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Federated Learning for Insurance Companies  
Unlocking the Potential of Privacy-Preserving Data Sharing 
 

Executive Summary  
Data analytics are critically important for businesses, as companies can harness vast amounts of insight from data 
and develop competitive advantages by employing business intelligence solutions. The tremendous growth of data 
also offers unprecedented prospects for cross-industry data collaboration, which can enhance organizational 
efficiency to establish industry-level standards and best practices, including improving risk management, mitigating 
frauds, and fostering innovations and advance technology with business insights that can only be extracted from 
industry-wide data rather than company-specific data.  

However, the proprietary nature of insurance data has prevented insurance companies from exchanging data. The 
inaccessibility of data across the boundaries of insurance firms, or even business units within a corporation, makes it 
challenging to conduct collaborative analysis and identify valuable business insights. The challenge calls for an 
innovative solution – a technology that allows open collaborations while simultaneously safeguarding against the 
risks of leaking proprietary and confidential client information.  

Federated learning (FL) describes a distributed machine-learning framework enabling multiple devices or 
organizations to collaborate on a machine-learning model without having to share their raw data with each other or 
with a central server. One promising application of FL lies in the insurance industry, where each firm harvests a vast 
amount of client and claims data. There has been little to no previous literature on the applications of FL on 
insurance data. This paper aims to fill the gap and to offer researchers and practitioners an introduction, the pros 
and cons of FL, as well as potential use cases. 

This report offers a concise review of technical foundations of various types of FL techniques. Section 1 lays out the 
background for the development of FL in the context of loss modeling. Section 2 gives a review of the fundamental 
philosophy of FL. We complement the discussion with detailed on a particular use case in section 3. A wide range of 
business use cases are presented in section 4. 
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Section 1: Introduction  
Numerous research papers have presented compelling evidence that machine learning (ML) models can bring 
significant enhancements to underwriting, loss modeling, reserving, and fraud detection (c.f. Baudry and Robert, 
2019; Blier-Wong, et al., 2021; Hanafy and Ming, 2021), suggesting that, as a data-driven industry, the insurance 
sector can benefit from the revolution of Artificial Intelligence (AI). Across the body of literature, it can be noted 
that, spanning from data preprocessing to model deployment, traditional ML tasks typically necessitate a centralized 
computing center or server responsible for aggregating all data, aligning all data sources, and overseeing the entire 
ML application life-cycle. Such a centralized data-sharing strategy demands the complete trust of proprietary data 
holders towards the central server. Nevertheless, the insurance industry’s cautious approach towards potential 
information leakage, driven by the sensitivity and privacy concerns associated with the personal data held by each 
insurance company and the inherently risk-averse nature of its business operations, render centralized data 
collection and model training unfeasible in real-world industrial applications. Additionally, the lack of access to data 
across business divisions within a corporation or boundaries of insurance firms poses a significant challenge in 
conducting collaborative analyses and extracting valuable business insights that can only be derived from 
aggregated and aligned data. Hence, seeking an alternative solution that circumvents centralized data storage, while 
effectively mitigating the privacy and information leakage concerns held by insurance firms, can catalyze the state-
of-the-art advancement of ML in the insurance industry. Such an approach holds the potential to empower the 
insurance sector, facilitating more accurate and comprehensive risk analysis. Moreover, it can enhance regulatory 
oversight, enabling better monitoring of the market dynamics, and ultimately fostering a fair pricing environment 
that benefits customers. 

Federated learning offers a privacy-preserving solution for potentially enabling collaborations among different units 
within an insurance company, different insurance companies within the industry, and between insurance companies 
and InsurTech firms. Federated Learning (FL), first proposed by McMahan, et al. (2017), is a distributed approach for 
training an ML model that aims to address limitations and risks of centralized data storage, which is a critical 
prerequisite for standard ML solutions. As a result, FL enables ML innovations where data centers or computing 
servers cannot collect datasets physically. In many other disciplines and industries, researchers and practitioners 
joined forces to utilize FL to achieve goals that were once deemed impossible (see Niknam, et al. (2020), Rieke, et al. 
(2020), and Pati, et al. (2022)). Built on the work of others, this report focuses on the application of FL in loss 
modeling, in particular, with regard to the two most pressing concerns: data volume and data variety. 

1.1 LOSS MODELING 
In most jurisdictions, the insurance industry is tightly regulated, preventing it from disclosing its clients’ private 
information. In addition, insurance companies, as data owners, may not necessarily have the technical capacity or 
budget to develop early-stage proof of concept (POC) projects with AI technologies. Hence, legal constraints and 
technical barriers prevent data owners from further improving their ML models. 

In classic actuarial practice, loss modeling, or the claim cost prediction, is often based on frequency and severity 
analysis. To offer an illustration, we denote the aggregated loss by 𝑍𝑍, the frequency of claims by 𝑈𝑈, and the 
independently and identically distributed severity by 𝑉𝑉𝑢𝑢, (𝑢𝑢 = 1, 2, … ,𝑈𝑈). Then, the expected aggregated loss is 
estimated by:  

E[𝑍𝑍] = E[𝑈𝑈]E[𝑉𝑉𝑢𝑢] 

Alternatively, aggregated loss 𝑍𝑍 can be measured by a compound distribution that considers both the frequency and 
severity, so it can be expressed in the form: 

𝑍𝑍  =  𝑉𝑉1  +  𝑉𝑉2  +  …   +  𝑉𝑉𝑢𝑢  

  



  6 

 

Copyright © 2024 Society of Actuaries Research Institute 

One of the standard mixture models is compound Poisson-Gamma distribution and Tweedie distribution (Jørgensen 
and Paes De Souza, 1994), where the frequency of claims follows Poisson distribution and the severity of each claim 
can be described by Gamma distribution. However, with innovations in AI, powerful ML models can be trained to 
forecast aggregated losses directly, avoiding the two-part structure and inferior prediction. Research work with 
applications of ML techniques in the insurance sector emerged in the past few years. See Guelman (2012), Quan and 
Valdez (2018), Baudry and Robert (2019), Blier-Wong, et al. (2021), Hanafy and Ming (2021), Hu, et al. (2022) and 
Quan, et al. (2022). 

