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Telematics Car Driving Data Analytics 

Executive Summary 

The aim of this project has three aspects: (1) providing a comprehensive literature review on telematics car 
driving data analytics; (2) developing various visual tools and a data cleaning procedure for telematics data; 
and (3) extracting risk factors from individual trips and improving classic classification ratemaking models 
with those risk factors. In Section 1, we refer to literature in various fields including insurance, actuarial 
science, computer science, transportation, and machine learning. In Section 2, we firstly develop various 
visual tools, then impute missing telematics data and select among telematics variables, finally construct 
three formats of telematics data, time series, summary statistics and heatmaps. In Section 3, a one-
dimensional convolutional neuron network is calibrated on binary labeled trips of selected archetypal 
drivers, which is then used to evaluate risk score of individual trips. By incorporating average risk score for 
each driver, the classic Poisson generalized linear model for claims frequency can be improved significantly. 

Keywords: Claims frequency modelling, Telematics car driving data, Generalized linear model, One-
dimensional convolutional neural network, Logistic regression. 
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Section 1: Introduction 

With the advancements of telematics technology, insurers can collect detailed car driving information. 
Traditionally, insurers use classical actuarial risk factors to classify policyholders and determine premiums 
for different risk groups. Telematics car driving data are personalized, which encode differences in driving 
behavior not included in classical social-demographic risk factors, such as regions and ages. For example, 
some young drivers may have a cautious driving style, while some matured drivers may still demonstrate a 
wild and aggressive driving behavior. This work is among the first to explore how such information can be 
learned from telematics car driving data. Our ultimate goal is to improve the predictive accuracy of risk 
classification models by utilizing telematics car driving data. 

Although there are concerns on using personalized data and algorithmic prediction (Mahapatra, 2019; 

Cevolini and Esposito, 2020), we prefer the statement by Cather (2020) that incorporating telematics data 

into auto insurance risk classification systems would “minimize insurance discrimination and increase 

cream skimming adverse selection”, where asymmetric information favouring telematics-based insurers 

supports premium discounts that attract safer drivers, prompting an underpopulation of low-risk drivers 

among non-telematics insurers. 

According to the actuarial literature, among others, there are three major approaches on learning driving 

styles from telematics car driving data: (a) Weidner et al. (2016, 2017) extract covariates from time series 

of telematics data using discrete Fourier transforms; (b) Huang and Meng (2019), Paefgen et al. (2014) and 

Verbelen et al. (2018) calculate and adopt summary statistics of telematics data; (c) Gao et al. (2020) apply 

convolutional neural networks to learn patterns in speed-acceleration heatmaps. Another stream of 

literature explores risk exposure of driving distances or driving duration; see Ayuso et al. (2016a,b), Boucher 

et al. (2017), and Lemaire et al. (2016). 

Since telematics data are posterior experiences, Denuit et al. (2019) propose a credibility model to 

incorporate the posterior information of driving behavior. Guillen et al. (2020) study the association of 

telematics car driving data with near-miss events such as cornering, braking, and accelerating. Geyer et 

al. (2020) explores the effect of driving behavior on risk and insurance selection. Richman (2020) discusses 

and compares potential approaches to analyze telematics car driving data. 

Our data are collected by on-board diagnostics (OBD) systems rather than smartphones. There are several 

works on smartphone-based telematics in the IEEE Transactions journals. Wahlström et al. (2017) review 

research on smartphone-based vehicle telematics such as vehicle navigation, driver classification, and road 

condition monitoring. Wahlström et al. (2018) study the fusion of OBD and global navigation satellite 

system (GNSS) measurements of speed. Wahlström et al. (2015) detect dangerous cornering using GNSS 

data. There are also a wide range of relevant studies on the IEEE conference papers. For instance, 

Savelonas et al. (2020), Girma et al. (2019) and Carvalho et al. (2020) employ recurrent neural networks to 

identify drivers or to learn different driving behaviors such as normal, moderate, aggressive, etc. 

In transportation field, Joubert et al. (2016), Ma et al. (2018), and Hu et al. (2019) study driving behaviors 

and find certain driving behaviors are more related to at-fault accidents. They consider both telematics 

data and contextual data such as road conditions, traffic flow, speed limits. Ho et al. (2014), Hung et 

al. (2007), Kamble et al. (2009) adopt telematics data and driving cycles to understand vehicular emissions, 

energy consumption and impacts on traffic in different cities around the world. 

Among existing literature, two telematics car driving data sets are publicly available: naturalistic driving 

study dataset and UAH-DriveSet (Romera, 2016). Some of the above literature is based on those two data 

sets. Gao and Wüthrich (2018) propose a 𝑣-𝑎 heatmap simulation machine. Our telematics data are 

privately owned and thus not publicly available. 
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In this project, we employ a one-dimensional convolutional neuron network (1D CNN) to classify trips into 

either potential risky or potential safe. 1D CNN can learn representations along time series of car driving 

trips. We demonstrate that those representations learned from such a classification task are related to 

claims frequency. 

Convolutional neural network is one of the most critical deep learning algorithms. It is capable of learning 

representation and conducting shift-invariant classification. From 1980s to 1990s, LeCun invented the 

notion of convolutional network in his epoch-making LeNet5, which used convolution to extract similar 

spatial features at multiple locations with few parameters (LeCun et al., 2015). In his following studies, he 

applied convolutional neural networks to images, speech, and time series (LeCun and Bengio, 1995). 

Circumscribed by the unsatisfactory hash-rate in the 1990s, convolutional neural networks failed to deliver 

serviceable results in processing big data and stayed dormant for several years (Kai et al. 2013). After 20 

years development and thanks to the recent breakthrough of computing speed, convolutional neural 

networks show outstanding performance in image identification and classification. Convolutional neural 

networks have been widely used in computer vision, recommending system, and natural language 

processing. 

In car insurance field, Singh (2016) implemented two convolutional neural networks to classify pictures of 

drivers. From a similar perspective, Masood et al. (2018) propose a machine learning algorithm based on 

convolutional neural networks to not only detect distracted drivers but also identify the cause of 

distraction. The input images are obtained from camera module installed in cars. Albeit convolutional 

neural networks appear to be promising in various time series analysis, their application in car insurance is 

scarce. Gao and Wüthrich (2018) apply 1D CNN for trips identification. 

The paper is structured as follows. In Section 2, we clean the telematics car driving data and construct 

three formats of telematics data, time series, summary statistics and heatmaps. In Section 3, the classic 

Poisson generalized linear model for claims frequency is improved either by boosting methods or by 

incorporating telematics variables. In Section 4, we conclude the paper with important findings. 
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Section 2: Telematics car driving data 

Telematics car driving data analysis is far from being trivial because the challenges related to big data (the 

size is typically beyond terabytes), data recording error and others. In this section, we firstly describe the 

telematics variables collected. Then we conduct the data cleaning. Finally we extract three formats of 

telematics data: (1) time series; (2) summary statistics; and (3) heatmaps. Our focus is the time series since 

there are already several existing literatures on the last two formats of telematics data. 

2.1    TELEMATIC VARIABLES 

A trip is defined as the period from engine start to engine switch off. During a trip, the following 15 

variables are recorded by seconds with detailed definitions listed below. 

2.1.1      FIELD MASKS 

1. Field_Mask. This is a hex code which can be converted into a binary vector indicating the validation 
of telematics variable 6. GPS_Latitude to 15. Accel_Vertical (using the function BMS::hex2bin). Note 
that the invalid data are recorded as zero, which need to be coded as NA. 

2.1.2      VEHICLE IDENTIFICATION VARIABLES 

2. Device_ID. This variable also appears in the userlist dataset. It is used to match telematics data with 
policy data. 

3. Detected_VIN. Given the Device_ID, this variable is not very useful in the current study. 

2.1.3      TIME 

4. Trip_Number. This variable records the beginning time of a trip in the UTC format and is a constant 
throughout the entire trip. It can be converted to the Beijing time by as.POSIXlt(,origin="1970-01-

01",tz="Asia/Shanghai"). 

