕−𝟏)∧(𝑻−𝟏)∧𝑲𝒙

𝒌=𝟎

𝒎𝒘  𝑭𝒌 − ∑ 𝒆−𝒓𝒌

(𝛕−𝟏)∨((𝑻−𝟏)∧𝑲𝒙)

𝒌=𝛕

𝒘, 
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where 𝛕 is the ruin time, 

𝛕 = 𝐦𝐢𝐧{ 𝒕: 𝑭𝒕 = 𝟎}. 

Keep in mind that all fees are collected at the beginning of each period. 

We consider a numerical example to see how the risk is split between the policyholder and the insurer. The model 

parameters are provided in the appendix. Because most policyholders survive to maturity, we consider the simple 

case without the consideration of mortality risk. 

Table 11 shows that the policyholder retains about 94% of the risk-neutral value of his initial investment while 

ceding 6% to the insurer. In exchange, the insurer provides the guarantee on systemic withdrawals. 

Table 11 

VALUE DECOMPOSITION BY CONTRACTUAL DESIGN 

 �̃�[𝑿𝟎] �̃�[𝑿𝟏] �̃�[𝑿𝟐] 
Risk-neutral value 1,000 940 60 

 

Figure 18 shows probability distributions of the insurer‘s financial position and the policyholder‘s financial position 

with and without the investment guarantee. Note that the probability distribution of the policyholder‘s original 

position without the VA contract (the blue line) has two peaks because of two cases. The first case corresponds to 

the situation where the principal is drawn down before time 𝑇 while the other corresponds to the circumstance 

where the account remains sufficient by time 𝑇 and there is a random amount of terminal balance. The probability 

distribution of the policyholder‘s financial position with the VA contract (the green line) has a probability mass, 

which corresponds to the probability that the policyholders only receives the full refund. Note that the scale on the 

left side of the figure shows probability density, whereas the scale on the right side indicates probability mass. The 

value 851 is given by the present value of the guaranteed annuity ∑ 𝑒−𝑟𝑘𝑤𝑇
𝑘=1 . It is clear from Figure 18 that the 

policyholder gives up some portion of his upside financial returns in exchange for the removal of downside returns. 

In fact, the present value of his total returns is guaranteed to be greater than 851. 

Figure 18 

EFFECT OF RISK TRANSFER AT THE CONTRACT LEVEL 

 

The extent of reduction in upside financial returns is measured by risk measures in Table 12. Keep in mind that, as in 

previous product designs, there is a trade-off between left-tail return and right-tail return. The policyholder gives up 

financial returns in between 25% and 40% of upper quantiles in exchange for improvement in lower quantiles. 
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Table 12 

REDUCTION IN VALUE-AT-RISK OF POLICYHOLDER‘S POSITION BY RISK SHARING 

𝐩 VaRp(𝑿𝟎) VaRp(𝑿𝟏) Reduction TvaRp(𝑿𝟎) TvaRp(𝑿𝟏) Reduction 

0.975 3,142.1 1,968.2 37.4%  4,840.5 2,912.4 39.8% 
0.95 2,353.8 1,527.8 35.1% 3,764.3 2,312.6 38.6% 

0.9 1,723.7 1,184.0 31.3% 2,878.6 1,821.8 36.7% 
0.8 1,228.0 910.4 25.9% 2,158.1 1,423.9 34.0% 

 

We can observe the benefit of entering the GMWB rider at the left-tail quantiles in Table 13. Recall that the 

policyholder‘s financial position under the GMWB rider is bounded from below by the present value of guaranteed 

withdrawals 851. The policyholder‘s financial returns under the naked position can be significantly smaller under 

severe adverse scenarios. Therefore, the policyholder can be well protected under the scenarios included in the left 

tail of the probability distribution. 

Table 13 

INCREASE IN VALUE-AT-RISK OF POLICYHOLDER‘S LEFT-TAIL DISTRIBUTION BY RISK SHARING 

𝐩 VaRp(𝑿𝟎) VaRp(𝑿𝟏) Increase TVaRp(𝑿𝟎) TVaRp(𝑿𝟏) Increase 
0.025 375.4 522.7 39.2% 338.1 422.6 25.0% 

0.05 413.1 622.0 50.6% 366.8 495.1 35.0% 

0.1 466.5 777.0 66.6% 404.1 595.3 47.3% 
0.2 546.7 851.0 55.7% 455.9 717.6 57.4% 

 

The mortality risk of the GMWB rider can be fully diversified by pooling together a large sample of policies issued to 

the same age cohort. As done in previous models, we can obtain the average liability per contract by 

𝐸[𝑋2|ℱ𝒯] = ∑ 𝑒−𝑟𝑘

(τ−1)∧(𝑇−1)

𝑘=0

𝑚𝑤   𝑝𝑘 𝑥  𝐹𝑘 − ∑ 𝑒−𝑟𝑘

(τ−1)∨(𝑇−1)

𝑘=τ

  𝑝𝑘 𝑥  𝑤. 

Note that negative financial positions are net losses for the insurer in the extreme cases. The diversification of 

mortality risk accounts for about 12% reduction in the absolute value of VaR and TVaR by the GMWB rider as shown 

in Table 14.  

Table 14 

REDUCTION IN RISK MEASURES OF INSURER‘S LOSS BY DIVERSIFICATION 

𝐩 VaRp(𝑿𝟐) VaRp(𝑬[𝑿𝟐|𝓕𝑻}) Reduction TVaRp(𝑿𝟐) TVaRp(𝑬[𝑿𝟐|𝓕𝑻}) Reduction 

0.025 –405.9 –358.9 11.6% –450.9 –399.9 11.3% 
0.05 –362.5 –320.6 11.6% –417.3 –369.3 11.5% 

0.1 –306.8 –269.1 12.3% –375.1 –331.2 11.7% 

0.2 –219.5 –195.0 11.2% –318.8 –281.0 11.9% 
  

Losses are reduced by 12%. The effect of risk control can also be observed in Figure 19. The probability density of 

the post-pooling average liability 𝐸[𝑋2|ℱ𝒯] has a lighter left tail than that of the pre-pooling individual liability 𝑋2. In 

other words, it is less likely to observe severe losses after mortality risk pooling. 
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Figure 19 

RISK REDUCTION AT AGGREGATE LEVEL 

 

5.5 COMPARISON OF CONTRACTUAL DESIGNS 

While there are many ways to compare contractual designs, we consider here a few metrics to understand their 

different risk profiles. Keep in mind that all three riders are offered to exactly the same age cohort. 

The left tail of an insurer‘s liability represents the insurer‘s severe losses, whereas the right tail shows the insurer‘s 

profits. We compare the 90% confidence intervals of a policyholder‘s and an insurer‘s financial positions in Table 15. 

These values are calculated under real world measure. A policyholder has the most secured financial position with 

the GMWB rider among all three product designs based on the comparison of the first row. Note that 𝑋0 is the same 

for GMMB and GMDB and hence the first two confidence intervals are identical. The policyholder‘s financial position 

without any guarantee 𝑋0 is different for the GMWB because the policyholder is expected to draw down his 

principal gradually in the same way as taking withdrawals from the GMWB for fair comparison. Since the 

withdrawals are taken out of the account, the policyholder‘s asset is less exposed to equity risk and hence the 

confidence interval is narrower for the GMWB than those for GMMB and GMDB from the perspective of the 

policyholder. Observe that the upper bound of the confidence interval for the policyholder‘s position with the 

GMMB is the same as that with the GMDB. The reason is that the chance the policyholder dies within 10 years is 

rather low and hence the policyholder is most likely to end up with account value without any guarantee payment 

when the GMDB expires. The right tail captures favorable scenarios in which the account values outperform the 

guarantee base under the GMMB. Hence the GMMB and the GMDB have the same right tail. The lower bound of 

the confidence interval for the policyholder‘s position with the GMMB is higher than that with the GMDB. Again this 

is because the policyholder is likely to survive the 10-year period and is hence exposed to the equity risk after the 

GMDB expires, whereas the policyholder‘s account is floored by the GMMB after the 10-year period. The GMDB 

rider leads to narrowest confidence interval of the insurer‘s profit. If confidence intervals before and after risk 

pooling are compared, we observe that the improvement is the smallest with the GMWB. It has to do with the fact 

that the majority of individuals survive before the rider expires and the impact of mortality risk is rather small. The 

fact that the GMDB rider appears to be more profitable than the other two and the GMWB the least is that the 60-

year policyholder has a relatively high probability of survival to maturity, 0.82, and hence the GMDB payments are 

not always needed. 
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Table 15 

CONFIDENCE INTERVALS WITH AGE = 60 

Risk metrics GMMB GMDB GMWB 
90% confidence interval  
of policyholder‘s position 
without guarantee 

 
139.2     2,924.8 

 
139.2     2,924.8 

 
413.1     2,353.8 

90% confidence interval  
of policyholder‘s position 
with guarantee 

 
384.8     1,824.1 

 
87.5        1,824.1 

 
622.0      1,527.8 

90% confidence interval  
of insurer‘s position before 
mortality risk pooling 

 
–443.2       758.8 

 
–204.7       760.2 

 
–362.5        536.3 

90% confidence interval  
of insurer‘s position after 
mortality risk pooling 

 
–349.7       724.3 

 
74.2           727.4 

 
–320.6        517.2 

 

Table 16 offers a breakdown of the variance of the insurer‘s liability for each product type. As we explained earlier, 

the insurer‘s liability after the pooling of mortality risk, 𝐸[𝑋2|ℱ𝒯], is less than or equal to that prior to the pooling, 

𝑋2, and hence the variance of the former is clearly smaller than the variance of the latter. It is also well known that 

𝐸[𝑋2|ℱ𝒯] is uncorrelated with 𝑋2 − 𝐸[𝑋2|ℱ𝒯]. The mortality risk is completely diversified in 𝐸[𝑋2|ℱ𝒯]. Therefore, it 

is natural to separate the variances, which are attributable to different sources. It is clear from Table 16 that 

mortality risk contributes the most to the variability of the GMDB liability and the least to that of the GMWB liability. 