1.2 SHORTAGE OF DATA 
Structured tabular datasets are organized through rows and columns. In the following, we refer to each row as an 
observation which, in the context of insurance applications, corresponds to the information of a policy/policyholder, 
and each of the columns denotes a feature, risk factor, collected by insurance companies to describe the policy and 
identify potential risks. A structured tabular dataset, in the following, denotes 𝒟𝒟 = (𝐗𝐗, 𝐲𝐲) = (𝐗𝐗𝑖𝑖 , 𝐲𝐲𝑖𝑖), 
(𝑖𝑖 = 1, 2, … , n) where 𝐗𝐗 refers to inputs (or features), 𝐲𝐲 refers to labels (or response variables), and each of total n 
observations can be represented by the pair (𝐗𝐗𝑖𝑖 ,  𝐲𝐲𝑖𝑖). Each of the input 𝐗𝐗𝑖𝑖  can be represented as 𝐗𝐗𝑖𝑖 =
�𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑖𝑖� where each of 𝑋𝑋𝑖𝑖𝑖𝑖, (𝑗𝑗 = 1, 2, … , 𝑝𝑝), indicates the cell values of total 𝑝𝑝 features stored in the 
dataset. Thus, the input 𝐗𝐗 is 𝑛𝑛 × 𝑝𝑝 a matrix, where 𝑛𝑛 refers to the number of observations and 𝑝𝑝 denotes the 
number of features used for prediction. 

In the format of such structured tabular datasets, the data quality is significantly impacted by 𝑛𝑛 and p. The 
foundation of insurance businesses is built upon the capability of accurately quantifying risks (potential car damages 
in auto insurance, costs of a lawsuit in liability insurance, mortality in life insurance, etc.) utilizing all information 
available to the insurance company. Two of the most promising improvements that insurance companies can 
benefit from through ML collaboration are the increase in the number of observations 𝑛𝑛, and in the number of 
features 𝑝𝑝. Claim events, usually referred to as “accidents,” inherently imply the infrequency of their occurrences, 
but hold a significant impact on how risky policyholders can be differentiated from safe customers. 

Lack of Data Volume: In the loss experience of the insurance industry, the proportion of policyholders that submit at 
least one claim to insurance companies can be low at 10%, and in a few of the business lines that cover only 
catastrophic crises or extreme events, the rate can be even lower than 0.1%. As a result of such rarity, the risk 
characteristics that help identify the risks can be under-represented by the occurred claim events or are not 
producing noticeable signals to be captured by loss models. Thus, most insurance companies always have a shortage 
of claim events to allow their loss models to better learn from the behaviors of risky policyholders without any 
collaborations. It is particularly true for insurance companies that enter a new market without claim experience. 
Further, one of the common techniques for solving a similar problem of imbalance is sampling, whose primary 
objective is to generate synthetic and statistically similar claim events or eliminate some of the no-claim 
policyholders from the database to reshape the dataset into a balanced one. However, these sampling techniques 
are generally considered an unacceptable approach as they distort the distribution of policyholders’ behaviors, and 
synthetic observations, though perhaps statistically realistic, may not be the true representation of policyholders. 
Due to the limitation of sampling techniques in the insurance industry, a proper ML collaboration solution is in 
demand to solve the issue. 
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In the case of collaboration among total 𝐾𝐾 insurance companies, we assume company 𝑘𝑘 is in possession of dataset 
𝒟𝒟𝑘𝑘 = (𝐗𝐗𝑘𝑘 , 𝐲𝐲𝑘𝑘), (𝑘𝑘 = 1,2, … ,𝐾𝐾), where 𝐗𝐗𝑘𝑘  is in the shape of 𝑛𝑛𝑘𝑘 and 𝑝𝑝 denotes the number of observations and 
features correspondingly. Specifically, due to the homogeneity of collaborators as insurance companies, in this case, 
they share the same sets of features, or at least an overlapping set of features. To solve the problem of adequacy of 
claim events, companies desire, through a privacy-preserving protocol, a technical solution that could simulate the 
state of training utilizing global datasets: 

𝒟𝒟𝐺𝐺 = (𝐗𝐗𝐺𝐺 , 𝐲𝐲𝐺𝐺) = ��

𝐗𝐗1
𝐗𝐗2
⋯
𝐗𝐗𝐾𝐾

�� ,��

𝐲𝐲1
𝐲𝐲2
⋯
𝐲𝐲𝐾𝐾

��, 

where 𝒟𝒟𝐺𝐺, 𝐗𝐗𝐺𝐺 and 𝐲𝐲𝐺𝐺 denote the global dataset, global inputs, and global labels, respectively. The matrix of global 
inputs 𝐗𝐗𝐺𝐺  is concatenated through horizontal partitions. It is in the shape of (∑ 𝑛𝑛𝑘𝑘𝐾𝐾

𝑘𝑘=1 ) × 𝑝𝑝 representing the 
collection of policyholders from all companies. As collaboration in this scenario increases the number of 
observations, we refer to the case as the impact of data volume. Generally, the more companies participating in this 
collaboration, the larger the data volume and, correspondingly, it can provide a better characterization of risks from 
an industry-level perspective. In addition, a diverse and representative dataset helps to avoid biases in ML models. If 
the dataset used for training is biased, the resulting model will also be biased, leading to inaccurate predictions or 
recommendations. In subsection 2.3, in the reflection of FL categorization, this collaboration, due to its horizontal 
partition of the dataset, is denoted as Horizontal Federated Learning (HFL). 

Lack of Data Variety: Another noteworthy potential improvement coming from the collaboration of the insurance 
industry lies in the expansion of feature space. To accurately predict future losses, the data utilized should 
comprehend all risk factors. Traditionally, the frequent usage and ease of accessibility of private information, like 
age, sex, jobs, and past medical records, make those features the “golden standards.” However, the evolution of 
new technologies like the Internet of Things (IoT) (Spender, et al., 2019), smartphones (Händel, et al., 2014), 
telematics (Handel, et al., 2014), and social media (Mosley Jr, 2012) has challenged the common belief of these 
standards. The true risk factors (at least for new generations of policyholders) may lie in those additional features 
that traditional insurance companies are not contemplating in the modeling process. Further, the cross-industry 
collaboration between insurance and related fields like banking and healthcare can be beneficial as the cross-section 
of policyholders among these industries creates the opportunity to characterize policyholders better. Taking the 
example of collaboration among insurance companies, Insurtech companies, and healthcare systems to assess the 
risk of policyholders for health insurance policies, insurance companies, instead of utilizing only summarized medical 
history during underwriting procedures, can get precise characterizations authorized by licensed physicians from 
healthcare systems and Internet-enhancing personal information through smartphones and social media from 
Insurtech companies so that potential healthcare-related events can be better characterized and evaluated.  