5. Time_Stamp. This variable is the UTC time of each record in a trip and increases by one in a trip file. 

2.1.4      GPS VARIABLES 

When the following GPS variables are invalid, they are recorded as zero in the raw dataset. We change 

those invalid zero values to NA. 

6. GPS_Latitude. This variable is the GPS latitude in decimal degree multiplied by 107. 

7. GPS_Longitude. This variable is the GPS longitude in decimal degree multiplied by 106 

The spherical coordinates can be converted to the plane coordinates (𝑥, 𝑦) using SoDA::geoXY. The plane 

coordinates are used to calculate the distance, speed 𝑣(𝑥𝑦), angle 𝜓(𝑥𝑦), acceleration 𝑎(𝑥𝑦) and angle 

change 𝛥(𝑥𝑦). When GPS signal drift problems occur, the GPS coordinates (𝑥, 𝑦) will be affected, so will 

variables dependent on them. 

8. GPS_Heading. This variable is the approaching direction of the vehicle 𝜓(𝑔𝑝𝑠) in decimal degree 
multiplied by 102. It ranges from 0 to 360. 

9. GPS_Speed. This variable is the vehicle speed 𝑣(𝑔𝑝𝑠) in 𝑘𝑚/ℎ multiplied by 10. Note that 
3.6𝑘𝑚/ℎ = 1𝑚/𝑠. 
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10. Positional_Quality. This variable indicates the GPS signal quality. When it is zero, the vehicle cannot 
be located by the GPS satellite and the four GPS variables listed above are invalid. Note that when 
it is one, the GPS coordinates might still be zero in rare cases. So it is important to validate the GPS 
data using both the GPS coordinates and this variable. 

2.1.5      INSTRUMENTAL PANEL VARIABLES 

11. VSS_Speed. This variable is vehicle speed 𝑣(𝑣𝑠𝑠) shown in instrument panel. We are informed by the 

insurer that when valid, it is more reliable than the GPS_Speed 𝑣(𝑔𝑝𝑠). 

12. Engine_RPM. This variable is the rotation of engine per minute shown in the instrument panel, 
which is not used in the study. 

2.1.6      ACCELEROMETER VARIABLES 

The following three variables are measured by a three-axis accelerometer. 

1. Accel_Lateral. The lateral acceleration 𝑎′(𝑎𝑐𝑐) is perpendicular to the car approaching direction, 
which measures the change of car approaching direction. 

2. Accel_Longitudinal. The longitudinal acceleration 𝑎(𝑎𝑐𝑐) is along the car approaching direction, 
which measures the change of speed values. 

3. Accel_Vertical. The vertical acceleration is always at around the gravity 9.8𝑚/𝑠2. 

There is calibration bias with these variables as we will explain in more details in the next section. Also, 
such bias is difficult to be removed. 

2.2    TELEMATICS DATA CLEANING 

Telematics car driving data have a large size and are deemed big data. Data cleaning for such big data is 
very challenging since the same procedure needs to be applied to all the trips of all cars. Thus, the data 
cleaning should be adequately flexible for this aim. 

We firstly visualize several typical trips to demonstrate what data issues need to be addressed during the 

cleaning procedure. Then, a “naive” data cleaning procedure is designed, and its performance is monitored 

on the selected trips. Finally, a “universally” applied data cleaning procedure is further derived. 

2.2.1 ORIGINAL TELEMATICS DATA 

Three trips of three drivers are illustrated in the following figures. For each trip, 6 plots are presented: 

1. Top-left: Time series of GPS signal quality, instrument panel signal quality, and accelerometer 
signal quality; 

2. Top-right: Trajectory (𝑥, 𝑦); 

3. Middle-left: Time series of GPS speed 𝑣(𝑔𝑝𝑠), instrument panel speed (VSS speed) 𝑣(𝑣𝑠𝑠), 

4. Middle-right: Time series of GPS heading 𝜓(𝑔𝑝𝑠); 

5. Bottom-left: Time series of longitudinal acceleration 𝑎(𝑎𝑐𝑐); 
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6. Bottom-right: Time series of lateral acceleration 𝑎′(𝑎𝑐𝑐). 

Figure 2.1 shows a very short trip of 2 minutes for driver 8. We have the following observations: 

• The top-left plot shows that the instrument panel signal is missing in the last 40 seconds. 

• The top-right and middle-right plots show that the vehicle starts from east-south and approaches 

to west-north. Note that there are jumps between 𝜓(𝑔𝑝𝑠) = 0 and 𝜓(𝑔𝑝𝑠) = 360. 

• The middle-left plot demonstrates that GPS speeds match with VSS speed, and VSS speeds are 
missing for the last 40 seconds. 

• The bottom two plots reveal that there is calibration bias with both the acceleration rates, which 
might be corrected by subtracting the median of acceleration rates. 

Figure 2.2 shows another two trips of driver 8. We have the following observations: 

• For the left trip, the bottom two plots capture the calibration bias of accelerometer again. 

• For the right trip, there are several segments with a missing GPS signal. We need to interpolate 

the GPS coordinates (𝑥, 𝑦), speed 𝑣(𝑔𝑝𝑠) and heading 𝜓(𝑔𝑝𝑠) when the GPS signal is missing. 

Figure 2.3 displays three trips of driver 288. GPS signals seem stable for the three trips, and the 

accelerometer seems work well except for the lateral acceleration during the second trip. Figure 2.4 

presents three trips of driver 1188. GPS signals are unstable in the first two trips, and instrument panel 

signals are unstable for the last two trips. There seems to be calibration bias of acceleration rates for all 

these trips. 

In summary, we need to consider the following data cleaning issues: 

• There are missing values in GPS coordinates (𝑥, 𝑦), GPS speed 𝑣(𝑔𝑝𝑠), GPS heading 𝜓(𝑔𝑝𝑠), and VSS 

speed 𝑣(𝑣𝑠𝑠). These missing values need to be interpolated. 

• There are frequent calibration issues with the accelerometer variables 𝑎(𝑎𝑐𝑐), 𝑎′(𝑎𝑐𝑐). It is difficult 
to remove the calibration bias since the timing and severity0 of such a bias are rather random. 
Consequently, it is better to consider other variables to describe the acceleration in two 

directions. We will use the derived longitudinal acceleration rates 𝑎(𝑔𝑝𝑠), 𝑎(𝑣𝑠𝑠), 𝑎(𝑥𝑦), which are 

obtained from GPS speed 𝑣(𝑔𝑝𝑠), VSS speed 𝑣(𝑣𝑠𝑠), and GPS coordinates (𝑥, 𝑦), respectively. And 

we will replace lateral acceleration 𝑎′(𝑎𝑐𝑐) by angle changes of heading directions 𝛥(𝑔𝑝𝑠), 𝛥(𝑥𝑦), 

which are derived from GPS heading 𝜓(𝑔𝑝𝑠) and GPS coordinates (𝑥, 𝑦), respectively. 
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Figure 2.1 

ONE TRIP OF DRIVER 8 
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Figure 2.2 

TWO TRIPS OF DRIVER 8 
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Figure 2.3 

THREE TRIPS OF DRIVER 288 
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Figure 2.4 

THREE TRIPS OF DRIVER 1188 
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2.2.2   DATA IMPUTATION 

Data imputation is essential if time series of telematics variables are analyzed. On the contrary, if only the 
summary statistics of telematics variables are employed (e.g., mean of speed and standard deviation of 
acceleration), the interpolation of missing values is not necessary according to the law of large numbers. 

More specifically, missing values of GPS coordinates (𝑥, 𝑦), GPS speed 𝑣(𝑔𝑝𝑠), GPS heading 𝜓(𝑔𝑝𝑠), and VSS 

speed 𝑣(𝑣𝑠𝑠) are linearly interpolated, respectively. Note that missing values at boundaries of trips cannot 

be interpolated. 

Remarks: The imputation of GPS heading 𝜓(𝑔𝑝𝑠) around 0 or 360 degree is challenging and may leads to 

biased GPS heading imputation. However, such biased imputation should have little effects on the derived 

angle change. Also, although GPS drifts may affect GPS speed, angle change and acceleration, GPS drifts do 

not occur frequently. 