Table 16 

RISK ANALYSIS FOR DIFFERENT GUARANTEED-BENEFIT 

Product type GMMB GMDB GMWB 

Variance of insurer‘s liability 
(VaR(𝑋2)) 

153,417 76,330 84,607 

attributable to equity risk 
(VaR(𝐸[𝑋2|ℱ𝒯]) 

126,960  
(82.75%) 

48,823 
(63.97%) 

75,068 
(88.75%) 

attributable to mortality risk 
Va𝑅(𝑋2 − 𝐸[𝑋2|ℱ𝒯]) 

26,457 
(17.25%) 

27,498 
(36.03%) 

9,539 
(11.17%) 

 

Figure 20 shows the full picture of their risk profiles. Note that the GMDB rider has the most concentrated 

probability density function, the GMWB has the heaviest right tail and the GMMB rider has the heaviest left tail. In 

other words, the GMDB tends to generate the most stable incomes for the insurer. The GMWB is less likely to suffer 

severe losses than the GMMB and more likely to generate large profit. The bimodal shape of distribution for GMMB 

and GMDB suggests the financial condition is likely to swing from profit to loss or vice versa. 
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Figure 20 

COMPARISON OF CONTRACTUAL DESIGNS AT THE AGGREGATE LEVEL (σ = 0.3) 

 

One should keep in mind that the comparison should be done in relative terms. The fact that the density functions 

in Figure 20 have a relatively wide range is due to the volatility coefficient 𝜎 = 0.3. The general shape of the density 

functions stays the same as the volatility coefficient is reduced to 𝜎 = 0.1, as shown in Figure 21. Comparing Figures 

20 and 21, we observe that the density functions become more concentrated and skewed toward the right in all 

cases. While all contractual designs are profitable with high probability, an insurer may need to pay particular 

attention to the left tails of liabilities. 

Figure 21 

COMPARISON OF CONTRACTUAL DESIGNS AT THE AGGREGATE LEVEL (𝜎 = 0.1) 

 

Another approach to compare contractual designs is to investigate their sensitivities with respect to changes in 

volatility of equity risk. For example, we can increase the volatility coefficient of the equity model and observe how 

the change affects risk measures of tail probabilities for all contractual designs. 

Table 17 shows the left-tail TVaR at the 5% quantile level with various volatilities for the age cohort (60). The 

numbers in parentheses underneath each risk measure indicate the percentage changes from the base case of 𝜎 =

0.2. In terms of changes from the base case, the GMDB rider is most sensitive to changes in equity volatility, 

followed by the GMMB rider and the GMWB rider. It has to do with the fact that the GMDB product is in general 

more concentrated on its profitability than the other two designs. The 5% left tail represents rather extreme cases 

for the GMDB rider and hence is more sensitive to changes in volatility. 
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Table 17 

LEFT-TAIL TVAR0.05(𝑋2|ℱ𝒯) UNDER DIFFERENT VOLATILITIES FOR LIFE-AGE 60 

𝛔 0.1 0.15 0.2 0.25 0.3 
GMMB –69.5 

(74.02%) 
–181.7 

(32.07%) 
–267.5 –332.9 

(–24.45%) 
–382.7 

(–43.07%)  
GMDB 214.8 

(87.59%) 
159.9 

(39.68% 
114.5 76.9 

(–32.84%) 
45.9 

(–59.96%)  

GMWB –86.8 
(65.77%) 

–177.7 
(29.93% 

–253.6 –316.9 
(–24.96%) 

–369.3 
(–45.62%) 

 

Table 18 shows the same risk measure for the age cohort (75). It is interesting to note that in this case, the GMMB 

rider tends to profit more or lose less than the other two riders. It also means it is more sensitive to changes in 

volatility than others. 

Table 18 

LEFT-TAIL TVaR0.05(𝑋2|ℱ𝒯) UNDER DIFFERENT VOLATILITIES FOR LIFE-AGE 75 

𝛔 0.1 0.15 0.2 0.25 0.3 
GMMB 56.2 

(189.494%) 
–10.7 

(82.96%)  
–62.8 –103.4 

(–64.65%) 
–135.1 

(–115.134%)  

GMDB 39.7 
(132.48%) 

–43.3 
(64.57%)  

–112.2 –169.1 
(–38.38%) 

–215.9 
(–76.68%)  

GMWB 1.3 
(101.05%) 

–64.8 
(46.69%)  

–121.4 –170.9 
(–40.74%)  

–213.5 
(–75.79%)  

5.6 IMPACT OF STOCHASTIC VOLATILITY AND JUMPS 

We can extend the original Black-Scholes model to more sophisticated models such as a stochastic volatility jump 

model. According to Andersen, Benzoni and Lund (2002), the equity process is driven by the following dynamics, 

𝑑𝑆𝑡
𝑆𝑡
= (μ − λ(𝑡)κ̅)𝑑𝑡 + √𝑉𝑡𝑑𝑊1,𝑡 + κ𝑡𝑑𝑞𝑡  

𝑑𝑉𝑡 = (α − β𝑉𝑡)𝑑𝑡 + η√𝑉𝑡𝑑𝑊2,𝑡 

where 

1. (𝑊1,𝑊2) is a Brownian motion with correlations ρ. 

2. 𝑞 is a Poisson process with the intensity rate λ(𝑡), which is independent of 𝑊1 and 𝑊2, and, that is, 𝑃(𝑑𝑞𝑡 =

1) = λ(𝑡)𝑑𝑡. 

3. The intensity rate is given by λ(𝑡) = λ0 + λ1𝑉𝑡. 

4. The magnitude of the jump κ𝑡 is assumed to be log-normally distributed, 

Ln(1 + 𝜅𝑡) ∼ 𝑁 (Ln(1 + �̅�) −
1

2
𝛿2, 𝛿2), 

and �̅� represents the average size of jump. 

5. 𝑉 represents the volatility or instantaneous variance. The starting point of volatility 𝑉0 is given by its long 

term mean α/β. 

The model parameters used in the following numerical examples can be found in Table 27 in Appendix B, which are 

estimated using data on S&P 500 from Jan. 2, 1953, to Dec. 31, 1996, in Andersen, Benzoni and Lund (2002). 
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It is worth pointing out that, when the average size of jump is set at κ̅ = 0 and the jump intensity is set at λ(𝑡) = 0, 

the volatility becomes constant and the stochastic volatility jump model reduces to the BS model, which has 

constant volatility and no jump. 

Figure 22(a) shows two sample paths generated from the BS and SVJ models. The sample path generated from the 

SVJ model is visibly different from that of the BS model due to the presence of jumps. Figure 22(b) shows sample 

paths of the corresponding volatility processes. The constant volatility in the BS model appears to dominate 

stochastic volatilities in the SVJ model. 

Jumps can be observed in Figure 22(a). The probability densities corresponding to jump models do not have any 

jump because the financial positions are still continuous random variables. 

Figure 22(a)     

STOCK PRICE FOR BS AND SVJ MODEL    

 

Figure 22(b) 

VOLATILITY FOR BS AND SVJ MODEL 

 

We present in Figures 23 to 25 the impact of stochastic volatility and jumps on the insurer‘s GMMB, GMDB and 

GMWB net liabilities respectively. For better visual contrast, we always show the density functions in the BS model 

with cool colors and those in the SVJ model with warm colors. In the case of the GMMB liability, the density 

functions in the SVJ model tend to shift left from those in the BS model, indicating that the product is less profitable 

in general when stochastic volatility and jumps are considered. We know that volatility and jump can increase the 

probability of extreme results. However, it is interesting to observe that the GMMB average liability in the SVJ model 

is more concentrated than that in the BS model. This is likely due to the fact that the probability of paying out 

maturity benefits is increased in the SVJ model, which leads to a higher chance of making a loss. 
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Figure 23 

COMPARISON OF BS AND SVJ FOR INSURER‘S FINANCIAL POSITION IN GMMB 

 

Figure 24 

COMPARISON OF BS AND SVJ FOR INSURER‘S FINANCIAL POSITION IN GMDB 

 

Figure 25 

COMPARISON OF BS AND SVJ FOR INSURER‘S FINANCIAL POSITION IN GMWB 

 

It should also be pointed out here that these density functions are more spread out than those in Figure 6. This is 

because the model parameters in this section are estimated from empirical data whereas those in previous sections 
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are set by authors. The volatility estimate from the empirical data in Andersen, Benzoni and Lund (2002) is close to 

0.6, which appears to be higher than what is typically used in the insurance industry. 