In the setting of total 𝐾𝐾 companies where the scope of the collaboration is to improve the capability of insurance 
loss modeling, we assume company 1 is the insurance company that is in possession of dataset 𝒟𝒟1 = (𝐗𝐗1, 𝐲𝐲1) where 
labels of claim events are stored, while other companies 𝑘𝑘,(𝑘𝑘 = 2,3, … ,𝐾𝐾), hold solely those additional, new-
technology-empowered features in the format of dataset 𝒟𝒟𝑘𝑘 = (𝑋𝑋𝑘𝑘) without labels. Suppose we denote the shape 
of inputs company 𝑘𝑘 holds is 𝑛𝑛 × 𝑝𝑝𝑘𝑘, (𝑘𝑘 = 1,2, … ,𝐾𝐾), given the same notation of global dataset, global inputs and 
global labels, they can be expressed as 𝒟𝒟𝐺𝐺 = (𝐗𝐗𝐺𝐺 , 𝐲𝐲1), where 𝐗𝐗𝐺𝐺 = [𝐗𝐗1,𝐗𝐗2, … ,𝐗𝐗𝐾𝐾]. The matrix of global inputs 𝐗𝐗𝑘𝑘  
is concatenated through vertical partitions and is in the shape of (∑ 𝑛𝑛𝑘𝑘𝐾𝐾

𝑘𝑘=1 ) × 𝑝𝑝, implying the expansion of feature 
space for the same group of policyholders. 

In the sense of risk assessment, the more features collaborators utilize, the better the characterization of potential 
risks the data can hold, which results in improved loss modeling in the insurance industry. The application of 
increased data variety, as introduced in subsection 2.4, is usually classified as Vertical Federated Learning (VFL).  
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1.3 PRIVACY CONCERNS 
Despite the fact that the insurance industry has long been concerned with both the shortage of volume and variety 
of data, there currently exists no practical solution that can effectively eliminate privacy concerns. Academic 
researchers and industrial practitioners have concentrated on enhancing the performance of ML models while 
overlooking the challenges posed by certain industries, such as banking, insurance, and healthcare, that prioritize 
the privacy of customer data over performance advancements and are bound by regulations forbidding the 
unsecured sharing of confidential data, thus hindering the implementation of centralized data collection-demanded 
ML collaborations. Insurance companies, which are central to the practice of risk forecasting and management, 
adopt a cautious and conservative approach in embracing ML collaboration due to the protection of customer 
privacy and the safeguarding of embedded confidential business strategies. Thus, techniques enabling privacy-
preserving ML collaborations that can imitate the advantages of ML collaborations, while ensuring data 
confidentiality, can benefit the insurance industry, offering a resolution to the persistent shortage of data volume 
and variety. 

In this work, to connect the insurance “data silos” (Li, et al., 2020), we utilize the technique of FL as the bridge to 
communicate among insurance companies and allow the realization of privacy-preserving ML collaboration. 
Insurance companies can then take advantage of ML collaboration while maintaining data privacy. To address the 
two promising developments above specifically, we propose the framework of utilizing HFL to evaluate the impact 
of data volume through collaboration among insurance companies, and VFL to assess the effect of data variety in 
the scenario of collaboration among related industries. With the proposed solutions that address the privacy 
concern, insurance companies participating in the federation of model training can benefit from the innovations of 
Big Data and efficiency enhancement for their business. 

Figure 1  
OVERVIEW OF FEDERATED LEARNING COLLABORATIONS 
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1.4 SOLUTION 
FL could potentially be the next breakthrough in the insurance industry, solving data challenges with unprecedented 
effectiveness and efficiency by sharing knowledge and expertise while enhancing privacy. For instance, through the 
partnerships between insurance companies and with InsurTech companies, each private “data owner” trains a 
model locally using only their own data, then parameters are shared with the central “aggregation server” to create 
a consensus model with accumulated knowledge from all “data owners” to create a more complete picture of risk 
assessment of policyholders and industry-level insights. As illustrated in figure 1, such multi-institutional 
collaboration, without sharing data among the collaborators, is of great value to insurance companies, industrial 
associations, governments, and regulators. 
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Section 2: Federated Learning 
Empirical experiments in this study employ the technique of HFL and VFL utilizing Neural Networks (NNs) as the 
chosen model architecture. The decision to opt for NNs as the model architecture is underpinned by two pivotal 
factors: their promising model performance and their inherent compatibility with the FL framework, rendering them 
a pragmatic choice for our experiments. NNs, widely recognized as one of the most prominent frameworks in ML in 
the past decade, have found extensive application across a spectrum of contemporary data-driven ML tasks, such as 
Computer Vision and Natural Language Processing, consistently delivering a state-of-the-art performance. Further, 
the adaptability of NNs to the FL framework is notably advantageous. The recursive backward propagation 
technique, the foundation of NNs parameter updates, can be conveniently adjusted to seamlessly integrate with the 
FL framework. In contrast, the incorporation of ML architectures, such as Decision Trees and Support Vector 
Machines, into the FL framework necessitates substantial research and modification. See Kesteren, et al. (2019), 
Truex, et al. (2019), Tian, et al. (2020), and Cellamare, et al. (2022). 

Figure 2  
NEURAL NETWORK 

 

2.1 NEURAL NETWORK 
NNs, as summarized by Müller, et al. (1995), consist of an ML model architecture inspired by the structure and 
functionality of neural cells in the human central nervous system. The NNs, demonstrated in various ML tasks, can 
approximate the true function 𝑓𝑓 with the model 𝑓𝑓∗, with connected artificial neurons, as illustrated in figure 2. The 
complexity of any function 𝑓𝑓 can be captured by stacking linear layers and non-linear activation functions. 

The following notations are adopted from Goodfellow, et al. (2016). For a prediction task on dataset 𝒟𝒟 = (𝐗𝐗, 𝐲𝐲), 
where 𝐗𝐗, 𝐲𝐲 denotes inputs and labels, respectively, the NNs are designed to approximate true mapping function 
𝑓𝑓:𝐗𝐗 → 𝐲𝐲  with 𝑓𝑓∗ through recursive forward and backward propagation procedures to update the model 
parameters based on batches of data samples. For a 𝑄𝑄-layer NN, each of the layers can be written 
as 𝑓𝑓(𝑞𝑞),(𝑞𝑞 = 1,2, … ,𝑄𝑄). The layers, with the increase in 𝑞𝑞 from input layers to output layers, denote shallow layers 
to deep layers. In the mth iteration, forward and backward propagation of this NN, given a pair of input-label batch 
samples (𝐱𝐱𝑚𝑚, 𝐲𝐲𝑚𝑚) and loss functions 𝐿𝐿(𝐲𝐲�𝑚𝑚 , 𝐲𝐲𝑚𝑚) of batch predictions 𝐲𝐲�𝑚𝑚 and true labels 𝐲𝐲𝑚𝑚 as the optimization 
target, can be represented as: 

Forward propagation: The forward propagation phase brings the batch input 𝐱𝐱𝑚𝑚 from shallow layers to 
deeper layers to calculate the regularized prediction loss 𝑆𝑆 of the current batch sample. 
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The batch predictions 𝐲𝐲�𝑚𝑚, given the 𝑄𝑄-layer network, can be expressed as the function composition from 
shallow layers to deep layers in the form of: 

𝐲𝐲�𝑚𝑚 = 𝑓𝑓(𝑄𝑄) �𝑓𝑓(𝑄𝑄−1)�⋯𝑓𝑓(1)(𝐗𝐗𝑚𝑚)⋯�� 

= 𝑓𝑓(𝑄𝑄) ∘ 𝑓𝑓(𝑄𝑄−1) ∘ ⋯ ∘ 𝑓𝑓(1)(𝐗𝐗𝑚𝑚) 

The loss 𝑆𝑆 can then be calculated as: 

𝑆𝑆 = 𝐿𝐿(𝐲𝐲�𝑚𝑚, 𝐲𝐲𝑚𝑚) + 𝜆𝜆𝜆𝜆(𝜃𝜃) 

where 𝜃𝜃 denotes the overall model parameters, 𝜆𝜆(𝜃𝜃) is the regularization of model parameters 𝜃𝜃, and 
hyperparameter 𝜆𝜆 controls to what extent the model is penalized by the regularization term. 