2.2.3   DERIVED ACCELERATION AND ANGLE CHANGE 

Since the quality of accelerometer variables is relatively questionable, alternative measures are derived to 
measure the acceleration and direction changes. More specifically, acceleration rates are calculated by 

using GPS speed 𝑣(𝑔𝑝𝑠), VSS speed 𝑣(𝑣𝑠𝑠) and GPS coordinates (𝑥, 𝑦), respectively: 

𝑎𝑡
(𝑔𝑝𝑠)

= 𝑣𝑡
(𝑔𝑝𝑠)

− 𝑣𝑡−1
(𝑔𝑝𝑠)

𝑎𝑡
(𝑣𝑠𝑠) = 𝑣𝑡

(𝑣𝑠𝑠) − 𝑣𝑡−1
(𝑣𝑠𝑠)

𝑎𝑡
(𝑥𝑦)

= 𝑣𝑡
(𝑥𝑦)

− 𝑣𝑡−1
(𝑥𝑦)

 

where 

𝑣𝑡
(𝑥𝑦)

= √(𝑥𝑡 − 𝑥𝑡−1)
2 + (𝑦𝑡 − 𝑦𝑡−1)

2. 

Direction change is measured by angle change which can be obtained using either GPS heading 𝜓(𝑔𝑝𝑠) or 
GPS coordinates (𝑥, 𝑦): 

𝛥𝑡
(𝑔𝑝𝑠)

= arcsin (sin (𝜓𝑡
(𝑔𝑝𝑠)

− 𝜓𝑡−1
(𝑔𝑝𝑠)

))

𝛥𝑡
(𝑥𝑦)

= arcsin (sin (𝜓𝑡
(𝑥𝑦)

− 𝜓𝑡−1
(𝑥𝑦)

))
 

where 

𝜓𝑡
(𝑥𝑦)

= 𝕝(−∞,0)(𝑎𝑟𝑐𝑡𝑎𝑛2(
𝑥𝑡 − 𝑥𝑡−1
𝑦𝑡 − 𝑦𝑡−1

))× 2𝜋+ 𝑎𝑟𝑐𝑡𝑎𝑛2(
𝑥𝑡 − 𝑥𝑡−1
𝑦𝑡 − 𝑦𝑡−1

) ∈ [0,2𝜋]. 

Note that a positive value of 𝛥 indicates a right turn whereas a negative one suggests a left turn. The jump 
between 0 and 360 is not an issue since we take sine values. 

Remarks: Cares are needed when converting speed units from km/h to m/s, and transforming angle units 

from degree to radian. The original GPS coordinates are in spherical form, which needs to be converted to 

geodetic plane coordinates before calculating the acceleration and angle change. 

(2.1) 

(2.2) 
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2.2.4   SELECTION OF TELEMATICS VARIABLES 

After data imputation and derivation of the corresponding telematics, we discuss the telematics variable 

selection among speed 𝑣(𝑔𝑝𝑠), 𝑣(𝑣𝑠𝑠), 𝑣(𝑥𝑦), acceleration 𝑎(𝑔𝑝𝑠), 𝑎(𝑣𝑠𝑠), 𝑎(𝑥𝑦), angle 𝜓(𝑔𝑝𝑠), 𝜓(𝑥𝑦), and angle 

change 𝛥(𝑔𝑝𝑠), 𝛥(𝑥𝑦). Those telematics variables are plotted in Figure 10 for the same trips as those in 
Figures 2.1, 2.2, 2.3 and 2.4. We have the following observations for Figure 2.5: 

• The top two plots in Figure 2.5 are exactly the same as the top two in Figure 2.1. 

• In the middle-left plot, we add 𝑣(𝑥𝑦) for comparison. Note that there is a GPS drift around 60 

second causing a jump of 𝑣(𝑥𝑦). 

• In the middle-right plot, we add 𝜓(𝑥𝑦)  for comparison. The derived heading direction 𝜓(𝑥𝑦) is 
always zero when the vehicle stands still after 50 seconds. 

• In the bottom plots we show the derived acceleration 𝑎(𝑔𝑝𝑠), 𝑎(𝑣𝑠𝑠), 𝑎(𝑥𝑦) and the derived angle 

change 𝛥(𝑔𝑝𝑠), 𝛥(𝑥𝑦). 

We now investigate the GPS drift at around the 60th second. In Figure 2.6, time series of (𝑥, 𝑦) 

coordinates, 𝑣(𝑥𝑦) and 𝜓(𝑥𝑦) from the 45th second to 65th second are plotted, respectively. A jump of 

(𝑥, 𝑦) can be seen at the 62nd second, which leads to an extreme speed jump from 0 to more than 200 

km/h and an unusual direction jump from 0 to more than 60 degree in one second.  

We conclude that the derived variables using GPS coordinates (𝑥, 𝑦) are unstable compared with those 

using GPS speed, GPS heading and VSS speed. This is due to the measurement error of GPS coordinates 

and its leverage effects on the acceleration and angle change. 

We have the following observations for Figure 2.7: 

• For the second trip of driver 8, we see a GPS drift at around the 70th second. 

• For the third trip of driver 8, the imputation works very well for GPS coordinates, GPS speed and 

GPS heading. GPS drifts are often observed when there is a speed peak. The heading 𝜓(𝑥𝑦) derived 
from GPS coordinates is always incorrectly zero when the vehicle stops. Again, the acceleration 
and angle change derived from GPS coordinates are very unstable. 

There are no new observations for Figures 2.8 and 2.9. 

In summary, we argue that 

• The linearly imputation works reasonably well. 

• Due to GPS coordinates drift, we should avoid using variables derived from (𝑥, 𝑦). Instead, the 

telematics variables 𝑣(𝑣𝑠𝑠), 𝑣(𝑔𝑝𝑠), 𝑎(𝑣𝑠𝑠), 𝑎(𝑔𝑝𝑠), 𝜓(𝑔𝑝𝑠), 𝛥(𝑔𝑝𝑠) are more reliable. 

• The distance should be derived using the speed variable rather than GPS coordinates (𝑥, 𝑦). 

• The three variables 𝑣, 𝑎, 𝛥 are related to driving behavior, while heading direction 𝜓(𝑔𝑝𝑠) is 
irrelevant. 

• Variables from the same sensor should be adopted for a certain study, i.e., we should use either 

(𝑣(𝑣𝑠𝑠), 𝑎(𝑣𝑠𝑠)) or (𝑣(𝑔𝑝𝑠), 𝑎(𝑔𝑝𝑠), 𝛥(𝑔𝑝𝑠)) only. 
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Figure 2.5 

ONE TRIP OF DRIVER 8 

    
 

 

Figure 2.6 

GPS DRIFT 
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Figure 2.7 

TWO TRIPS OF DRIVER 8 
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Figure 2.8 

THREE TRIPS OF DRIVER 288 
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Figure 2.9 

THREE TRIPS OF DRIVER 1188 
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2.2.5   ADOPTED TELEMATICS VARIABLES 

For each trip, we extract the following (original) telematics variables which are actually adopted in the later 
study. 

1. GPS speed 𝑣(𝑔𝑝𝑠) 

2. GPS heading 𝜓(𝑔𝑝𝑠) 

3. Validation of GPS signal 

4. Instrument panel speed 𝑣(𝑣𝑠𝑠) 

5. Validation of instrument panel signal 

Note that we can derive acceleration and angle change easily from speed and heading. Also note that if 
GPS signal is invalid, the corresponding variables are recorded as NA. So are instrumental panel variables. 