Stochastic volatility and jumps have a similar effect on GMDB net liabilities, including both individual and average 

liabilities. However, they have the opposite effect on GMWB liabilities. This is likely due to the fact that stochastic 

volatility and jump increase the chance and the duration of policyholder‘s account staying positive and hence 

reduces the amount of guaranteed withdrawal payments from the insurer‘s general account. 

Section 6: Inflation-linked Insurance 
Many insurance products offer inflation protection features, under which benefit payoffs increase periodically to 

keep up with inflation. Inflation protection features are common for products that offer benefits in the form of 

annuities, such as a cost-of-living adjustment on life annuity and disability insurance. Because these products are 

typically bought many years before the first annuity payment is drawn, the cost of living or care may have far 

exceeded its original estimate. Therefore, inflation protection is critical for policyholders to retain the real value of 

its insurance protection. While these features are considered desirable for policyholders, they can be difficult to 

manage for insurers. 

6.1 COMMON INFLATION PROTECTION DESIGNS 

Here we consider a variety of inflation indexation features that are used in practice. 

• Fixed percentage indexation. The design offers fixed percentage increase of the benefit on an annual basis. 

For a 55-year-old, a $200 per day benefit with 5% compound inflation protection will be worth $677 per 

day at age 80. There is no inflation risk for the insurer, as the growth of benefit is pegged to a fixed rate 

rather than the actual inflation in the market. The fixed 3% compounded percentage is the most popular 

inflation protection option elected by policyholders. Suppose that the initial benefit is given by 𝐵0. We 

denote the benefits in subsequent years by {𝐵𝑘 , 𝑘 = 1,2,⋯ }. Let ρ be the fixed percentage increase per 

annum. Then the benefits can represented by 

𝐵𝑘 = (1 + ρ)𝐵𝑘−1 = (1 + ρ)
𝑘𝐵0. 

• CPI indexation or a percentage of the CPI increase. With this option, the inflation increase is tied to the 

annual increase of the consumer price index. The CPI averaged about 2.69% between 1982 and 2019. Let 

us denote the CPI at time 𝑘 by 𝐼𝑘. Then the benefits are adjusted according to changes in the CPI, 

𝐵𝑘 = 𝐵𝑘−1
𝐼𝑘
𝐼𝑘−1

= 𝐵0
𝐼𝑘
𝐼0
. 

Such a product design exposes the insurer to inflation risk. One way to hedge against the inflation risk 

embedded in such a product design is to use inflation-linked securities. For example, Treasury inflation-

protected securities, or TIPS, are linked to the CPI and the principal amount appreciates in accordance with 

changes in the index. However, such government-issued securities may be either unavailable or illiquid in 

other countries. Another option is to invest in inflation-related assets such as real estate investment trusts, 

or REIT, which invests in commercial, residential and industrial real estate. However, the changes in real 

estate may not be exactly in sync with those in the CPI, which creates basis risk for the insurer. 

• CPI indexation with a floor. This design offers a floor on the CPI indexation, which can be viewed as offering 

the policyholder a call option on the CPI. Suppose the floor is set at 𝑓. Then the benefit rises according to 
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𝐵𝑘 = 𝐵𝑘−1max {1 + 𝑓,
𝐼𝑘
𝐼𝑘−1

} = 𝐵0∏max {1 + 𝑓,
𝐼𝑗

𝐼𝑗−1
}

𝑘

𝑗=1

. 

• CPI indexation with a cap. This design imposes a cap on the CPI indexation. Suppose that the cap is set at 𝑐. 

Then the benefit rises according to 

𝐵𝑘 = 𝐵𝑘−1min {1 + 𝑐,
𝐼𝑘
𝐼𝑘−1

} = 𝐵0∏min {1 + 𝑐,
𝐼𝑗

𝐼𝑗−1
}

𝑘

𝑗=1

. 

• CPI indexation with a cap and carry forward. This design sits somewhere between the full CPI indexation 

and the capped one. While the indexation cannot exceed the cap, the excess is not forfeited but rather 

carried forward year by year. The year-to-year increase on CPI is always credited to the policyholder but 

with some time lag due to the yearly cap. Table 19 shows how the indexation works with a 3% cap and 

carry forward. 

 
Table 19 

EXAMPLE OF CPI INDEXATION WITH A CAP AND CARRY FORWARD 

Year CPI increase Indexation Cap & forward 

1 2% 2% Less than cap 

2 5% 3% 2% carry forward 
3 4% 3% 1% + 2% carry forward 

4 1% 3% 1% carry forward 
5 0% 1% Less than cap; credit clear 

 

We can formulate this product design as follows. Let 𝑎𝑘  be the carry-forward credit and define the quantity by 

the following recursion: 

𝑎𝑘 = (𝑎𝑘−1 +
𝐼𝑘
𝐼𝑘−1

− (1 + 𝑐))

+

. 

The benefit changes according to 

𝐵𝑘 = 𝐵𝑘−1 (𝑎𝑘−1 − 𝑎𝑘 +
𝐼𝑘
𝐼𝑘−1

). 

Section 7: Risk Management of Inflation-linked Insurance 

In this section, we consider specifically one of the four risk management techniques—risk transfer—in the context 

of inflation-linked insurance. In particular, we are interested in how the combination of inflation risk and mortality 

risk can be transferred to the capital market by developing a hedging program using inflation-linked financial 

instruments. 

7.1 RISK MANAGEMENT OF INFLATION-ADJUSTED ANNUITY 

Consider an annuity contract that offers annual payments starting from an advanced age of the policyholder and 

lasting for the rest of his lifetime. Such an annuity arrangement is common for pension payout. The contract also 

offers various options for inflation protection on the annuity payments. 
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Suppose a policyholder is at age 𝑥 when entering the contract and the first annuity payment starts at age 𝑥 + 𝑇. To 

formulate the insurer‘s liability, we consider the random variable representing biometric risk, the curtate future 

lifetime, denoted by 𝐾𝑥. 

Consider the insurer‘s liability, which is the collection of all inflation-protected benefits. The present value of the 

insurer‘s liability at the inception of the contract is hence given by 

𝐿 ≔ ∑ 𝑒−𝑟(𝑇+𝑘)𝐵𝑘

𝐾𝑥∨(𝑇−1)−𝑇

𝑘=0

, 

where 𝑟 is the average rate of return on assets backing up the liability. For example, say the benefit is available after 

𝑇 = 10 years and the policyholder dies after 16 years and five months. Then 𝐾𝑥 = 16 and 𝐾𝑥 ∨ (𝑇 − 1) = 16. 

There are a total of 𝐾𝑥 ∨ (𝑇 − 1) − 𝑇 = 6 payments in total if 𝐾𝑥
𝑟 < 𝐾𝑥 ∧ 𝑇. If the policyholder dies after eight 

years, which is before he is eligible for annuity payments, then 𝐾𝑥 ∨ (𝑇 − 1) − 1 = −1 and the summation yields 0 

by convention that ∑−1𝑘=0 = 0 and the insurer has no liability payment. 

In general, we consider mortality risk to be diversifiable. When the pool of policyholders in the same cohort is large 

enough, the law of large numbers implies there is a fixed percentage of survivors at each time point. Let ℱ =

(ℱ𝓉)𝑡≥0 be the natural filtration generated by the process underlying the dynamics of inflation rates. In other words, 

ℱ represents the accumulation of information with regard to inflation risk. 

For simplicity, we first consider the conditional expectation of the insurer‘s liability at the time of first benefit 

payment given the filtration 

𝐸[𝐿|ℱ𝒯] ∶= 𝐸 [∑𝑒−𝑟(𝑇+𝑘)𝐵𝑘𝐼(𝐾𝑥 > 𝑇 − 1, 𝐾𝑥 − 𝑇 ≥ 𝑘)

∞

𝑘=0

| ℱ𝒯] 

=∑𝑒−𝑟(𝑇+𝑘)
𝑇

𝑘=0

𝑇𝑝𝑥 𝑘𝑝𝑥+𝑇𝐵𝑘 , 

where 𝑇𝑝𝑥 𝑘𝑝𝑥+𝑇𝐵𝑘  represents the probability that the life-age (𝑥) survives 𝑘 additional years after reaching 

age 𝑥 + 𝑇. Note that the only source of randomness is the dynamics of inflation risk {𝐼0, 𝐼1, ⋯ , 𝐼𝑇}. 

7.2 CPI MODEL FRAMEWORK 

As a critical component of inflation protection features, inflation risk is modeled by a well-studied stochastic 

process, which was introduced by Jarrow and Yildirim (2003). For convenience, we introduce the following notations 

to be used in the rest of this section. 

• 𝒓(𝒕). Real short rate at 𝑡. 

• 𝒏(𝒕). Nominal rate at 𝑡. 

• 𝒇𝒏(𝒕, 𝑻). Nominal forward rate at 𝑡 for date 𝑇. 

• 𝒇𝒓(𝒕, 𝑻). Real forward rate at 𝑡 for date 𝑇. 

• 𝑰𝒕. The consumer purchase index at 𝑡. 

• 𝑷𝒏(𝒕, 𝑻). Price of nominal zero-coupon bond at 𝑡 with maturity at 𝑇 in dollars. 

• 𝑷𝒓(𝒕, 𝑻). Price of real zero-coupon bond at 𝑡 with maturity at 𝑇 in CPI units. 

• 𝑩𝒏(𝒕). Time 𝑡 money market account value in dollars. 

• 𝑩𝒓(𝒕). Time 𝑡 money market account value in CPI units. 
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• 𝑽𝟎
𝒊 . Price of the product at 0 with maturity at 𝑖. 