Backward propagation: The backward propagation, occurring recursively after each iteration of forward 
propagation, denotes the procedure of model parameter optimization. The most common learning 
techniques of backward propagation in the domain of NN belong to the categorization of gradient-based 
optimization with the application of the chain rule. Instead of moving from shallow to deep layers as stated 
in the forward propagation phase, the backward propagation takes the inverse direction from the output 
layer to the input layer. 

By the theory of gradient-based optimization, at time step 𝑡𝑡, the parameters 𝜃𝜃𝑡𝑡
(𝑞𝑞) at layer 𝑞𝑞, 

(𝑞𝑞 = 𝑄𝑄,𝑄𝑄 − 1, … , 1), can be updated as:  

𝜃𝜃𝑡𝑡+1
(𝑞𝑞) = 𝜃𝜃𝑡𝑡

(𝑞𝑞) − 𝛾𝛾∇
𝜃𝜃𝑡𝑡

(𝑞𝑞)𝑆𝑆 

where 𝛾𝛾 denotes the hyperparameter of the learning rate. 

The gradient of 𝜃𝜃𝑡𝑡
(𝑞𝑞) by loss function 𝐿𝐿(𝐲𝐲�𝑚𝑚, 𝐲𝐲𝑚𝑚) can be computed using the chain rule and expressed as: 

∇
𝜃𝜃𝑡𝑡

(𝑞𝑞)𝐿𝐿 = 𝐿𝐿′ × 𝑓𝑓(𝑄𝑄)′ × 𝑓𝑓(𝑄𝑄−1)′ × ⋯× 𝑓𝑓(𝑞𝑞)′  

where 𝐿𝐿′and 𝑓𝑓(𝑞𝑞)′are the derivatives of loss function and layer 𝑞𝑞, respectively. The inputs of the functions 
are omitted for simplified representation, but all components are obtained after each forward propagation. 
The gradients of the regularization part are specified by the form of regularization, but straightforward 
given the inputs of the regularization 𝜆𝜆 are the parameters. 

With the iterative application of forward and backward propagation iterating through all batch samples, the model 
can “learn” from the optimization process and can reach the certain optimal point of expected performance. 

2.2 FEDERATED LEARNING 
The optimization diagram of general FL architecture, as summarized in Yang, et al. (2019), can be decomposed into 
two different stages: local updates and centralized aggregation, which are performed by the participants of the 
collaborators and central server, respectively. Following the notation from McMahan, et al. (2017), at the beginning 
of training round 𝑡𝑡, the central server sends the up-to-date model parameters 𝜃𝜃𝑡𝑡 (or the initialization of the model 
parameters at the first round, 𝑡𝑡 = 1 ) to each of the collaborators. The collaborator 𝑘𝑘 (𝑘𝑘 = 1,2, … ,𝐾𝐾), after 
receiving the model parameters 𝜃𝜃𝑡𝑡, updates the local model parameters utilizing locally stored private data to 𝜃𝜃𝑡𝑡+1𝑘𝑘  
and then sends it to the central server. After receiving locally updated model parameters from all participating 
collaborators, the central server then performs certain aggregation techniques to generate the global model update 
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𝜃𝜃𝑡𝑡+1. The procedure is applied recursively to find the optimal solution. Therefore, due to the distribution of only 
model parameters during the entirety of the training process, the role of the central server within the context of FL 
starkly contrasts with that of a traditional central server. This divergence effectively mitigates privacy concerns 
related to raw data, as sensitive information remains safeguarded within the confines of local collaborators. 

The common categorization of FL solutions, as suggested by Yang, et al. (2019), lies in the differences in data 
partition and distribution through feature and observation space. In the following work, we will focus only on the 
cases where at least a certain overlap over feature/sample space exists, which corresponds to HFL and VFL, 
respectively. 

Figure 3  
HORIZONTAL DATA PARTITION 

 

As depicted in figure 3, the concept of HFL addresses the challenge of heterogeneity within the observation space, 
under the condition of homogeneity within the feature space, indicating a commonality in the feature space shared 
between data collaborators A and B. Specifically, HFL leverages only the horizontal intersection for the training 
process. When applied to structured tabular datasets, the existence of overlapping feature space signifies the 
presence of shared features among the collaborators. This approach facilitates collaboration among participants 
who possess datasets in the same data format. 

Conversely, VFL, as exemplified in figure 4, is designed for scenarios where there is homogeneity in observations, 
but heterogeneity in features. This is characterized by a vertical partition where partial observations are shared 
among data collaborators. Notably, in contrast to HFL, where all collaborators possess labels, VFL typically involves a 
configuration where only one collaborator holds the labels of interest, while the remaining collaborators exclusively 
contribute unique features from their respective domains. In practical applications, VFL caters to the need for 
interdisciplinary collaborations spanning multiple industries. 
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2.3 HORIZONTAL FEDERATED LEARNING 
To investigate the influence of data volume in collaborative learning, we employ the FedAvg technique proposed by 
McMahan, et al. (2017) within the context of horizontal partitioning.  

The algorithm, FedAvg, modifies the traditional gradient-based model update technique by averaging the model 
parameters during each communication round. Following the notation from McMahan, et al. (2017), in the setting 
of 𝐾𝐾 collaborators, the local model parameter update at time 𝑡𝑡, denoted in subsection 2.1, can be expressed as: 

𝜃𝜃𝑘𝑘,𝑡𝑡+1
(𝑞𝑞) = 𝜃𝜃𝑘𝑘,𝑡𝑡

(𝑞𝑞) − 𝛾𝛾∇
𝜃𝜃𝑘𝑘,𝑡𝑡

(𝑞𝑞)S 

Figure 4  
VERTICAL DATA PARTITION 

 

where the additional subscript 𝑘𝑘 differentiates the collaborators (𝑘𝑘 = 1,2, … ,𝐾𝐾). The central server, once all local 
model parameters are received, performs central average in the form of: 

𝜃𝜃𝑡𝑡+1
(𝑞𝑞) = �

𝑛𝑛𝑘𝑘
𝑛𝑛
𝜃𝜃𝑘𝑘,𝑡𝑡+1

(𝑞𝑞)
𝐾𝐾

𝑘𝑘=1

 

where 𝑛𝑛𝑘𝑘 and 𝑛𝑛 refer to the number of observations from collaborator 𝑘𝑘 and in total, respectively. 