We plot speed 𝑣(𝑔𝑝𝑠), heading direction 𝜓(𝑔𝑝𝑠), acceleration 𝑎(𝑔𝑝𝑠), angle change 𝛥(𝑔𝑝𝑠) for the previously 
investigated trips of drivers 8 and 1188 in Figures 2.10 to 2.11. The timing of missing values is denoted by a 

horizontal line at the top of each plot. Note that we have capped the 𝑎(𝑔𝑝𝑠) between (−4,4)m/s2, and 

𝛥(𝑔𝑝𝑠) between (−45∘, 45∘). Finally, the missing 𝑣(𝑔𝑝𝑠) and 𝜓(𝑔𝑝𝑠) are interpolated linearly, and 𝑎(𝑔𝑝𝑠) and 

𝛥(𝑔𝑝𝑠) are obtained from the imputed values. Those telematics variables are shown in Figures 2.12 to 2.13. 
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Figure 2.10 

THREE TRIPS OF DRIVER 8 
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Figure 2.11 

THREE TRIPS OF DRIVER 1188 
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Figure 2.12 

THREE TRIPS OF DRIVER 8 
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Figure 2.13 

THREE TRIPS OF DRIVER 1188 
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2.2.6   TIME SERIES OF INDIVIDUAL TRIPS 

We consider time series of individual trips, which will be used in the claims frequency modeling. In 
Appendix A, we consider the other two formats: summary statistics and heatmap. The data imputation is 
important for time series, rather than for the other two formats. Hence, a simpler data cleaning procedure 
may be performed to derive summary statistics and heatmap. For instance, only data with valid GPS 
variables are kept in this procedure. 

In all cases, we must specify particular speed intervals and truncate acceleration and angle change. A 
particular speed interval makes the comparison among drivers more sensible, and truncation eliminates 
the leverage effects of outliers. The activation functions in neural networks play a similar role. Note that 
our focus is time series since there are already several existing literatures on the last two formats. 

Recall from Figure 2.1, a trip may contain several standing still phases {𝑡: 𝑣𝑡 = 0, 𝑎𝑡 = 0}. Those phases 
should be removed since they are irrelevant to driving behavior. Also, it is worth noting that the GPS 
variables tend to be more unreliable with a slow driving speed (e.g. parking). Thus, by focusing on a 
meaningful and usual speed interval [10,60] km/h, we can make more sensible comparison among drivers. 

We firstly extract partial trips in [8,62] km/h and set the acceleration and angle change in the shifting parts 

[8,10] ∪ [60,62] km/h as zero. Further, we truncate the speed in the shifting parts [8,10] ∪ [60,62] km/h 

to 10 and 60 km/h, respectively. We save the first 𝜏 = 5 × 60 seconds of such concatenated trips for each 

trip. For the illustrative trips presented in the previous sections, we obtain three concatenated trips as 

shown in Figure 2.14. The other trips do not spend more than 5 minutes in speed interval [10,60] km/h, 

and are discarded in the analysis. 

We extract at most 500 trips for each car. Therefore, for each driver 𝑖 = 1,… , 𝑛, we have 𝑐𝑖 ∈ [0,500] pre-

processed trips. The distribution of 𝑐𝑖 ∈ (0,500) is shown in Figure 35. Altogether, there are 175 cars (8%) 

without pre-processed trips and 1721 cars (75%) cars with 500 pre-processed trips. For driver 𝑖 with 𝑐𝑖 > 0 

trips, we stack its trips into a 𝑐𝑖 × 300 × 3 array 𝐳𝑖 = (𝑧𝑖,1, … , 𝑧𝑖,𝑐𝑖)′, where each trip 𝑧𝑖,𝑗 ∈

[10,60]300 × [−4,4]300 × [−45∘, 45∘]300. Note that the un-bolded notation 𝑧𝑗  refers to a trip 𝑗 without 

considering which driver it belongs to. 

Remark: One may choose the middle stage of a trip; however, it is difficult to define such stage. On one 

hand, if the middle 5 minutes were selected, it would be unfair for trips with varying durations. On the 

other hand, if the first several minutes (e.g. 10 minutes) were discarded and the next 5 minutes were 

selected, it would be not appropriate for short trips (e.g. shorter than 15 minutes). By extracting the first 5 

minutes, we fairly compare driving behavior in the early stage of a trip. 
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Figure 2.14 

THE THIRD TRIP OF DRIVER 288. THE FIRST AND SECOND TRIPS OF DRIVER 1188 

 

. 

 

 

Figure 2.15 

THE DISTRIBUTION OF PRE-PROCESSED TRIPS IN (0, 500) 

   

  

C 
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Section 3: Claims frequency modeling 

We consider the claims history of 𝑖 = 1,… , 𝑛 = 1847 cars whose exposure 𝑒𝑖  is ranging from 1 to 3.48 
years. Those cars have over 100 and up to 500 concatenated trips of 5 minutes (see the previous section). 
Altogether, there are 1598 car drivers with 500 such telematics trips. We show the distribution of claims 
number 𝑁𝑖  and exposures 𝑒𝑖  in Figure 38. We observe that most drivers do not have a claim. The total 
claims number is ∑ 𝑁𝑖

𝑛
𝑖=1 = 933 and the total exposures is ∑ 𝑒𝑖

𝑛
𝑖=1 = 4215. The empirical claims frequency 

is ∑ 𝑁𝑖
𝑛
𝑖=1 /∑ 𝑒𝑖

𝑛
𝑖=1 = 22.14% per driver per year. 

Figure 3.1 

THE DISTRIBUTIONS OF CLAIMS NUMBER AND EXPOSURES 

 

 

Remark: Our preliminary data cleaning ensures that the main driver of a car does not change over the 

entire observation period, and we concatenate policy renewals of the same driver over this observation 

period. Thus, we can follow the same driver for at most 3 years and 5 months from 01/01/2014 to 

31/05/2017. 

Remark: We follow insurance policies over multiple years, but only for the most recent periods there is 

telematics data available. For this reason, we typically have a longer observation period of claims history on 

insurance policies than that of corresponding telematics data. An implicit assumption is that the driving 

habits and styles in the most recent periods are good representations for the entire observation period of 

insurance exposure. 

Generally we assume that the claims number 𝑁𝑖  follows a Poisson distribution with mean of 𝑒𝑖𝜆(𝐱𝑖) 

𝑁𝑖  ∼
𝑖𝑛𝑑

 Poi(𝑒𝑖𝜆(𝐱𝑖)), 

where 𝑒𝑖  is the exposure and 𝜆(𝐱𝑖) is the claims frequency per driver per year given the risk factors 𝐱𝑖 ∈ 𝒳. 
The function 𝜆 is a mapping from risk factors to claims frequency: 

𝜆:𝒳 → ℝ+,   𝐱 ↦ 𝜆(𝐱). 

We firstly establish the base line generalized linear model (GLM) for claim counts with 𝜆 as a log-linear 
function. Then we improve it by either relaxing the log-linear constraint or introducing telematics 
covariates to expand the covariate space 𝒳. 
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We will compare models in terms of out-of-sample prediction. Stratified split (w.r.t. claims numbers) is 

used to partition the data into train 𝒟train, validation 𝒟validation, and test 𝒟test data sets (0.6: 0.2: 0.2). The 

exposures, claims counts, and claims frequency of each data set are listed in Table 1. We denote the index 

of data sets 𝒟train, 𝒟validation , 𝒟test by ℐtrain, ℐvalidation and ℐtest, respectively. The index of learning data set 

𝒟learn = 𝒟train ∪ 𝒟validation is denoted by ℐlearn = ℐtrain ∪ ℐvalidation. 

Table 3.1 

DATA PARTITIONS 

data cars  exposure claims frequency 

train 1107  2535 557 0.2197 

validation 372  843 192 0.2279 

test 368  837 184 0.2198 

 

It is natural to use the Poisson deviance loss to compare different models. The out-of-sample Poisson 

deviance loss on the data 𝒟test is defined as: 

ℒ(𝜆̂, 𝒟test) =
2

|𝒟test|
∑ (𝑒𝑖𝜆̂(𝐱𝑖) − 𝑁𝑖 − 𝑁𝑖 ln𝑒𝑖𝜆̂(𝐱𝑖) + 𝑁𝑖 ln𝑁𝑖)

𝑖∈ℐtest

. 

Note that the mapping 𝜆̂ contains estimated parameters using the training data 𝒟train (or the learning data 
𝒟learn in GLM). 