• 𝑽𝟎. Total price of the product at 0 with maturity at 𝑖 for 𝑖 = 𝑇1, … , 𝑇𝑘. 

Because the model considers term structure of interest rates, a key concept is the forward rate with index (𝑡, 𝑇), 

which is an interest rate specified at 𝑡 to be used at time 𝑇. The price of a nominal zero-coupon bond at time 𝑡 with 

maturity time 𝑇 and that of a real zero-coupon bond are given by 

Pn(t, T) = exp {−∫ fn(t, s)ds
T

t

} , (23a) 

𝑃𝑟(𝑡, 𝑇) = exp {−∫ 𝑓𝑟(𝑡, 𝑠)𝑑𝑠
𝑇

𝑡

} . (23b) 

The real spot rate is the interest rate applied immediately to investment in CPI units, that is, 𝑟(𝑡) = 𝑓𝑟(𝑡, 𝑡). 

Similarly, the nominal spot rate is the interest rate applied immediately to investment in dollars, that is, 𝑛(𝑡) =

𝑓𝑛(𝑡, 𝑡). Hence, the money market account grows with spot rates,  

𝐵𝑟(𝑡) = exp (∫ 𝑟(𝑢)𝑑𝑢
𝑡

0

) , 

𝐵𝑛(𝑡) = exp (∫ 𝑛(𝑢)𝑑𝑢
𝑡

0

). 

In the Jarrow and Yildirim model, it is assumed that under the real world measure, the dynamics of forward rates 

and CPI are given by 

𝑑𝑓𝑛(𝑡, 𝑇) = μ𝑛(𝑡, 𝑇)𝑑𝑡 + σ𝑛(𝑡, 𝑇)𝑑𝑊𝑛
𝑃(𝑡), (24a) 

𝑑𝑓𝑟(𝑡, 𝑇) = μ𝑟(𝑡, 𝑇)𝑑𝑡 + σ𝑟(𝑡, 𝑇)𝑑𝑊𝑟
𝑃(𝑡), (24b) 

𝑑𝐼(𝑡) = 𝐼(𝑡)μ𝐼(𝑡)𝑑𝑡 + 𝐼(𝑡)σ𝐼𝑑𝑊𝐼
𝑃(𝑡), (24c) 

with the boundary conditions 𝐼(0) = 𝐼0 > 0 and 

𝑓𝑛(0, 𝑇) = 𝑓𝑛
𝑀(0, 𝑇), 

𝑓𝑟(0, 𝑇) = 𝑓𝑟
𝑀(0, 𝑇), 

where 

1. (𝑊𝑛
𝑃 ,𝑊𝑟

𝑃 ,𝑊𝐼
𝑃) is a Brownian motion with correlations ρ𝑛,𝑟, ρ𝑛,𝐼 and ρ𝑟,𝐼. 

2. μ𝑛, μ𝑟  and μ𝐼  are adapted processes. 

3. σ𝑛 and σ𝑟  are deterministic functions; σ𝐼  is positive constant. 

4. 𝑓𝑛
𝑀(0, 𝑇) and 𝑓𝑟

𝑀(0, 𝑇) are nominal and real forward rates observed in the market at time 0 for maturity 𝑇. 

It is known that the financial market would be complete and arbitrage free if there exists a unique equivalent 

probability measure 𝑄 such that 

𝑃𝑛(𝑡, 𝑇)

𝐵𝑛(𝑡)
,
𝐼(𝑡)𝑃𝑟(𝑡, 𝑇)

𝐵𝑛(𝑡)
,
𝐼(𝑡)𝐵𝑟(𝑡)

𝐵𝑛(𝑡)
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are Q-martingales. It means that all assets discounted in respective units should keep the same risk-neutral value at 

all times. This is consistent with the assumption of no arbitrage in the market. 

It is shown in Jarrow and Yildirim (2003) that the dynamics under the martingale measure are given by 

𝑑𝑓𝑛(𝑡, 𝑇) = σ𝑛(𝑡, 𝑇) (∫ σ𝑛(𝑡, 𝑠)𝑑𝑠
𝑇

𝑡

)𝑑𝑡 + σ𝑛(𝑡, 𝑇)𝑑𝑊𝑛
�̃�(𝑡), (25a) 

𝑑𝑓𝑟(𝑡, 𝑇) = σ𝑟(𝑡, 𝑇) (∫ σ𝑟(𝑡, 𝑠)𝑑𝑠
𝑇

𝑡

− ρ𝑟𝐼σ𝐼(𝑡))𝑑𝑡 + σ𝑟(𝑡, 𝑇)𝑑𝑊𝑟
�̃�(𝑡), (25b) 

𝑑𝐼(𝑡) = 𝐼(𝑡)[𝑛(𝑡) − 𝑟(𝑡)]𝑑𝑡 + 𝐼(𝑡)σ𝐼𝑑𝑊𝐼
�̃�(𝑡). (25c) 

If we  further assume that the volatility functions σ𝑛(𝑡, 𝑇) and σ𝑟(𝑡, 𝑇) are given by 

σ𝑛(𝑡, 𝑇) = σ𝑛𝑒
−θ𝑛(𝑇−𝑡), 

σ𝑟(𝑡, 𝑇) = σ𝑟𝑒
−θ𝑟(𝑇−𝑡), 

Then stochastic processes in equation (25) reduce to the model framework that depicts the evolution for the 

nominal and real short rates and for the CPI as 

𝑑𝑛(𝑡) = [α𝑛(𝑡) − θ𝑛𝑛(𝑡)]𝑑𝑡 + σ𝑛𝑑𝑊𝑛(𝑡), (26a) 

𝑑𝑟(𝑡) = [α𝑟(𝑡) − ρ𝑟,𝐼σ𝐼σ𝑟 − θ𝑟𝑟(𝑡)]𝑑𝑡 + σ𝑟𝑑𝑊𝑟(𝑡), (26b) 

𝑑𝐼(𝑡) = 𝐼(𝑡)[𝑛(𝑡) − 𝑟(𝑡)]𝑑𝑡 + 𝐼(𝑡)σ𝐼𝑑𝑊𝐼(𝑡), (26c) 

where 

1. (𝑊𝑛 ,𝑊𝑟 ,𝑊𝐼) is a Brownian motion with correlations ρ𝑛,𝑟, ρ𝑛,𝐼 and ρ𝑟,𝐼. 

2. σ𝑛, σ𝑟 , θ𝑛 and θ𝑟  are positive constant. 

3. α𝑛(𝑡) and α𝑟(𝑡) are functions given by 

α𝑛(𝑡) =
∂𝑓𝑛(0, 𝑡)

∂𝑇
+ θ𝑛𝑓𝑛(0, 𝑡) +

σ𝑛
2

2θ𝑛
(1 − 𝑒−2θ𝑛𝑡), 

α𝑟(𝑡) =
∂𝑓𝑟(0, 𝑡)

∂𝑇
+ θ𝑟𝑓𝑟(0, 𝑡) +

σ𝑟
2

2θ𝑟
(1 − 𝑒−2θ𝑟𝑡). 

Thus, under martingale measure 𝑄, 𝐼(𝑡) is lognormally distributed and for 𝑡 < 𝑇, 

𝐼(𝑇) = 𝐼(𝑡)exp {∫ [𝑛(𝑠) − 𝑟(𝑠)]𝑑𝑠
𝑇

𝑡

−
1

2
σ𝐼
2(𝑇 − 𝑡) + σ𝐼(𝑊𝐼(𝑇) −𝑊𝐼(𝑡))}. 

Therefore, the CPI ratio follows a lognormal distribution given by 

𝐼𝑇𝑖
𝐼𝑇𝑖−1

= exp {∫ [𝑛(𝑠) − 𝑟(𝑠)]𝑑𝑠
𝑇𝑖

𝑇𝑖−1

−
1

2
σ𝐼
2(𝑇𝑖 − 𝑇𝑖−1) + σ𝐼(𝑊𝐼(𝑇𝑖) −𝑊𝐼(𝑇𝑖−1))} . (27) 
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7.3 PRICING 

As far as the evolution of the CPI ratio is known, we are ready to present the pricing procedure of the inflation-

adjusted annuity. We take the CPI indexation with a floor as an example. 

Recall from Section 6.1, the annuity payout for each time 𝑇𝑖  are given for 𝑖 = 0,… , 𝑘 by 

𝐵𝑇𝑖 = 𝐵0∏max {1 + 𝑓,
𝐼𝑇𝑗

𝐼𝑇𝑗−1
}

𝑖

𝑗=1

, 

and the time-0 no-arbitrage value of the benefit 𝐵𝑇𝑖 is defined by 𝐸 (𝑒−∫ 𝑛(𝑠)𝑑𝑠
𝑇𝑖
0 𝐵𝑇𝑖), which is calculated from the 

following Theorem 7.1. 