Thus, the equilibrium 𝑛𝑛 = ∑ 𝑛𝑛𝑘𝑘𝐾𝐾
𝑘𝑘=1  always holds. 

This indicates that the FedAvg algorithm can be conveniently represented as the weighted average of local model 
parameters during model aggregation. It should be noted that the model structures in the HFL setting are shared 

among all collaborators, suggesting all parameters 𝜃𝜃𝑘𝑘,𝑡𝑡
(𝑞𝑞) have identical shapes across all collaborators, which makes 

the averaging possible. The updated central model parameters are then sent to each collaborator for future local 
updates. 

2.4 VERTICAL FEDERATED LEARNING 
To empirically comprehend the influence of data variety, we employ the Split Neural Network (SplitNN) framework, 
a versatile privacy-preserving NN architecture proposed by Ceballos, et al. (2020), as the solution to vertical 
partition challenges. 

In contrast to the HFL setting, where all collaborators share identical data formats and model structures, the VFL 
framework involves collaborators possessing different sets of features. This diversity limits the feasibility of training 
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the exact same model and entirely eliminates the need for data sharing. As depicted in figure 5, which illustrates a 
VFL collaboration between two feature collaborators with distinct feature sets and one label collaborator holding 
only the labels, the SplitNN achieves secure synchronization by dividing the forward structure. Model updates are 
accomplished through the exchange of the global gradient map. Summarized by Romanini, et al. (2021), SplitNN 
partitions the entire network into segments, making communication among collaborators dependent on 
intermediate representations of inputs or hidden states rather than raw data. The following notations were adopted 
from Ceballos, et al. (2020). In the case of 𝐾𝐾 feature collaborators and one label collaborator, instead of sharing 
private raw data 𝒟𝒟𝑘𝑘 = (𝐗𝐗𝑘𝑘) from feature collaborator 𝑘𝑘, (𝑘𝑘 = 1,2, … ,𝐾𝐾) to the label collaborator following the 
diagram of centralized learning, each feature collaborator k at time t trains the corresponding segment of the 
SplitNN (sections like the blue and red dash-line rectangles illustrated in figure 5) denoting 𝑓𝑓𝑘𝑘,𝑡𝑡

∗  and shares only the 
intermediate output: 

𝐡𝐡𝑘𝑘,𝑡𝑡
(𝑄𝑄𝑘𝑘) = 𝑓𝑓𝑘𝑘,𝑡𝑡

∗ �𝐱𝐱𝑘𝑘,𝑚𝑚� 

Figure 5  
SPLIT NEURAL NETWORK 

where 𝑄𝑄𝑘𝑘  is the number of layers of network 𝑓𝑓𝑘𝑘,𝑡𝑡
∗ , 𝐱𝐱𝑘𝑘,𝑚𝑚 denoting batch input sampled from 𝒟𝒟𝑘𝑘. It's worth noting that 

these intermediate outputs 𝐡𝐡𝑘𝑘,𝑡𝑡
(𝑄𝑄𝑘𝑘) are attached to a gradient map and then sent to the label collaborator. After 

receiving all intermediate outputs 𝐡𝐡𝑘𝑘,𝑡𝑡
(𝑄𝑄𝑘𝑘) from all feature collaborators, the label collaborator first performs a certain 

aggregation procedure: 

𝐡𝐡𝐾𝐾+1,𝑡𝑡
(0) = 𝑂𝑂 �𝐡𝐡1,𝑡𝑡

(𝑄𝑄1),𝐡𝐡2,𝑡𝑡
(𝑄𝑄2), … ,𝐡𝐡𝑘𝑘,𝑡𝑡

(𝑄𝑄𝐾𝐾)� 

where 𝑂𝑂 denotes a pre-defined aggregation operation like concatenation and summation. The aggregated result 

𝐡𝐡𝐾𝐾+1,𝑡𝑡
(0)  is then fed to the segment 𝑓𝑓𝐾𝐾+1,𝑡𝑡

∗  belonging to the label collaborator 𝐾𝐾 + 1 (similar to the orange dash-line 
rectangles in figure 5) to serve as the initial hidden state of 𝑓𝑓𝐾𝐾+1,𝑡𝑡

∗ , whose forward propagation can be expressed as: 

𝐲𝐲�𝑚𝑚 = 𝑓𝑓𝐾𝐾+1,𝑡𝑡
∗ �𝐡𝐡𝐾𝐾+1,𝑡𝑡

(0) � 

so that the loss can be calculated for optimization.  
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The model update procedure, backward propagation, benefits from the diagram of gradient-based optimization 
techniques, where convenient, with the transmission of a gradient map from label collaborators back to each of the 
feature collaborators, all locally-hosted segments of SplitNN can then be updated for all feature collaborators. The 
optimization of label collaborators is straightforward given the backward propagation denoted in subsection 2.1. For 
feature collaborators, it can be noted that the gradients at the last layer 𝑄𝑄𝑘𝑘  of feature collaborator 𝑘𝑘, 
(𝑘𝑘 = 1,2, … ,𝐾𝐾), ∇

𝐡𝐡𝑘𝑘,𝑡𝑡
�𝑄𝑄𝑘𝑘�S can be inferred from the gradients at the initial hidden states of label collaborator ∇𝐡𝐡𝐾𝐾+1,𝑡𝑡

(0) 𝑆𝑆, 

given the definition of aggregation operation 𝑂𝑂. For example, for the aggregation of summation, given the unified 
shape of the matrix, it can be expressed as: 

∇
𝐡𝐡𝑘𝑘,𝑡𝑡
�𝑄𝑄𝑘𝑘�𝑆𝑆 = ∇𝐡𝐡𝐾𝐾+1,𝑡𝑡

(0) 𝑆𝑆 

For each feature collaborator 𝑘𝑘, once the gradients ∇
𝐡𝐡𝑘𝑘,𝑡𝑡
�𝑄𝑄𝑘𝑘�𝑆𝑆 have been received, the backward propagation 

becomes well-defined, and can be derived by the chain rule from ∇
𝐡𝐡𝑘𝑘,𝑡𝑡
�𝑄𝑄𝑘𝑘�𝑆𝑆. 