3.1   COVARIATES PREPROCESS 

The available actuarial risk factors are regions, driver’s age, driver’s gender, car brand, car’s age, 
seat count, car’s price and average daily distance. We preprocess them as follows: 

• regions: There are three main regions, Hebei Province, Zhejiang Province and Shanghai City, which 
have accounted to 97.67% of total cars. Hence, we merge the remaining regions as other regions. 
The distribution of exposures across those four regions is shown in Figure 3.2. 

Note that one may create a continuous variable of population density in each region. Population 
density should be related to claims frequency, since it is a proxy of traffic density. 

  

(3.1) 
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Figure 3.2 

THE DISTRIBUTION OF EXPOSURES ACROSS FOUR REGIONS. 

    

• driver’s age: It is known that age has a non-linear relationship with claims frequency. Thus, we 
discretize driver’s age into five groups using a marginal Poisson regression tree model. The cut-off 
values of age are 29, 33, 35 and 44. Note that we try to obtain a fine grouping of age here, and 
merge age groups during GLM variable selection. Figure 3.3 shows the marginal Poisson tree and 
the distribution of exposures across the age groups. 

Table 3.2 

AGE GROUPS 

age group age interval 

young [18,29) 

middle1 [29,33) 

middle2 [33,35) 

mature1 [35,44) 

mature2 [45,100) 
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Figure 3.3 

THE MARGINAL POISSON TREE AND THE DISTRIBUTION OF EXPOSURES ACROSS AGE GROUPS 

 

• gender: Male drivers are almost twice the size of female drivers as shown in Figure 3.4. 

• car brand: There are 66 different car brands. Due to the small sample sizes of individual car brands, 
we create a new categorical variable of car made country with 6 levels: Germany, Japan, China, 
US, Korean and Europe (excluding Germany). Figure 3.4 displays the distribution of exposures 
across car made countries. 

Figure 3.4 

THE DISTRIBUTION OF EXPOSURES ACROSS GENDERS. THE DISTRIBUTION OF EXPOSURE ACROSS CAR 

MADE COUNTRIES 

 

• car’s age: The distribution of car’s age is plotted in Figure 3.5. A marginal generalized additive 
model (GAM) for claims frequency indicates that claims frequency is related to car’s age in a log-
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linear fashion (due to logarithm link function) as shown in Figure 3.5. Thus, discretization is not 
needed for this variable. 

Figure 3.5 

HISTOGRAM OF CAR'S AGE. THE EFFECT OF CAR'S AGE ON CLAIMS FREQUENCY (FROM A MARGINAL GAM) 

 

• seat count: Around 95.67% cars have 5 seats as shown in Figure 3.6. So, this variable is not quite 
useful for claims frequency prediction. 

• car’s price: The distribution of car’s price in logarithm is shown in Figure 3.6. A preliminary analysis 
(using marginal tree, GAM, and GLM) shows that this variable doesn’t have a close relationship 
with claims frequency. 

Figure 3.6 

THE DISTRIBUTION OF EXPOSURE ACROSS SEAT COUNT. HISTOGRAM OF LOGGED CAR'S PRICE 
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• average daily distance: We fit a marginal GAM to investigate the non-linear effect of average daily 
distance on claims frequency. The left plot in Figure 3.7 suggests that the logged daily distance are 
mainly between 2.5 and 4.5. We truncate the logged daily distance at 2.5 and 4.5, and then fit 
another marginal GAM with the truncated variable. The right plot in Figure 3.7 shows that claims 
frequency is related to truncated logged daily distance in a log-linear fashion (due to logarithm link 
function). Figure 49 compares the distributions of the original and truncated variables. 

Figure 3.7 

THE EFFECT OF LOGGED DAILY DISTANCE ON CLAIMS FREQUENCY (FROM TWO MARGINAL GAMS) 

 
 

Figure 3.8 

THE DISTRIBUTION OF LOGGED DAILY DISTANCE 
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3.2   GENERALIZED LINEAR MODEL FOR CLAIMS FREQUENCY 

We begin with the classic generalized linear model (GLM), which assumes the following log-linear mapping: 

ln𝜆(GLM)(𝐱) = 𝛽0 + 𝛼region + 𝛾age_group + 𝜁female + 𝛿car_made +

𝛽1car_age + 𝛽2trun_logged_distance,
 

where we assume Zhejiang Province, middle age 1, female, Germany made car as reference levels. The 
coefficients are estimated using the learning data 𝒟learn. We then perform a step-wise variable selection 
according to the Akaike information criterion (AIC). The final model is selected as follows: 

ln𝜆(GLM)(𝐱) = 𝛽0 + 𝛼hebei + 𝛾young + 𝛾middle1 + 𝛾mature2 + 𝛿china + 𝛿eu +

𝛽1car_age + 𝛽2trun_logged_distance,
 

Hence, we have merged Shanghai Province and other regions with Zhejiang Province, middle age 2 with 
mature age 1, and car made in all countries except those in China and Europe. We have removed the 
gender and the car’s price from the full model (3.2). The estimated coefficients are listed in Table 3.3. The 
out-of-sample Poisson deviance loss (3.1) for model (3.3) is 1.0306, compared with 1.1003 for a 
homogeneous model 

ln𝜆(Homo)(𝐱) = 𝛽0. 

Table 3.3 

THE ESTIMATED COEFFICIENTS IN THE GLM (3.3) 

coefficients estimate std. error 𝒛-value 𝒑-value 

𝛽0 -2.7864 0.2741 -10.1648 0.0000 

𝛼hebei -0.5320 0.0864 -6.1591 0.0000 

𝛾young 0.2764 0.1111 2.4874 0.0129 

𝛾middle1 0.3719 0.1023 3.6371 0.0003 

𝛾mature2 0.2656 0.0939 2.8277 0.0047 

𝛿china 0.1411 0.0905 1.5589 0.1190 

𝛿eu 0.3885 0.2053 1.8920 0.0585 

𝛽1 0.0295 0.0170 1.7344 0.0829 

𝛽2 0.3283 0.0734 4.4721 0.0000 

3.3   IMPROVED GLM WITH BOOSTING METHODS 

Next we explore the possibility of improving GLM using either generalized boosted regression model (GBM) 
or XGBoost. The mapping 𝜆 from actuarial risk factors to claims frequency is assumed as follows: 

ln𝜆(𝐱) = ln𝜆(GLM)(𝐱) + ln𝜆(BST)(𝐱), 

where we keep the GLM estimate 𝜆(GLM)(𝐱) during the calibration of boosting model 𝜆(BST)(𝐱). The boosting 

modification factor 𝜆(BST)(𝐱) captures the non-linear effects and interaction among the covariates 𝐱, which 
are omitted in the GLM (3.3). We include region, driver’s age (continuous variable), age group, 
gender, car made, car’s age, (logged) car’s price and (logged) average daily distance into the 

boosting model 𝜆(BST). 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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3.3.1   GENERALIZED BOOSTED REGRESSION MODELING 

R code of the generalized boosted regression model is listed as follows:  

Listing 1 

R CODE FOR GENERALIZED BOOSTED REGRESSION. 

gbm1 <- 
 gbm(Claim_Count ~  BRANCHNAME +  AGE + AGE_G + SEX + 
   Car_Made + USEYEARS + Price_log +  
   Daily_log + offset(log(Fit_GLM)), 
  data = rbind(train_data, valid_data), 
  distribution = "poisson", 
  n.trees = 100, 
  shrinkage = 0.001, 
  interaction.depth = 1, 
  n.minobsinnode = 100, 
  bag.fraction = 0.5, 
  train.fraction = nrow(train_data) / nrow(learn_data), 
  cv.folds = 0, 
  verbose = T 
 ) 
(best.iter <- gbm.perf(gbm1, method = "test")) 
gbm1$valid.error[best.iter] 

Most of the code is self-explanatory. Some illustrations of important arguments are further described as 
follows. 

• offset (log(Fit_GLM)) indicates that the GBM starts boosting from the GLM prediction ln𝑒𝜆̂(GLM). 
Hence we learn from the area not explored by the GLM. 