Theorem 7.1. Suppose 𝐸𝑇 denotes the expectation taken under the 𝑇-forward measure; using results from the 

Black-Scholes formula, the price at time 0 for benefit 𝐵𝑇𝑖 is calculated by the following explicit formula, 

𝑉0
𝑇𝑖 = 𝑃𝑛(0, 𝑇𝑖)𝐵0∏[𝑀(0, 𝑇𝑗−1, 𝑇𝑗)Φ (𝑑1

𝑇𝑗−1,𝑇𝑗
) + (1 + 𝑓)Φ(−𝑑2

𝑇𝑗−1,𝑇𝑗
)]

𝑖

𝑗=1

, (28) 

where 

𝑑1
𝑇𝑗−1,𝑇𝑗

=

(

 
 ln

𝑀(0, 𝑇𝑗−1, 𝑇𝑗)
(1 + 𝑓)

+
1
2
𝑉2(0, 𝑇𝑗−1, 𝑇𝑗)

𝑉(0, 𝑇𝑗−1, 𝑇𝑗)

)

 
 
, 

𝑑2
𝑇𝑗−1,𝑇𝑗

= 𝑑1
𝑇𝑗−1,𝑇𝑗

− 𝑉(0, 𝑇𝑗−1, 𝑇𝑗). 

Note that the explicit formula for 𝑀(0, 𝑇𝑗−1, 𝑇𝑗) and 𝑉2(0, 𝑇𝑗−1, 𝑇𝑗) will be addressed in equations (36) and (37) in 

Appendix A. 

Now, for 𝑗 = 1,… , 𝑘, the value at time 0 for the benefit 𝐵𝑇𝑗 is explicitly determined by equation (28). Adding back all 

the time interval, we obtain the no-arbitrage value of the inflation-adjusted annuity at time 0: 

𝑉0 =∑𝑉0
𝑇𝑖

𝑘

𝑖=1

=∑{𝑃𝑛(0, 𝑇𝑖)𝐵0∏[𝑀(0, 𝑇𝑗−1, 𝑇𝑗)Φ(𝑑1
𝑗
) + (1 + 𝑓)Φ(−𝑑2

𝑗
)]}

𝑖

𝑗=1

.

𝑘

𝑖=1

 

7.4 HEDGING 

While we have developed the no-arbitrage pricing of CPI indexed annuity with a floor, we have yet to address 

another important problem—how to hedge against inflation risk and provide a guaranteed rate of return embedded 

in this product should we underwrite such a product. Here we provide details in an example of delta hedging. 

7.4.1 PRODUCT DESCRIPTION 

Consider a compound ratchet inflation-linked contract with the following product features: 

1. The contract lasts for 10 years and all benefits are paid at the end of each year. 
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2. Benefit base is $1,000. 

3. The inflation adjustment is set at the floor rate 2%. 

4. The dynamics of CPIs are modeled by the Jarrow-Yildirim model. 

5. TIPS are freely traded in the market in units of $1,000 with the coupon rate of 1%. 

7.4.2 PARAMETER ESTIMATION 

Readers are referred to the estimation of model parameters in Jarrow and Yildirim (2003). In this example, we take 

advantage of empirical studies in the literature and estimated parameters in Table 20 are taken from Table 3 of 

Jarrow and Yildirim (2003). 

Table 20 

PARAMETERS OF THE JY MODEL, TABLE 3 OF JARROW AND YILDIRIM (2003) 

Item Symbol Value 

Volatility for CPI σ𝐼 0.00874 

Volatility for real rates σ𝑟 0.00299 
𝑎𝑟 0.04339 

Volatility for real rates σ𝑛 0.00566 
𝑎𝑛 0.03398 

 
Correlation Coefficient 

ρ𝑟𝐼 –0.32127 
ρ𝑟𝐼 0.06084 
ρ𝑟𝐼 0.01482 

 

Example of Simulation CPI 

Suppose that the CPI at time 0 is 1. Figure 26 shows three different scenarios of daily CPI trajectories. Observe that 

the CPI in the Jarrow-Yildirim model exhibits an increasing trend. The 40% increase in the CPI after 10 years shows 

the importance of the inflation protection with the annuity product. 

Figure 26 

DAILY CPI TREND FOR 10 YEARS      

 

 

Calculation of 𝑷𝒏(𝟎, 𝒕) and 𝑷𝒓(𝟎, 𝒕) 

Suppose the nominal and real forward rate are given by Table 21. 𝑃𝑛(0, 𝑡) and 𝑃𝑟(0, 𝑡) can be determined by 

equation (23) and Figure 27 shows the corresponding daily values of zero-coupon bond. 
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Table 21 

NOMINAL AND REAL FORWARD RATES 

Item 𝑻 ≤ 𝟑 𝟑 <  𝑻 ≤ 𝟓 𝟓 <  𝑻 ≤ 𝟏𝟎 
𝑓𝑛(0, 𝑇) 0.048 0.044 0.107 
𝑓𝑟(0, 𝑇) 0.022 0.025 0.06 

 

Figure 27 

VALUE OF ZERO COUPON BOND 

  

7.4.3 HEDGING STRATEGY 

By definition, the delta δ𝑡 of a given product at any given time 𝑡 is measured by the first partial derivative of the 

price of the product 𝑉𝑡 with respect to the CPI 𝐼𝑡, that is 

δ𝑡 =
∂𝑉𝑡
∂𝐼𝑡
. 

Define a delta-hedging strategy that consists of investment in Treasury inflation-protected securities and a money 

market account. TIPS provides inflation-adjusted coupon payments periodically where the coupon is determined by 

multiplying the principle amount by the ratio of inflation between two periods and the pre-determined coupon rate. 

When inflation goes up, coupon payment goes up by the same proportion. For example, suppose someone invests 

in TIPS with a face amount of $1,000 and coupon rate of 2%, and that the current CPI is 210. If the CPI changes to 

220 after one year, then the coupon amount for the first year would be  

1,000 × 0.02 ×
220

210
= 20.95. 

The number of shares Δ𝑡 invested in TIPS at time 𝑡 is determined by the relative ratio of the inflation-linked 

product‘s delta δ𝑡
𝑃 and the TIPS‘s delta δ𝑡

TIPS. The rest of money will be invested in the money market, which is 

denoted as 𝑀𝑡. Therefore, define Ω𝑡 = {Δ𝑡 , 𝑀𝑡} to be the delta-hedging portfolio at time 𝑡, the value of the 

replicating portfolio 𝑉𝑡
Δ is given by 

𝑉𝑡
Δ = Δ𝑡𝑉𝑡

TIPS +𝑀𝑡 =
𝛿𝑡
𝑃

𝛿𝑡
TIPS

𝑉𝑡
TIPS +𝑀𝑡 . (29) 

7.4.4 CALCULATION OF DELTAS 

Firstly, we assume without the loss of generality that 𝑇𝑗 = 𝑗 for 𝑗 = 1,… , 𝑘 and that the hedging portfolio is re-

balanced 𝑚 times each year. 
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Determination of 𝛅𝒕
𝑷 

By the same argument in Section 7.3, denote the rounded down integer of 𝑡 as ⌊𝑡⌋, the value of the product 𝑉𝑡
𝑃 at 

time 𝑡 for 𝑡 =
1

𝑚
, … , 𝑘 −

1

𝑚
, 𝑘 is determined by,  

𝑉𝑡
𝑃 = ∑ 𝐹(𝑡, 𝑖) [

𝐼𝑡
𝐼⌊𝑡⌋
𝑀(0, 𝑡, ⌊𝑡⌋ + 1)Φ(𝑑1

𝑡,⌊𝑡⌋+1̃
)+ (1 + 𝑓)Φ(−𝑑2

𝑡,⌊𝑡⌋+1̃
)]

𝑘

𝑖=⌊𝑡⌋+1

, (30) 

with the δ𝑡
𝑃 determined by 

δ𝑡
𝑃 = ∑ 𝐹(𝑡, 𝑖)

1

𝐼⌊𝑡⌋
𝑀(0, 𝑡, ⌊𝑡⌋ + 1)Φ(𝑑1

𝑡,⌊𝑡⌋+1̃
)

𝑘

𝑖=⌊𝑡⌋+1

, (31) 

where 

𝐹(𝑡, 𝑖) = 𝑃𝑛(𝑡, 𝑖)𝐵0∏max {1 + 𝑓,
𝐼𝑇𝑗
𝐼𝑇𝑗−1

} ∏ [𝑀(0, 𝑗, 𝑗 + 1)Φ(𝑑1
𝑗,𝑗+1

) + (1 + 𝑓)Φ(−𝑑2
𝑗,𝑗+1

)]

𝑖−1

𝑗=⌊𝑡⌋+1

⌊𝑡⌋

𝑗=1

, (32) 

and 

𝑑1
𝑡,⌊𝑡⌋+1̃

=

(

 
 
 ln

𝐼𝑡
𝐼⌊𝑡⌋
𝑀(0, 𝑡, ⌊𝑡⌋ + 1)

(1 + 𝑓)
+ (1/2)𝑉2(0, 𝑡, ⌊𝑡⌋ + 1)

𝑉(0, 𝑡, ⌊𝑡⌋ + 1)

)

 
 
 
, 

𝑑2
𝑡,⌊𝑡⌋+1̃

= 𝑑1
𝑡,⌊𝑡⌋+1̃

−𝑉(0, 𝑡, ⌊𝑡⌋ + 1). 

To implement the delta hedging, we need to simulate the path for CPI and get the value of 𝐼𝑡 for 𝑡 =
1

𝑚
, … , 𝑘 −

1

𝑚
, 𝑘. Moreover, 𝑃𝑛(0, 𝑡) and 𝑃𝑟(0, 𝑡) are calculated by equation (23) and Table 21. Then for each re-balanced time 

𝑡, using parameters in Table 20, we can calculate each function 𝑀 and 𝑉 by equations (36) and (37) in Appendix A. 