Inferred from the structure of SplitNN embedded in VFL, since raw data never leaves the local data centers, privacy 
is preserved. In some of the real-life applications, the label collaborator, instead of holding only the labels, can also 
participate as a feature collaborator to fully utilize the data collected. 
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Section 3: Case Study with Loss Model 

3.1 DATA 
In the collaboration, we have data from three industrial partners, including two insurance companies and one 
InsurTech company. With their data, two types of FL could be illustrated: 

• the two insurance companies can be used to illustrate the power of HFL 
• each insurance company and the InsurTech firm can be used to illustrate the power of VFL 

The InsurTech company, Carpe Data1, provides business-related information, such as social media data and foot 
traffic data. Insurance companies share the loss experiences and rating factors for actuarial loss modeling. Both 
parties come together to make a merged dataset, including commercial insurance historical loss experience and 
InsurTech features describing the business. More specifically, Carpe Data provided us with business-related 
information from multiple data sources. The raw data files were provided in nested JSON with hierarchical 
structures. We have flattened the raw data and grouped the extracted information into five categories: Business 
Information, Risk Characteristics, Customer Reviews, Website Contents, and Carpe Index. 

Insurance companies have shared their loss data in commercial lines with their rating factors. Specifically, Company 
A shared their loss data in the Business Owner’s Policy (BOP) insurance. A BOP bundles general liability insurance 
with commercial property insurance. Likewise, Company B shared its loss data in General Liability (GL) insurance. GL 
insurance, also called business liability insurance, is an insurance product designed to protect the business from 
various claims, including bodily injury, property damage, personal injury, and others that can arise from business 
operations. In addition to coverage for claims resulting from business operations, it also covers commercial buildings 
and business personal property from claims caused by fire, theft, or other covered disasters. 

3.2 EXPERIMENT DESIGN 
In the empirical study, although there are various insurance scenarios that can potentially benefit from the 
application of the FL framework, we specifically focus on the impact of privacy-preserving collaborative learning on 
insurance loss modeling in both data volume and data variety aspects. As introduced in subsection 1.1, loss 
modeling is a critical topic in all insurance business lines since it estimates the future losses that will incur and be 
reported by policyholders and serves as a lower bound of the product price to guarantee the company’s reserving 
solvency and capability of profit. As such, it has become a popular topic among insurance academic research and 
industrial operation, ranging from traditional statistical distribution estimations summarized by Klugman, et al. 
(2012), to the applications of ML innovations suggested by Guelman (2012). 

In our work, we will employ the Feedforward Neural Network (FNN) structure introduced by Svozil, et al. (1997) as 
our learning model architecture. FNN, as one of the initial NNs structures, comprises a series of fully-connected 
linear layers and non-linear activation functions. In addition, the experiments are conducted within the framework 
of OpenFL2 developed by Foley, et al. (2022), which is a popular open-source FL framework combining common FL 
algorithms with secure channeling solutions. 

To simulate the environment of FL, we utilize the two real-world industrial claim datasets of liability insurance 
policies. Dataset  𝒟𝒟𝐴𝐴 = (𝐗𝐗𝐴𝐴 , 𝐲𝐲𝐴𝐴) from company A comprises Insurtech-enhanced claim information of liability 
coverage in bundles of BOP, and dataset 𝒟𝒟𝐵𝐵 = (𝐗𝐗𝐵𝐵 , 𝐲𝐲𝐵𝐵) from company B is a constructed tabular dataset coming 
from the GL business line (𝒟𝒟𝐴𝐴 consists of a total of 392,726 observations with 581 features each. 210,857 
observations and 594 variables in feature space are stored in dataset 𝒟𝒟𝐵𝐵. 555 features are shared across 𝒟𝒟𝐴𝐴 and 

 
1 https://carpe.io/. 
2 Full reference of OpenFL. Retrieved from: https://github.com/intel/openfl. 
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𝒟𝒟𝐵𝐵.) To further distinguish the shared features from unique features company A/B holds, we denote the split as 
𝐗𝐗𝐴𝐴 = �𝐗𝐗𝐴𝐴,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑿𝑿𝐴𝐴,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎� and 𝐗𝐗𝐵𝐵 = �𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐗𝐗𝐵𝐵,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎�, where 𝐗𝐗 .,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  refers to the shared features between 
company A/B and 𝐗𝐗 .,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎 represents the unique features that differentiates from company A/B. In the following, 
we refer to the simulated collaborator in possession of 𝒟𝒟𝐴𝐴 as collaborator A and the other with 𝒟𝒟𝐵𝐵  as collaborator B. 

3.3 IMPACT OF DATA VOLUME 
As introduced in subsection 1.2, some of the insurance business lines suffer from a shortage of claim events by the 
limited occurrence, which prevents companies from comprehensively studying the behaviors of risk characteristics. 
However, such a shortage of claim events, through a collaboration among insurance companies sharing the same 
concerns and selling similar insurance products, can be solved by the technique of HFL. In the setting of HFL, the 
intersection selected by those shared features is utilized to analyze the impact of data volume on insurance loss 
prediction which, when reflecting on our empirical experiments, resembles the collaboration among insurance 
companies in possession of the same features to increase the data volume. 

Specifically, we utilize the shared features 𝐗𝐗𝐴𝐴,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  from 𝒟𝒟𝐴𝐴 and 𝒟𝒟𝐵𝐵 to form a two-collaborator 
federation where collaborator A (company A) holds private dataset  𝒟𝒟𝐴𝐴,𝐻𝐻𝐻𝐻𝐻𝐻 = �𝐗𝐗𝐴𝐴,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐲𝐲𝐴𝐴� and collaborator B 
(company B) holds 𝒟𝒟𝐵𝐵,𝐻𝐻𝐻𝐻𝐻𝐻 = �𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐲𝐲𝐵𝐵�, respectively. There also exists a central server in this federation, which 
instead of collecting 𝒟𝒟𝐴𝐴,𝐻𝐻𝐻𝐻𝐻𝐻  and 𝒟𝒟𝐵𝐵,𝐻𝐻𝐻𝐻𝐻𝐻  from collaborator A/B, functions solely as the communication center among 
collaborators to collect local model parameters from all collaborators and aggregate the parameters. In the entire 
process of collaborative training, the private datasets  𝒟𝒟𝐴𝐴,𝐻𝐻𝐻𝐻𝐻𝐻   and 𝒟𝒟𝐵𝐵,𝐻𝐻𝐻𝐻𝐻𝐻  are never shared with the other 
collaborator or the central server, a result of which the data privacy of company A/B is secured. 