• N.trees is the number of iterations (trees) we tend to boost. shrinkage is the learning step size. 
Normally, these two variables are inversely related. It is suggested that using a small learning setp 
size and a large amount of iterations will lead to a better out-of-sample performance 

• Interaction.depth is the depth of weak learner of tree. Depth of 1 implies that we do not consider 
the interaction term. This variable needs to be tuned using validation error. 

• N.minobsinnode is the minimal observations in a leaf node. 

• Bag.fraction is the proportion of training data used to grow the trees. 

• Train.fraction indicates that the first proportion of data are used as training data and the rest as 
validation data. 

We tune the parameters shrinkage, interaction.depth by the changes in validation error. It turns out 
that interaction.depth=1 leads to the minimal validation error and shrinkage does not affect the 
results too much. The calibration is displayed in Figure 3.9, which implies that there is little improvement 
by employing the GBM. The out-of-sample Poisson deviance loss for GBM is 1.0306, almost identical to 
that 1.0306 for GLM. 
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Figure 3.9 

CALIBRATION OF GRADIENT BOOSTING MODEL 

    

3.3.2   XGBOOST 

Alternatively, we apply the XGBoost to improve the GLM prediction. R code is provided as follows: 

Listing 2 

R CODE FOR XGBOOST. 

bst<- 
 xgb.train( 
  data = dtrain, 
  watchlist = list(train = dtrain, test = dvalid), 
  objective = "count:poisson", 
  nrounds = 1000, 
  eta = 0.001, 
  max_depth = 2, 
  min_child_weight = 100, 
  subsample = 1, 
  early_stopping_rounds = 5, 
  nthread = 4, 
  verbose = F 
 )  
bst$best_ntreelimit 
bst$best_msg 

Most of the code is self-explanatory. Some illustrations of important arguments are further described as 
follows. 

• nrounds, eta, max_depth, min_child_weight, subsample play similar roles as n.trees, shrinkage, 
interaction.depth, n.mnobsinnode, bag.fraction in GBM. 

• early_stopping_rounds = 5 indicates that if the validation error on dvalid does not improve for 5 
iterations the calibration will stop. 
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Again, there is no obvious improvement by employing XGBoost (with a test error of 1.0308). We conclude 
that the GLM (3.3) has sufficiently captured the prediction power of actuarial risk factors. It may be 
attributed to the appropriateness of our pre-processing of variables and the non-existence of significant 
interaction effects. Remark that our data only contains 𝑛 = 1847 cars with 4215 years exposure, so we 
may not discover potential non-linear effects and interaction effects based on such a small portfolio. 

3.4   IMPROVED GLM WITH RISK SCORES OF INDIVIDUAL TRIPS  

In this section, we employ one-dimensional convolutional neural networks (1D CNNs) to evaluate driving 
risk associated with individual trips. 1D CNNs are suitable to learn patterns from time series data. Gao and 
Wüthrich (2019) have studied the usefulness of 1D CNNs for driver identification rather than driving risk 
evaluation of individual trips. 

Our proposed method includes three steps: First, in Section 3.4.1 we select archetypal drivers and label 

their trips as either potential risky or potential safe. Second, in Section 3.4.2 we calibrate a 1D CNN to 

classify those labeled trips of archetypal drivers. The sigmoid probability of output neuron is defined as risk 

score of a trip. Third, in Section 3.4.3 we employ the calibrated 1D CNN to evaluate risk score of all trips 

and calculate average risk score for each driver. We improve the GLM (3.3) with average risk score. 

3.4.1   SELECTION OF ARCHETYPAL DRIVERS 

Recall that our purpose is to improve the GLM prediction using individual trips risk scores. Ideally, average 
risk score of each driver should explain some variations in residuals of the GLM (3.3). This motivates how 
we select archetypal drivers and label their trips. 

We calculate the deviance residuals of the Poisson GLM (3.3) as follows: 

𝑟𝑖 = sign (𝑁𝑖 − 𝑒𝑖𝜆̂
(GLM)(𝐱𝑖))√2𝑒𝑖𝜆̂

(GLM)(𝐱𝑖) − 2𝑁𝑖 − 2𝑁𝑖 ln(𝑒𝑖𝜆̂
(GLM)) + 2𝑁𝑖 ln𝑁𝑖 . 

We draw the histogram of 𝑟𝑖 , 𝑖 = 1. … , 𝑛 in Figure 3.10. 

We select 10 drivers with the largest deviance residuals in the learning data 𝒟learn as archetypal risky 

drivers, and label their 5000 trips as potential risky trips (coded as 1). For those archetypal risky drivers, 

their exposure, number of claims, region, age, deviance residuals, and estimated claims frequency are 

listed in Table 3.4. 

We select 10 drivers with no claim and the largest exposure in the learning data 𝒟learn as archetypal safe 

drivers, and label their 5000 trips as potential safe trips (coded as 0). For those archetypal safe drivers, 

their exposure, number of claims, region, age, deviance residuals, and estimated claims frequency are 

listed in Table 5. We denote the index set of the archetypal drivers by ℐsel. 

Note that we do not select drivers with the smallest residuals. The reason is that the corresponding drivers 

to this criterion will be those with high estimated claims frequency but no claims. Such drivers can be 

potentially risky drivers, since even the claims frequency is high, the chance of making no claim is also high. 

Our failed trials show that if we chose drivers with the smallest residuals, we would not calibrate a useful 

1D CNN for the ultimate goal of improving the GLM. 
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Figure 3.10 

HISTOGRAM OF DEVIANCE RESIDUALS 

    

 

Table 3.4 

10 ARCHETYPAL RISKY DRIVERS 

𝒆𝒊 𝑵𝒊 region𝒊 age𝒊 𝒓𝒊 𝝀̂(𝐱𝒊)
(GLM) 

3.1836 4 other_regions 33.5 7.7461 0.2070 

2.9096 4 hebei 28.0 8.8773 0.1917 

2.0000 4 zhejiang 45.0 9.0390 0.2724 

2.7918 3 hebei 56.0 6.7977 0.1458 

2.2055 4 zhejiang 29.0 7.7946 0.2966 

2.5288 3 hebei 50.0 8.3549 0.1200 

3.0000 4 zhejiang 34.0 10.0270 0.1576 

1.0000 2 shanghai 40.0 5.2395 0.2218 

2.9507 3 hebei 29.0 5.5946 0.1748 

2.0000 3 shanghai 36.0 6.4458 0.2179 
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Table 3.5 

10 ARCHETYPAL SAFE DRIVERS 

𝒆𝒊 𝑵𝒊 region𝒊 age𝒊 𝒓𝒊 𝝀̂(𝐱𝒊)
(GLM) 

3.4438 0 hebei 32.5 -1.4907 0.2164 

3.4795 0 hebei 39.5 -0.8265 0.1188 

3.4658 0 zhejiang 29.5 -2.1375 0.3084 

3.4466 0 zhejiang 62.0 -1.6836 0.2442 

3.4466 0 hebei 33.5 -0.7848 0.1139 

3.4329 0 shanghai 44.5 -1.5932 0.2321 

3.4438 0 hebei 30.5 -1.2430 0.1805 

3.4795 0 hebei 35.5 -0.7124 0.1024 

3.4274 0 hebei 43.5 -1.2207 0.1781 

3.4603 0 hebei 23.5 -0.9866 0.1426 

3.4.2   ONE-DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK 

We add two more telematics variables, squared acceleration rates 𝑎2 and squared angle changes 𝛥2 to 
time series of individual trips. We denote the 𝑗th trip of driver 𝑖 ∈ ℐsel by 𝑧𝑖,𝑗 ∈ [−1,1]300×5 for 𝑗 =

1,… ,500. Note that we have normalized telematics variables 𝑣, 𝑎, 𝛥, 𝑎2, 𝛥2, using the min-max 
normalization. We label the trips of 10 archetypal risky drivers as 1 and those of archetypal safe drivers as 

0. We split all trips (𝑧𝑖,𝑗)𝑖∈ℐ𝑠𝑒𝑙,𝑗=1:500
 into training data (𝑧𝑖,𝑗)𝑖∈ℐ𝑠𝑒𝑙,𝑗=1:300

, validation data 

(𝑧𝑖,𝑗)𝑖∈ℐ𝑠𝑒𝑙,𝑗=301:400
, and test data (𝑧𝑖,𝑗)𝑖∈ℐ𝑠𝑒𝑙,𝑗=401:500

. 