Then 𝑑1, 𝑑2, Φ(𝑑1) and Φ(−𝑑2) can be found. Consequently, 𝑉𝑡
𝑃 in equation (30), δ𝑡

𝑃 in equation (31) and function 

𝐹(𝑡, 𝑖) in equation (32) can be calculated. 

Determination of 𝛅𝒕
TIPS 

To find the value of δ𝑡
TIPS, we need to find the value of the TIPS on each re-balanced time 𝑡. TIPS pay coupons at 

coupon rate 𝑐 twice a year, and the face amount 𝐻 can be redeemed at the end of the term. The coupon is adjusted 

by the ratio of CPI 
𝐼𝑡

𝐼0
 on each coupon payment day 𝑡. On the redemption date 𝑘, the redemption amount is also 

adjusted by 
𝐼𝑘

𝐼0
 but should be no less than the face amount 𝐻max {1,

𝐼𝑘

𝐼0
}. Then the value of TIPS at time 0 would be 

given by 

𝑉0
TIPS = 𝐸 (𝐻𝑐∑

𝐼𝑖
2

𝐼0
𝑒−∫ 𝑛(𝑠)𝑑𝑠

𝑖
2
0

2𝑘

𝑖=1

+𝐻max {1,
𝐼𝑘
𝐼0
} 𝑒−∫ 𝑛(𝑠)𝑑𝑠

𝑘
0 ) 

= 𝐻𝑐∑𝑃𝑛 (0,
𝑖

2
)𝑀 (0,0,

𝑖

2
)

2𝑘

𝑖=1

+ 𝐻𝑃𝑛(0, 𝑘)[𝑀(0,0, 𝑘)Φ(𝑑1
0,𝑘) + Φ(−𝑑2

0,𝑘)]. 
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Moreover, at any time 𝑡 =
1

𝑚
, … , 𝑘 −

1

𝑚
, 𝑘, the value of TIPS would be given by 

    

𝑉𝑡
TIPS = 𝐻𝑐 ∑

𝐼𝑡

𝐼0
𝑃𝑛 (𝑡,

𝑖

2
)𝑀 (0, 𝑡,

𝑖

2
)2𝑘

𝑖=⌊2𝑡⌋+1 +𝐻𝑃𝑛(𝑡, 𝑘) [
𝐼𝑡

𝐼0
𝑀(0, 𝑡, 𝑘)Φ (𝑑1

𝑡,�̂�) + Φ (−𝑑2
𝑡,�̂�)] , (33) 

with the delta δ𝑡
TIPS given by 

δ𝑡
TIPS =

1

𝐼0
(𝐻𝑐 ∑ 𝑃𝑛 (𝑡,

𝑖

2
)𝑀 (0, 𝑡,

𝑖

2
)

2𝑘

𝑖=⌊2𝑡⌋+1

+𝐻𝑃𝑛(𝑡, 𝑘)𝑀(0, 𝑡, 𝑘)Φ (𝑑1
𝑡,�̂�)) , (34) 

where 

𝑑1
𝑡,�̂� = (

ln
𝐼𝑡
𝐼0
𝑀(0, 𝑡, 𝑘) + (1/2)𝑉2(0, 𝑡, 𝑘)

𝑉(0, 𝑡, 𝑘)
) , 

𝑑2
𝑡,�̂� = 𝑑1

𝑡,�̂� − 𝑉(0, 𝑡, 𝑘). 

Again, to implement the delta hedging, we need to simulate the path for CPI and get the value of 𝐼𝑡 for 𝑡 =
1

𝑚
, … , 𝑘 −

1

𝑚
, 𝑘. Moreover, 𝑃𝑛(0, 𝑡) and 𝑃𝑟(0, 𝑡) are calculated by equation (23) and Table 21. Then for each re-

balanced time 𝑡, using the parameters in Table 20, we can calculate each function 𝑀 and 𝑉 by equations (36) and 

(37). Then 𝑑1, 𝑑2, Φ(𝑑1) and Φ(−𝑑2) can be found. Consequently, 𝑉𝑡
TIPS in equation (33) and δ𝑡

TIPS in equation (34) 

can be calculated. 

For example, suppose we have a 𝑘 = 3 year inflation-linked annuity product and the re-balance is implemented at 

each quarter, that is, 𝑚 =
1

4
. The 𝐼𝑡, 𝑃𝑛(0, 𝑡), 𝑃𝑟(0, 𝑡), δ𝑡− 1

𝑚

𝑃  and δ
𝑡−

1

𝑚

TIPS  for 𝑡 =
1

4
, … ,3 are summarized in Table 22. 

Table 22 

CALCULATION OF δ𝑡
𝑃 AND δ𝑡

TIPS 

Time 𝒕 𝑰𝒕 𝑷𝒏(𝟎, 𝒕) 𝑷𝒓(𝟎, 𝒕) 
𝜹
𝒕−
𝟏
𝟒

𝑷  𝜹
𝒕−
𝟏
𝟒

TIPS 

 
Year 1 

𝑡 = 0.25 1.007 0.988 0.995 1,639.41 992.77 
𝑡 = 0.5 1.014 0.976 0.989 1,740.60 998.64 

𝑡 = 0.75 1.022 0.965 0.984 1,798.51 994.41 
𝑡 = 1 1.030 0.953 0.978 1,972.40 1,000.15 

 
Year 2 

𝑡 = 1.25 1.035 0.942 0.973 1,132.07 995.80 
𝑡 = 1.5 1.049 0.931 0.968 1,056.32 1,001.32 
𝑡 = 1.75 1.055 0.919 0.962 1,492.22 996.86 
𝑡 = 2 1.066 0.908 0.957 1,534.88 1,002.35 

 
Year 3 

𝑡 = 2.25 1.067 0.898 0.952 667.62 997.88 
𝑡 = 2.5 1.073 0.887 0.946 502.49 1,003.39 
𝑡 = 2.75 1.080 0.876 0.941 505.41 998.93 
𝑡 = 3 1.087 0.866 0.936 444.62 1,004.45 

7.4.5 EXAMPLE OF HEDGING STRATEGY 

In this section, we would discuss the implementation of the delta-hedging strategy proposed in Section 7.4.3. For 

any re-balanced time 𝑡 =
1

𝑚
, … , 𝑘 −

1

𝑚
, 𝑘, the dynamic hedging program involves the following transactions: 

1. Hold 
δ𝑡
𝑃

δ𝑡
TIPS units of TIPS. 
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2. Finance the change in units of TIPS by the money market account. In other words, the money market 

account changes by (
δ
𝑡−
1
𝑚

𝑃

δ
𝑡−
1
𝑚

TIPS −
δ𝑡
𝑃

δ𝑡
TIPS)𝑉𝑡

TIPS. Moreover, at each coupon date (respectively, benefit payment 

date), the coupon payment (respectively, benefit payment) is deposited into (respectively, paid out of) the 

money market account. 

Before moving on to the example, we should make some assumptions throughout the section. The hedging program 

is carried out on a monthly basis. The initial CPI at time 0 is set to be 1, that is, 𝐼0 = 1. Recall that the hedging 

portfolio is composed of TIPS and a money market account and that TIPS coupons are paid twice a year. 

At time 𝑡 = 0, an insurer sells the inflation-protected annuity product for the price 𝑉0
𝑃. The insurer invests in 

δ0
𝑃

δ0
TIPS 

units of TIPS. The rest of sales proceeds 𝑉0
𝑃 −

δ0
𝑃

δ0
TIPS 𝑉0

TIPS is deposited in the money market account. At the end of 

each month, time 𝑡, where 𝑡 =
1

12
, … , 10, the insurer re-balances the hedging portfolio by adjusting the units 

invested in the TIPS bond according to the difference between the ratio of delta at time 𝑡 −
1

𝑚
 and 𝑡, that is, 

𝛿
𝑡−
1
12

𝑃

𝛿
𝑡−
1
12

TIPS −

𝛿𝑡
𝑃

𝛿𝑡
TIPS. The cost of adjustment is financed entirely by the money market account. Moreover, coupon payments 

(respectively, benefit payments) are accumulated to (respectively, paid out of) the money market account at each 

coupon date (respectively, benefit payment date). 

For example, at time 𝑡1 =
1

12
, 𝑖𝑓

δ0
𝑃

δ0
TIPS = 10, 

δ𝑡1
𝑃

δ𝑡1
TIPS = 8, 𝑉𝑡1

TIPS = 800. Then at time 𝑡1, we should sell 
δ0
𝑃

δ0
TIPS −

δ𝑡1

δ𝑡1
TIPS = 2 

units of TIPS and accumulate 2 × 𝑉𝑡1
TIPS = 1,600 in the money market account. Since it is neither a coupon payment 

date nor a benefit payment date, there is no other transaction in the money account. 

Determination of the Hedging Error 

In theory, if the hedging program can be carried out continuously, the value of the hedging portfolio should exactly 

match that of the inflation-adjusted annuity. In other words, the hedging portfolio should have just enough to pay 

for the inflation-adjusted annuity payments throughout the term of the contract. In practice, however, such a 

dynamic-hedging program can only be done on a discrete basis. We can assess the effectiveness of the hedging 

program by investigating the discrete hedging error. The accumulated hedging error is defined by 

ϵΔ =
𝑉𝑘
Δ − 𝑉𝑘

𝑃

𝑉0
𝑃 . (35) 

Keep in mind that the smaller this ratio is, the more effective the hedging strategy. 