The common practice of loss modeling, by the convention of local training, utilizes only the information of local 
datasets which, corresponding to our experiment settings, refers to  𝒟𝒟𝐴𝐴,𝐻𝐻𝐻𝐻𝐻𝐻  for company A and 𝒟𝒟𝐵𝐵,𝐻𝐻𝐻𝐻𝐻𝐻  for company 
B. Without collaborative learning, loss modeling of Company A/B can be considered as a supervised regression task 
so that the model can learn from the historical claim events, identify the risk characteristics and predict future 
liabilities from occurrences of claims. To compare with the framework of FL, we utilize the architecture of FNN for 
local training. As for the case of collaboration employing HFL, we adopt the structure of two-collaborator FedAvg 
algorithm, where the federation comprises only two insurance collaborators and the features leveraged by 
collaborators are identical, 𝐗𝐗𝐴𝐴,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . The cooperated training procedure consists of iterative local 
training and aggregation communications. The local training in HFL, for each of the collaborators, is equivalent to 
the local training without the FL framework, while the rounds of communication distinguish the FL from local 
training through model aggregations. During the local training, both collaborators, in our experiment settings, 
optimize the aggregated model at time step 𝑡𝑡, represented by 𝐹𝐹𝑡𝑡, into 𝐹𝐹𝑡𝑡+11  and 𝐹𝐹𝑡𝑡+12 , respectively, which are then 
averaged during aggregation to generate global model at time step 𝑡𝑡 + 1 through: 

𝐹𝐹𝑡𝑡+1 =
𝐹𝐹𝑡𝑡+11 + 𝐹𝐹𝑡𝑡+12

2
 

In the structure of our HFL experiments, both collaborators exploit the same structure of NN so that both the 
aggregation strategy and the model interpretations are straightforward. The model, upon completion of training, 
possesses a unified architecture structure and a common global state of parameters, suggesting that, ultimately, all 
collaborators share an identical model. 

3.4 IMPACT OF DATA VARIETY 
As discussed in subsection 1.2, due to the complexity and rarity of claim events, finding the features that completely 
characterize a risk is a difficult challenge to the insurance industry and companies are exploring all feasible options 
that can expand the feature space their loss models can train on. As one of the solutions, VFL allows the 
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collaboration of overlapping observations which, in our empirical experiments, corresponds to the privacy-
preserving collaboration between insurance companies and Insurtech companies. Summarized by Stoeckli, et al. 
(2018), Insurtech companies, by extracting information through various data mining, Natural Language Processing 
and specialized feature engineering techniques, can provide alternative technology-innovated features that 
insurance companies can benefit from. With the technique of VFL, the concern of potential leakage of private 
policyholder information or secret business strategy contained in datasets, which once prevented the collaboration 
between insurance and Insurtech companies, can now be alleviated. 

With the datasets described above, both company A and company B can form a two-collaborator VFL federation. 
For company A, we construct collaborator A1 and collaborator A2, which are in possession of 𝒟𝒟𝐴𝐴1,𝑉𝑉𝐻𝐻𝑉𝑉 =
�𝐗𝐗𝐴𝐴,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎� and 𝒟𝒟𝐴𝐴2,𝑉𝑉𝐻𝐻𝑉𝑉 = �𝐗𝐗𝐴𝐴,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐲𝐲𝐴𝐴�, respectively. Similarly, we define 𝒟𝒟𝐵𝐵1,𝑉𝑉𝐻𝐻𝑉𝑉 = �𝐗𝐗𝐵𝐵,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎� for collaborator 
B1 and 𝒟𝒟𝐵𝐵2,𝑉𝑉𝐻𝐻𝑉𝑉 = �𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐲𝐲𝐵𝐵�. Then, collaborator B2 can utilize the additional features from collaborator A1 to 
enhance its loss model, while extra information embedded in 𝒟𝒟𝐵𝐵1,𝑉𝑉𝐻𝐻𝑉𝑉 can strengthen the performance of loss model 
collaborator B2 once it’s trained. By utilizing VFL, privacy-preserving cross-industry collaborations become possible. 
In the following, we will focus on the expansion of feature space for the two-collaborator case, collaborator B1, 
𝒟𝒟𝐵𝐵1,𝑉𝑉𝐻𝐻𝑉𝑉, and collaborator B2, 𝒟𝒟𝐵𝐵2,𝑉𝑉𝐻𝐻𝑉𝑉. 

One of the evident structural differences that distinguishes the application of VFL from the previously discussed HFL 
in subsection 3.3 is that data from collaborators, 𝐗𝐗𝐵𝐵,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎 and 𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , lack commonality in features, which 
prevents the possibility of shared model structures/parameters among collaborators. Instead, SplitNN, is 
implemented to attain the purpose of privacy preservation. In our experiment setting, collaborator B1 participates 
as a feature worker, while collaborator B2 engages as a feature-label worker. Insurance company B, represented by 
collaborator B2 in this experiment, retains both features 𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and labels 𝐲𝐲𝐵𝐵  while collaborator B1, by the 
limitation of no-labels, can only provide features 𝐗𝐗𝐵𝐵,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎. The training progress in the experiment exists as 
sequential information forwarding, as opposed to completely parallel-distributed HFL training. The collaborator B1 
and collaborator B2 first fed data, 𝐗𝐗𝐵𝐵,𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎 and 𝐗𝐗𝐵𝐵,𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , to locally-hosted models, 𝐹𝐹1 and 𝐹𝐹2, respectively, to 
generate the intermediate results, 𝑆𝑆1 = 𝐹𝐹1�𝐗𝐗𝐵𝐵, 𝑢𝑢𝑢𝑢𝑖𝑖𝑞𝑞𝑢𝑢𝑎𝑎� and 𝑆𝑆2 = 𝐹𝐹2�𝐗𝐗𝐵𝐵, 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�. The intermediate hidden states, 𝑆𝑆1 
and 𝑆𝑆2 , facilitate the encoding of the information presented in the raw data into high-dimensional vectors, thus 
ensuring the preservation of the privacy of the raw data. The concatenated intermediate hidden states are then 
transmitted to the label worker, collaborator B2 in our experiment, who utilizes them to predict the claims through 
the final segment of SplitNN. Upon calculation of the loss at the label worker, backward propagation occurs in the 
inverse direction, returning the gradients to both feature collaborators for the global model update. As a result, in 
contrast to HFL where all collaborators share the final model, the complete model structures in the context of VFL 
experiments are not accessible to each of the individual feature workers or label workers. Instead, individual feature 
workers and label workers are unique and only possess partial segments of the model. 

3.5 EMPIRICAL RESULTS 
In accordance with the experimental design outlined in subsections 3.3 and 3.4, this subsection presents an analysis 
of the impact of privacy-preserving ML collaboration on data volume and data variety. The results from experiments 
indicate that, while addressing data privacy concerns, the FL framework can potentially improve the accuracy of loss 
event prediction for insurance companies. The performance of the ML model, in our experiments, is evaluated by 
metrics of Percentage Error (PE). This metric embeds meaningful business intuition that measures the portfolio level 
accuracy. 
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The Percentage Error (PE) can be expressed as 

PE(𝐲𝐲, 𝐲𝐲�) =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑖𝑖

∑ 𝑦𝑦𝑖𝑖𝑖𝑖
 

where 𝐲𝐲 denotes the true values and 𝐲𝐲� refers to the predicted values. Given the definition, 𝑃𝑃𝑃𝑃(𝐲𝐲, 𝐲𝐲�) has a range of 
ℝ and the smaller the value of |𝑃𝑃𝑃𝑃(𝐲𝐲, 𝐲𝐲�)|, the more accurate the predictions. It's important that PE offers insights 
into forecasts at the portfolio level, indicating the capability of sustainability and solvency of insurance companies’ 
estimated loss reserves and is a crucial indicator in industrial practices. 