Using R interface to keras and tensorflow, we calibrate a 1D CNN 𝜙 to classify the trips of selected 

archetypal drivers: 

𝜙: [−1,1]300×5 → (0,1),   𝑧 ↦ 𝜙(𝑧). 

The 1D CNN is constructed using the keras code shown in Appendix 5 with q1=32, q2=16, q3=8, 
L=300, d=5. The structure of 1D CNN is as follows: 

Listing 3 

THE STRUCTURE OF 1D CNN. 

Layer (type)                     Output Shape                  Param #      
=========================================================================== 
trips (InputLayer)               [(None, 300, 5)]              0            
___________________________________________________________________________ 
cov1 (Conv1D)                    (None, 294, 32)               1152          
___________________________________________________________________________ 
ave1 (AveragePooling1D)          (None, 58, 32)                0            
___________________________________________________________________________ 
cov2 (Conv1D)                    (None, 52, 16)                3600         
___________________________________________________________________________ 
ave2 (GlobalAveragePooling1D)    (None, 16)                    0            
___________________________________________________________________________ 
dropout (Dropout)                (None, 16)                    0            
___________________________________________________________________________ 
dense1 (Dense)                   (None, 8)                     136          
___________________________________________________________________________ 

(3.6) 
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dropout_1 (Dropout)              (None, 8)                     0            
___________________________________________________________________________ 
dense2 (Dense)                   (None, 1)                     9            
=========================================================================== 
Total params: 4,897 
Trainable params: 4,897 
Non-trainable params: 0 
___________________________________________________________________________ 

Layer cov1 extracts 32 features from a sliding window of 7 seconds. Layer ave1 calculates average of each 
feature for every 5 seconds without overlapping. Layer cov2 further extracts 16 features from a sliding 
window of 7 seconds. Layer ave2 calculates average of each feature. Layers dense1 and dense2 explore 
interaction among 16 features and return the output in (0,1) by using a sigmoid activation function in layer 
dense2. Dropout layers are inserted to reduce overfitting. The sigmoid probability of output neuron 𝜙(𝑧) is 
defined as risk score of trip 𝑧. If output neuron 𝜙(𝑧) is closer to 1, then this trip receives a higher risk score. 

The calibration is shown in Figure 3.11. The hyperparameters in Listing 3 are tuned by monitoring 

validation loss on (𝑧𝑖,𝑗)𝑖∈ℐ𝑠𝑒𝑙,𝑗=301:400
. The network weights resulting in the lowest validation loss are then 

saved for the rest of modelling. The validation accuracy is around 70% and the test accuracy is at the same 

level. The calibrated 1D CNN is employed to evaluate risk score of test trips (𝑧𝑖,𝑗)𝑖∈ℐ𝑠𝑒𝑙,𝑗=401:500
. We 

compare the distribution of risk scores for test potential risky trips with that for test potential safe trips in 

Figure 3.12. The test potential safe trips tend to have lower risk scores than those risky ones. 

Figure 3.11 

CALIBRATIONS OF THE 1D CNN 
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Figure 3.12 

RISK SCORES OF TEST TRIPS (𝑧𝑖,𝑗)𝑖∈ℐ𝑠𝑒𝑙,𝑗=401:500
. 

 
 

Remark: In failed trials, we find that hyperbolic tangent activation is better than relu activation function, 

and average pooling is better than max pooling. Including squared acceleration rates and squared angle 

changes can improve prediction accuracy of 1D CNN. The disadvantage of 1D CNN is that it is a black box 

and we do not know how it performs feature engineering. 

Remark: One may choose the entire trips of 2 risky drivers and 2 safe drivers as test data. According to our 

failed trials, the neural network cannot be calibrated on such a partition, i.e., the validation error cannot be 

reduced. The reason may be that some safe drivers could still have many risky trips and vice versa. 

3.4.3   IMPROVED GLM WITH AVERAGE RISK SCORES 

The calibrated 1D CNN is now employed to evaluate risk scores of up to 200 individual trips for each driver. 
We calculate average risk scores (ave_risk_score) for each driver. We improve the GLM (3.3) with 
average risk score as follows: 

ln𝜆(𝐱) = ln𝜆(GLM)(𝐱) + ln𝜆(TEL)(𝐱) 

where the (logged) telematics modification factor is 

ln𝜆(TEL)(𝐱) = 𝛽3 + 𝛽4ave_risk_score. 

Note that we have expanded the covariate space 𝒳 to include average risk score. It turns out that the out-
of-sample Poisson deviance loss for model (3.7) is 1.0286, comparing with 1.0306 for the GLM (3.3). The 

estimated telematics modification factor 𝜆(TEL) is 

exp(𝛽̂3 + 𝛽̂4ave_risk_score) = exp(−0.6878 + 1.3712 × ave_risk_score) 

Our calculated average risk scores for test drivers ℐtest are in (0.1511,0.7837), so the telematics 
modification factors fall in (0.6184,1.4722). We plot the histogram of telematics modification factors in 
Figure 3.13. 

(3.7) 
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Figure 3.13 

THE HISTOGRAM OF TELEMATICS MODI_CATION FACTORS FOR TEST DRIVERS  ℐTEST. COMPARISON OF 

AVERAGE RISK SCORES FOR TEST DRIVERS ℐTEST OBTAINED FROM 1D CNN AND LOGISTIC REGRESSION 

 

Remark: The selection of archetypal drivers is the key to successfully calibrate a 1D CNN. Our selection 

discussed above is the only viable one among all the investigated selections. For instance, one may 

consider to calibrate a Poisson 1D CNN on all drivers’ trips with claims counts as response variable. 

However, the calibration fails when using either individual trips or connected individual trips. 

3.5   ALTERNATIVE METHODS 

In this section, we discuss two alternative methods to the proposed method: (1) using telematics summary 

statistics; and (2) replacing 1D CNN by a logistic regression. An important finding is that given sufficient 

manually engineered features the second alternative method has a similar out-of-sample prediction 
performance. 

3.5.1   TRIPS CLASSIFICATION BY A LOGISTIC MODEL 

We replace the 1D CNN by a logistic regression. The specification and calibration of logistic model are much 
simpler than that of 1D CNN. The manually engineered features (covariates) denoted by 𝐬𝑖,𝑗 ∈ ℝ35 include 

the mean, median, minimum, maximum, 10% and 90% quantiles and standard deviation of speed 𝑣, 
acceleration 𝑎, angle change 𝛥, squared acceleration 𝑎2, and squared angle change 𝛥2 of each trip 𝐳𝑖,𝑗. The 

test accuracy is 66.7%, which is not far from that of 1D CNN 70.5%. 

It may be concluded that the logistic regression also captures the major difference between potential risky 

trips and potential safe trips by using sufficient summary statistics. This might be explained by the fact that 

the chronological property in individual trips does not play a critical role in trips classification. 
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3.5.2   TWO ALTERNATIVE METHODS 

We consider two alternative methods, both of which need sufficient manually engineered features. 

Alternative 1: Averaged telematics summary statistics. We calculate average of above derived summary 

statistics 𝒔𝑖,𝑗  over all the trips 𝑗 for each driver 𝑖: 

𝒔𝑖 =
1

𝑐𝑖
∑𝒔𝑖,𝑗

𝑐𝑖

𝑗=1

. 

Those averaged telematics summary statistics 𝐬i are then used as the covariates in the Poisson GLM for 
claims frequency. We conduct a step-wise variable selection according to the AIC. The test Poisson 
deviance loss is 1.0379 which is even worse than that of the GLM (1.0306). 