7.4.6 VISUALIZATION AND ANALYSIS 

Figure 28(a) shows a particular sample of the monthly delta-hedging program. We can make a comparison of the 

value of the replicating portfolio (red line) and that of the actual annuity product (blue line). It is obvious from the 

comparison that the value of the hedging portfolio matches that of the annuity reasonably well. Both sample paths 

show steep drops at the end of each year due to the outgoing benefit payments. The ending values of both the 

annuity and the hedging portfolio are larger than $1,000. That is because of the inflation adjustment to the benefit 

base, which is consistent with the result shown in Figure 26. To analyze the effectiveness of the hedging program, 

we compute the total hedging error defined in equation (35) for each sample path generated from the Jarrow-
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Yildirim model. We generate a total of 1,000 sample path of CPIs. The distribution of accumulated hedging errors is 

shown in Figure 28(b). The vast majority of cases fall in the range between –3% and 3%, which indicates that the 

dynamic delta-hedging strategy is reasonably effective. 

Figure 28(a)     

REPLICATING PORTFOLIO VS. TRUE PRODUCT    

 

Figure 28(b) 

MONTHLY DELTA-HEDGING ERROR DISTRIBUTION 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://soa.qualtrics.com/jfe/form/SV_9ZerAUwsqeiQ0rY
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Appendix A: Proof of Theorem 7.1 

Firstly, we can calculate the time-0 no-arbitrage value of the benefit 𝐵𝑇𝑖 as follows: 

𝐸 (𝑒−∫ 𝑛(𝑠)𝑑𝑠
𝑇𝑖
0 𝐵𝑇𝑖) = 𝐸 (𝑒

−∫ 𝑛(𝑠)𝑑𝑠
𝑇𝑖
0 𝐵0∏max{1 + 𝑓,

𝐼𝑇𝑗

𝐼𝑇𝑗−1
}

𝑖

𝑗=1

) 

= 𝐵0𝐸 (∏𝐸 [𝑒
−∫ 𝑛(𝑠)𝑑𝑠

𝑇𝑗

𝑇𝑗−1 max {1 + 𝑓,
𝐼𝑇𝑗

𝐼𝑇𝑗−1
} |ℱ𝑇𝑗−1]

𝑖

𝑗=1

) 

= 𝑃𝑛(0, 𝑇𝑖)𝐵0∏[(1 + 𝑓) + 𝐸𝑛
𝑇𝑗
([
𝐼𝑇𝑗

𝐼𝑇𝑗−1
− (1 + 𝑓)]

+

|ℱ𝑇𝑗−1)]

𝑖

𝑗=1

 

= 𝑃𝑛(0, 𝑇𝑖)𝐵0∏[𝑀(0, 𝑇𝑗−1, 𝑇𝑗)Φ (𝑑1
𝑇𝑗−1,𝑇𝑗

) + (1 + 𝑓)Φ(−𝑑2
𝑇𝑗−1,𝑇𝑗

)]

𝑖

𝑗=1

, 

where 

𝑑1
𝑇𝑗−1,𝑇𝑗

=

(

 
 ln

𝑀(0, 𝑇𝑗−1, 𝑇𝑗)
(1 + 𝑓)

+ (1/2)𝑉2(0, 𝑇𝑗−1, 𝑇𝑗)

𝑉(0, 𝑇𝑗−1, 𝑇𝑗)

)

 
 
, 

𝑑2
𝑇𝑗−1,𝑇𝑗

= 𝑑1
𝑇𝑗−1,𝑇𝑗

− 𝑉(0, 𝑇𝑗−1, 𝑇𝑗), 

𝑀(0, 𝑇𝑗−1, 𝑇𝑗) = 𝐸𝑛
𝑇𝑗
{
𝐼𝑇𝑗

𝐼𝑇𝑗−1
| ℱ𝑇𝑗−1} , 

𝑉2(0, 𝑇𝑗−1, 𝑇𝑗) = Var𝑛
𝑇𝑗
{Ln

𝐼𝑇𝑗

𝐼𝑇𝑗−1
| ℱ𝑇𝑗−1}. 

Secondly, the explicit expressions for 𝑀(0, 𝑇𝑗−1, 𝑇𝑗) and 𝑉2(0, 𝑇𝑗−1, 𝑇𝑗) can be determined as follows for 𝑗 = 1,… , 𝑘. 

For 𝑀(0, 𝑇𝑗−1, 𝑇𝑗), it follows from equation (27) that 

𝐸𝑛
𝑇𝑗
{
𝐼𝑇𝑗

𝐼𝑇𝑗−1
| ℱ𝑇𝑗−1} = 𝐸𝑛

𝑇𝑗
{𝑒

∫ [𝑛(𝑠)−𝑟(𝑠)]𝑑𝑠
𝑇𝑖
𝑇𝑖−1

−(1/2)σ𝐼
2(𝑇𝑖−𝑇𝑖−1)+σ𝐼(𝑊𝐼(𝑇𝑖)−𝑊𝐼(𝑇𝑖−1))| ℱ𝑇𝑗−1} 

=
𝑃𝑛(0, 𝑇𝑗−1)

𝑃𝑛(0, 𝑇𝑗)
𝐸𝑛
𝑇𝑗
(𝑒

−∫ 𝑟(𝑠)𝑑𝑠
𝑇𝑖
𝑇𝑖−1 | ℱ𝑇𝑗−1), 

where 𝑟(𝑡) follows the stochastic process defined in equation (26). The calculation of the expectation is a classic 

problem for interest rate models. In the Hull-White model, the short real rate 𝑟(𝑡) is driven by 

𝑑𝑟(𝑡) = [α𝑟(𝑡) − θ𝑟𝑟(𝑡)]𝑑𝑡 + σ𝑟𝑑𝑊𝑟(𝑡). 

It is known that ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡
|ℱ𝑡 ∼ 𝑁(𝑚(𝑡, 𝑇), 𝑣(𝑡, 𝑇)), where 

𝑚(𝑡, 𝑇) = 𝐵𝑟(𝑡, 𝑇)(𝑟(𝑡) − α(𝑡)) + 𝐿𝑛
𝑃𝑟
𝑀(0, 𝑡)

𝑃𝑟
𝑀(0, 𝑇)

+
1

2
(𝑣(0, 𝑇) − 𝑣(0, 𝑡)), 

𝑣(𝑡, 𝑇) =
σ𝑟
2

θ𝑟
2
[(𝑇 − 𝑡) +

2

θ𝑟
𝑒−θ𝑟(𝑇−𝑡) −

1

2θ𝑟
𝑒−2θ𝑟(𝑇−𝑡) −

3

2θ𝑟
] , 
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𝐵𝑟(𝑡, 𝑇) =
1

θ𝑟
(1 − 𝑒−θ𝑟(𝑇−𝑡)), 

α(𝑡) = 𝑓𝑟
𝑀(0, 𝑡) +

σ𝑟
2

2θ𝑟
2
(1 − 𝑒−θ𝑟𝑡)

2
. 

Then the time-𝑡 price of a zero-coupon bond maturing at time 𝑇 is known to be 

𝑃𝑟(𝑡, 𝑇) = 𝐸 (𝑒
−∫ 𝑟(𝑠)𝑑𝑠

𝑇
𝑡 | ℱ𝑡) = 𝐴𝑟(𝑡, 𝑇)𝑒

−𝐵𝑟(𝑡,𝑇)𝑟(𝑡), 

with 

𝐴𝑟(𝑡, 𝑇) =
𝑃𝑟
𝑀(0, 𝑇)

𝑃𝑟
𝑀(0, 𝑡)

𝑒
(𝐵𝑟(𝑡,𝑇)𝑓𝑟

𝑀(0,𝑡)−
σ𝑟
2

4θ𝑟
[1−𝑒−2θ𝑟𝑡𝐵𝑟

2(𝑡,𝑇)])
. 

Then, we obtain 

𝐸𝑛
𝑇𝑗
(𝑒

−∫ 𝑟(𝑠)𝑑𝑠
𝑇𝑖
𝑇𝑖−1 | ℱ𝑇𝑗−1) =

𝑃𝑟(0, 𝑇𝑗)

𝑃𝑟(0, 𝑇𝑗−1)
exp{𝐶(0, 𝑇𝑗−1, 𝑇𝑗)}, 

where 

𝐶(0, 𝑇𝑗−1, 𝑇𝑗) = σ𝑟𝐵𝑟(𝑇𝑗−1, 𝑇𝑗) {𝐵𝑟(0, 𝑇𝑗−1) (ρ𝑟,𝐼σ𝐼 − 0.5σ𝑟𝐵𝑟(0, 𝑇𝑗−1) +
ρ𝑛,𝑟σ𝑛
θ𝑛 + θ𝑟

(1 + θ𝑟𝐵𝑟(0, 𝑇𝑗−1)))

−
ρ𝑛,𝑟σ𝑛
θ𝑛 + θ𝑟

𝐵𝑛(0, 𝑇𝑗−1)} . 