Alternative 2: Risk scoring with a logistic regression. This alternative method follows the same procedure as 

the proposed method, but replaces the 1D CNN by a logistic regression as discussed in Section 3.5.1. This 

alternative method uses manually engineered features 𝒔𝑖,𝑗, whereas our proposed method uses 

automatically engineered features by the neural network. The test Poisson deviance loss is 1.0287 for this 

alternative method, which is close to that of the proposed method (1.0286). Figure 3.13 compares average 

risk scores for test drivers ℐtest from the logistic regression and the 1D CNN. Their correlation is 0.9181. 

3.6   SENSITIVITY ANALYSIS 

Since our portfolio size is small, we conduct a sensitivity analysis to test the robustness of our results. 
Similar to cross-validation, we repeat the above analysis for 5 times and evaluate test Poisson deviance loss 
on 5 mutually exclusive test data for the GLM (3.3), homogeneous model 3.4, proposed method 3.7, and 
two alternative methods, respectively. The results are shown in Table 6. Note that the above analysis 
corresponds to test index 2. 

Table 3.6 

TEST POISSON DEVIANCE LOSS FOR DIFFERENT DATA PARTITIONS 

test index homo. glm proposed alt_1 alt_2 

1 1.1095 1.0981 1.0918 1.1071 1.0952 

2 1.1003 1.0306 1.0286 1.0379 1.0287 

3 1.0949 1.0641 1.0439 1.0190 1.0373 

4 1.0952 1.0721 1.0654 1.0889 1.0617 

5 1.0996 1.0318 1.0268 1.0975 1.0262 

 

We conclude that alternative 2 performs as well as our proposed method, and alternative 1 is the least 

robust. Despite its simple specification and calibration, alternative 2 relies on manually engineered features 

which requires thorough considerations. In contrast, our proposed method learns the representations 

automatically from time series of individual trips. 
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Section 4: Conclusions 

We investigate telematics variables from three independent sensors: GPS, instrumental panel and 
accelerometer. Several visual tools are developed to reveal data issues. In our data, accelerometer has 
calibration bias, which leads to systematic data error. We distinguish between idle phase and moving 
phase, and idle phase should be removed in the analysis. We consider three formats of telematics data: 
time series, summary statistics and heatmaps. Data imputation is not crucial for the last two formats. In call 
cases, we must specify particular speed intervals and truncate acceleration and angle change. A particular 
speed interval makes the comparison among drivers more sensible, and truncation eliminates the leverage 
effects of outliers. 

In claims frequency modeling, we propose a risk scoring 1D CNN for individual trips. The 1D CNN is 

calibrated on binary labeled trips of selected archetypal risky and safe drivers. The classic Poisson GLM for 

claims frequency is considerably improved by incorporate average risk score. Comparison with two 

alternative methods indicates that the chronological property in individual trips does not play a critical role 

in trips classification. As 1D CNN, the logistic regression has also captured important features from 

individual trips related to claims frequency. Nevertheless, with 1D CNN, we do not need to perform a 

thorough manually feature engineering as alternative methods, which is an advantage of the proposed 

method. 

Future research may relax the constraint of fixed length individual trips by employing recurrent neural 

network. Another limit is that we assign the same weight to average risk scores without considering 

number of individual trips. 
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Appendix A: Other formats of telematics data 

We have considered time series of individual trips. Now we consider the other two formats of telematics 

data: summary statistics and heatmap. The data imputation is important for time series, rather than for the 

other two formats. Hence, a simpler data cleaning procedure may be performed to derive summary 

statistics and heatmap. For instance, only data with valid GPS variables are kept in this procedure. 

In all cases, we must specify particular speed intervals and truncate acceleration and angle change. A 

particular speed interval makes the comparison among drivers more sensible, and truncation eliminates 

the leverage effects of outliers. The activation functions in neural networks play a similar role. Note that 

our focus is time series since there are already several existing literatures on the last two formats. 

A.1 Summary statistics of telematics variables 

We extract several summary statistics for each trip, which are categorized into two types: exposure and 

driving style. Two statuses of driving are defined: idle phase and moving phase. In idle phase, the speed, 

acceleration and angle change are simultaneously equal to zero. In moving phase, at least one of three 

variables is not equal to zero. We calculate the following summary statistics for 2296􀀀165 = 2131 cars since 

165 cars do not have telematics information. 

Exposures 

1. Total distance in km (1 variable). 

2. Total driving time of moving phase in second (1 variable). 

3. Total standing time of idle phase in second (1 variable). 

4. The day of trip from Monday to Sunday (1 variable). 

5. Driving distance split into morning peak (7-9), day (9-17), afternoon peak (17-19), evening 

(19-22), and night (22-7) (5 variables). 

6. Driving time of moving phase split into morning peak (7-9), day (9-17), afternoon peak 

(17-19), evening (19-22), and night (22-7) (5 variables). 

In Figure A.1, we plot the distribution of observation period, number of days with trips, driving hours per 

day and average daily driving distance. 

Driving styles 

1. Average/median/standard deviation/extreme values (5% and 95% quantiles) of speed/acceleration/ 

angle change during moving phase (15 variables). 

2. Driving time of moving phase split into in the speed interval 0-10/10-20/20-30/. . . /110-120/>120 (13 

variables). 

3. Driving time of moving phase split into the acceleration intervals (-4)-(-3.5)/(-3.5)-(-2.5)/. . . /2.5-3.5/3.5-

4 (9 variables). 

4. Driving time of moving phase split into the angle change intervals (-45)-(-35)/(-35)-(-25)/. . . /25-35/35-

45 (9 variables). 

A.2 Heatmaps 

Heatmaps reflect the interaction among speed, acceleration, and angle change. For each car, we construct 

three heatmaps: speed-acceleration, speed-angle, and acceleration-angle heatmaps. We use telematics 

data in moving phase to construct heatmaps. 



  47 
 

 

Copyright © 2021 Society of Actuaries Research Institute 

In heatmaps, the speed, acceleration and angle change intervals are divided into speed subintervals at 0, 

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 and 200 km/h, and acceleration sub-intervals at -4, -3.5, -

2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5 and 4 m/s2, and angle change subintervals at -45, -35, -25, -15, -5, 5, 15, 25, 

35, 45 degrees, respectively. 

We typically truncate the speed interval and cap the acceleration and angle change intervals. The 

considered intervals should contain sufficient observations to receive stable heatmaps. Moreover, we need 

to normalize the heatmap either in each sub-interval or in several consecutive subintervals. 
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Figure A.1 

THE DISTRIBUTION OF TELEMATICS EXPOSURE 
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Appendix B: Keras code for 1D CNN 

Listing 4 

KERAS CODE FOR 1D CNN IN LISTING 3 

build_model_cnn2 <- function(q1, q2, q3, L, d) { 
 ### input layer 
 trips <- 
 layer_input(shape = c(L, d), 
 dtype = "float32", 
 name = "trips") 
 ### convolutional neural network 
 trips_score = trips %>% 
 layer_conv_1d( 
 filters = q1, 
 kernel_size = 7, 
 activation = "tanh", 
 name = "cov1" 
 ) %>% 
 layer_average_pooling_1d(pool_size = 5, name = "ave1") %>% 
 layer_conv_1d( 
 filters = q2, 
 kernel_size = 7, 
 activation = "tanh", 
 name = "cov2" 
 ) %>% 
 layer_global_average_pooling_1d(name = "ave2") %>% 
 layer_dropout(rate = 0.5) %>% 
 # layer_dropout(rate = 0.2) %>% 
 layer_dense( 
 units = q3, 
 activation = "tanh", 
 name = "dense1" 
 ) %>% 
 layer_dropout(rate = 0.2) %>% 
 layer_dense( 
 units = 1, 
 activation = "sigmoid", 
 weights = list(array(c(0), dim = c(q3, 1)), array(0, dim = c(1))), 
 # units = 10, 
 # activation = "softmax", 
 # weights = list(array(c(0), dim = c(q3, 10)), array(0, dim = c(10))), 
 name = "dense2" 
 ) 
  
 ### compile model 
 model <- keras_model(inputs = trips, outputs = trips_score) 
 model %>% compile( 
 optimizer = optimizer_adam(), 
 loss = "binary_crossentropy", 
 # loss = "categorical_crossentropy", 
 metrics = c("accuracy") 
 ) 
 model 
}  
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