Next, 𝑀(0, 𝑇𝑗−1, 𝑇𝑗) is given by 

𝑀(0, 𝑇𝑗−1, 𝑇𝑗) =
𝑃𝑛(0, 𝑇𝑗−1)

𝑃𝑛(0, 𝑇𝑗)

𝑃𝑟(0, 𝑇𝑗)

𝑃𝑟(0, 𝑇𝑗−1)
exp{𝐶(0, 𝑇𝑗−1, 𝑇𝑗)}. (36) 

Using the same argument, we can also determine 𝑉2(0, 𝑇𝑗−1, 𝑇𝑗) by 

𝑉2(0, 𝑇𝑗−1, 𝑇𝑗) 

=
σ𝑛
2

2θ𝑛
2
(1 − 𝑒−θ𝑛(𝑇𝑗−𝑇𝑗−1))

2

[1 − 𝑒−2θ𝑛(𝑇𝑗−1−𝑡)] +
σ𝑟
2

2θ𝑟
2
(1 − 𝑒−θ𝑟(𝑇𝑗−𝑇𝑗−1))

2

[1 − 𝑒−2θ𝑟(𝑇𝑗−1−𝑡)] 

−2ρ𝑛,𝑟
σ𝑛σ𝑟

θ𝑛θ𝑟(θ𝑛 + θ𝑟)
(1 − 𝑒−θ𝑛(𝑇𝑗−𝑇𝑗−1)) (1 − 𝑒−θ𝑟(𝑇𝑗−𝑇𝑗−1)) [1 − 𝑒−(θ𝑛+θ𝑟)(𝑇𝑗−1−𝑡)] 

+σ𝐼
2(𝑇𝑗 − 𝑇𝑗−1) +

σ𝑛
2

θ𝑛
2
[(𝑇𝑗 − 𝑇𝑗−1) +

2

θ𝑛
𝑒−θ𝑛(𝑇𝑗−𝑇𝑗−1) −

1

2θ𝑛
𝑒−2θ𝑛(𝑇𝑗−𝑇𝑗−1) −

3

2θ𝑛
] 

+
σ𝑟
2

θ𝑟
2
[(𝑇𝑗 − 𝑇𝑗−1) +

2

θ𝑟
𝑒−θ𝑟(𝑇𝑗−𝑇𝑗−1) −

1

2θ𝑟
𝑒−2θ𝑟(𝑇𝑗−𝑇𝑗−1) −

3

2θ𝑟
] 

−2ρ𝑛,𝑟
σ𝑛σ𝑟
θ𝑛θ𝑟

[(𝑇𝑗 − 𝑇𝑗−1) −
1 − 𝑒−θ𝑛(𝑇𝑗−𝑇𝑗−1)

θ𝑛
−
1 − 𝑒−θ𝑟(𝑇𝑗−𝑇𝑗−1)

θ𝑟
+
1 − 𝑒−(θ𝑛+θ𝑟)(𝑇𝑗−𝑇𝑗−1)

θ𝑛 + θ𝑟
] 

−2ρ𝑛,𝐼
σ𝑛σ𝐼
θ𝑛

[(𝑇𝑗 − 𝑇𝑗−1) −
1 − 𝑒−θ𝑛(𝑇𝑗−𝑇𝑗−1)

θ𝑛
] − 2ρ𝑟,𝐼

σ𝑟σ𝐼
θ𝑟

[(𝑇𝑗 − 𝑇𝑗−1) −
1 − 𝑒−θ𝑟(𝑇𝑗−𝑇𝑗−1)

θ𝑟
] . (37) 

More details of the derivation can be found in Brigo and Mercurio (2007). 
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Appendix B: Model Assumptions 

For numerical examples in the previous sections, here is the summary of all parameters for GMMB, GMDB, GMWB, 

in the Black-Scholes model and the stochastic volatility jump model as well as an illustrative life table. 

Table 23 

GMMB PRODUCT SPECIFICATION 

Item Symbol Value 
Guarantee level 𝐺 $1,000 

Initial purchase payment 𝐹0 $1,000 

Initial equity value 𝑆0 $100 

Annualized rate of total fee 𝑚 5% 
Annualized risk-free interest rate 𝑟 3% 

Annualized rate of return 𝜇 3% 

Annualized equity volatility rate 𝜎 30% 

GMMB maturity date 𝑇 10 years 
Age of policyholder at issue 𝑥 60 

Table 24 

GMDB PRODUCT SPECIFICATION 

Item Symbol Value 

Guarantee level 𝐺 $1,000 
Initial purchase payment 𝐹0 $1,000 

Initial equity value 𝑆0 $100 

Annualized rate of total fee 𝑚 5% 

Annualized risk-free interest rate 𝑟 3% 
Annualized rate of return 𝜇 3% 

Annualized equity volatility rate 𝜎 30% 

GMDB maturity date 𝑇 10 years 

Age of policyholder at issue 𝑥 60 

Table 25 

GMWB PRODUCT SPECIFICATION 

Item Symbol Value 

Guarantee level 𝐺 $1,000 

Initial purchase payment 𝐹0 $1,000 
Initial equity value 𝑆0 $100 

Annualized amount of withdrawal 𝑤 $100 

Annualized rate of total fee 𝑚 5% 

Annualized risk-free interest rate 𝑟 3% 
Annualized rate of return 𝜇 3% 

Annualized equity volatility rate 𝜎 30% 

GMWB maturity date 𝑇 10 years 

Age of policyholder at issue 𝑥 60 

Table 26 

PARAMETERS OF THE BS, TABLE III OF ANDERSEN, BENZONI AND LUND (2002) 

Item Symbol Value 

Drift mean of stock price μ 0.0398 

Volatility of stock price σ 0.5933 
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Table 27 

PARAMETERS OF THE SVJ MODEL, TABLE III OF ANDERSEN, BENZONI AND LUND (2002) 

Item Symbol Value 
Drift mean of stock price μ 0.0304 

Drift term of stock volatility α 
β 

0.0064 
0.012 

Volatility rate η 0.0711 

Correlation coefficient ρ –0.6219 

Standard deviation δ 0.0134 

Jump intensity λ1 
λ2 

0.0202 
0.00002 

Average size of jump κ̅ 0 

Table 28 

ILLUSTRATIVE LIFE TABLE 

𝒙 1,000𝒒𝒙 𝒙𝒑𝟎 𝒙 1,000𝒒𝒙 𝒙𝒑𝟎 𝒙 1,000𝒒𝒙 𝒙𝒑𝟎 
1 0.587 0.99941 40 1.317 0.97381 79 69.595 0.47012 

2 0.433 0.99898 41 1.424 0.97242 80 77.114 0.43387 

3 0.350 0.99863 42 1.540 0.97093 81 85.075 0.39696 

4 0.293 0.99834 43 1.662 0.96931 82 93.273 0.35993 
5 0.274 0.99806 44 1.796 0.96757 83 101.578 0.32337 

6 0.263 0.99780 45 1.952 0.96568 84 110.252 0.28772 

7 0.248 0.99755 46 2.141 0.96362 85 119.764 0.25326 

8 0.234 0.99782 47 2.366 0.96134 86 130.583 0.22019 
9 0.231 0.99709 48 2.618 0.95882 87 143.012 0.18870 

10 0.239 0.99685 49 2.900 0.95604 88 156.969 0.15908 

11 0.256 0.99660 50 3.223 0.95296 89 172.199 0.13169 

12 0.284 0.99631 51 3.598 0.94953 90 188.517 0.10686 
13 0.371 0.99599 52 4.019 0.94571 91 205.742 0.08488 

14 0.380 0.99561 53 4.472 0.94148 92 223.978 0.06587 

15 0.435 0.99518 54 4.969 0.93681 93 243.533 0.04982 

16 0.486 0.99469 55 5.543 0.93161 94 264.171 0.03666 
17 0.526 0.99417 56 6.226 0.92581 95 285.199 0.02621 

18 0.558 0.99362 57 7.025 0.91931 96 305.931 0.01819 

19 0.586 0.99303 58 7.916 0.91203 97 325.849 0.01226 

20 0.613 0.99242 59 8.907 0.90391 98 344.977 0.00803 
21 0.642 0.99179 60 10.029 0.89484 99 363.757 0.00511 

22 0.677 0.99112 61 11.312 0.88472 100 382.606 0.00316 

23 0.717 0.99041 62 12.781 0.87341 101 401.942 0.00189 

24 0.760 0.98965 63 14.431 0.86081 102 422.569 0.00109 
25 0.803 0.98886 64 16.241 0.84683 103 445.282 0.00060 

26 0.842 0.98802 65 18.191 0.83142 104 469.115 0.00032 

27 0.876 0.98716 66 20.259 0.81458 105 491.923 0.00016 

28 0.807 0.98626 67 22.398 0.79633 106 511.560 0.00008 
29 0.935 0.98534 68 24.581 0.77676 107 526.441 0.00004 

30 0.959 0.98440 69 26.869 0.75589 108 536.732 0.00002 

31 0.981 0.98343 70 29.363 0.73369 109 543.602 0.00001 

32 0.997 0.98245 71 32.169 0.71009 110 547.664 0 
33 1.003 0.98147 72 35.168 0.68505 111 549.540 0 

34 1.005 0.98048 73 38.558 0.65863 112 550.000 0 

35 1.013 0.97949 74 42.106 0.63090 113 550.000 0 

36 1.037 0.97847 75 46.121 0.60180 114 550.000 0 
37 1.082 0.97741 76 50.813 0.57122 115 1000.000 0 

38 1.146 0.97629 77 56.327 0.53905    

39 1.225 0.97510 78 62.629 0.50529    
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