Table 1  
PERFORMANCE OF HFL 

Collaborator Split Mode PE 

Company A 
Train 

Local -0.16 
HFL -0.07 

Test 
Local -0.18 
HFL -0.09 

Company B 
Train 

Local 0.22 
HFL 0.13 

Test 
Local 0.23 
HFL 0.16 

 

Table 1 provides the evaluations of experiments in HFL collaboration. It can be noted that, in the split of the train set 
of company A, by introducing horizontal collaboration through HFL, the PE is improved from -0.16 to -0.07 while, in 
the test set, it is improved from -0.18 to -0.09. For company B, by collaborating with company A, it can be observed 
that PE is improved as well in both the train set and test set, from 0.22 to 0.13, and from 0.23 to 0.16, respectively. 
Thus, company A and company B can both enhance their loss models through an increase in the data volume by 
privacy-preserving HFL collaborations, compared to the locally-trained models by company A or company B 
individually. 

Table 2 
PERFORMANCE OF VFL 

Collaborator Split Mode PE 

Company A 
Train 

Local -0.16 
VFL 0.07 

Test 
Local -0.18 
VFL 0.04 

Company B 
Train 

Local 0.22 
VFL 0.12 

Test 
Local 0.23 
VFL 0.16 

 

Similarly, table 2 illustrates the performance of VFL collaboration in our empirical experiments. By collaborating 
through VFL, company A can utilize the information that it cannot access in the local training mode, so the PE is 
improved from -0.16 to -0.07, and -0.18 to -0.04, respectively, for the train set and test set. The same enhancement 
of PE can be observed for company B, as well, where the PE is improved from 0.22 to 0.12 for the train set and from 
0.23 to 0.16 for the test set. As a result, the VFL collaborations have demonstrated universal enhancement for 
portfolio loss estimation and assist businesses in better risk management. 
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Section 4: More Use Cases in Insurance 
As illustrated in the preceding discussion, FL holds the promise of enhancing loss modeling by fostering privacy-
preserving collaboration. This has the potential to significantly aid insurance companies in achieving more precise 
risk management. It is important to note that FL has a broad spectrum of applications within the insurance industry, 
serving as a foundational infrastructure for various actuarial modeling. It is crucial not to confine the potential of FL 
to a specific use case. To stimulate reader interest, we outline two potential use cases within the life and health 
sectors.  

A life insurance company seeks to refine its longevity/mortality experience study for a deeper comprehension of the 
factors influencing policyholders’ life expectancy. The objective is to enhance the precision of mortality predictions 
and provide more personalized insurance products, ultimately resulting in heightened customer satisfaction and 
business expansion. However, acknowledging the challenges in consolidating raw data for longevity/mortality 
studies, especially considering the natural inclination of reinsurance to seek aggregated information and the role of 
data aggregators like ClubVita3 in the longevity space, HFL emerges as a promising solution. In this collaborative 
approach, multiple insurance companies work together without sharing sensitive raw policyholder data. Each 
company independently trains its model using local historical data, focusing on diverse factors, such as 
demographics, lifestyle choices, and detailed health records, which are forbidden to share without being 
anonymized. Periodically, models from different companies share their updates, represented as model parameters 
or weights, rather than revealing the raw data. A central server then aggregates and refines these updates to create 
an improved global model. The refined global model is subsequently sent back to each company, contributing to 
finetuning their local models. HFL addresses privacy concerns by ensuring that sensitive raw data remains on-
premise. The collaborative model-building approach minimizes the necessity for extensive raw data sharing, thus 
reducing potential hours spent on data cleaning. Moreover, HFL can effectively streamline the data aggregation 
process, potentially cutting costs associated with data transfer and storage, especially when incorporating a trusted 
execution environment like Intel Software Guard Extensions (Intel SGX)4, which incurs only a small additional cost. 
This comprehensive solution not only enhances accuracy, but also ensures privacy and cost-effectiveness in the 
longevity/mortality experience study.  

In pursuit of advancing its services, a health insurance company aims to monitor policyholders’ real-time health data 
through wearable devices. This data is then correlated with various insurance labels like claim information, lapse 
details, and customer satisfaction. However, the company is aware of privacy concerns and data ownership issues 
that must be addressed. To navigate these challenges, the company can choose to employ VFL to develop a robust 
health monitoring system, while protecting individual privacy. The system utilizes health monitoring wearables that 
collect vital signs, physical activity, and sleep patterns. Importantly, the private data remains on the device and is 
not transmitted to a centralized server. Each wearable device independently trains an ML model based on the user’s 
health data. The collective insights from these local models contribute to a global model reflecting trends across the 
entire policyholder population. With this approach, the insurance company gains real-time insights into 
policyholders’ health without compromising their personal data. This enables the provision of personalized health 
advice and incentives based on aggregated insights. By prioritizing privacy and offering tailored health 
recommendations, the company seeks to bolster customer trust and loyalty, ultimately leading to increased 
customer retention. Moreover, real-time health insights facilitate proactive risk management, potentially reducing 
the number of claims and associated costs. In the broader market context, the company sets itself apart by 
delivering cutting-edge, privacy-centric health monitoring. This strategy not only attracts new customers, but also 
solidifies the company’s position within the industry.  

  

 
3 https://www.clubvita.net/ 
4 https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html/ 
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Section 5: Conclusion 
In this report, we provided the first comprehensive analysis of how to unlock bounded insurance data by harnessing 
the value of FL in the insurance industry. By sharing knowledge and expertise while enhancing privacy, the 
framework of FL, as demonstrated by our empirical experiments in subsection 3.5, carries the potential to improve 
loss modeling through privacy-preserving collaboration, which can benefit insurance companies in accurate loss 
forecasting. Loss modeling is one of the most apparent industrial applications. Since extreme claim events can 
influence companies’ solvency extensively, it is critical to insurance operations suffering from the lack of sufficient 
data due to the relatively rare occurrence of claim events among policyholders and the difficulty of identifying 
responsible risk characteristics. 

Furthermore, to date, FL is a relatively new technique with limited real-world applications, and its implementations 
in the insurance industry specifically are notably scarce as far as our knowledge goes, which indicates that the full 
potential of FL in the insurance industry has yet to be fully understood.  

The FL framework, proposed as a general framework, inherits various potential opportunities in the insurance 
industry. Most insurance firms collect a substantial amount of data; however, due to privacy, ethical concerns, 
sovereignty, and the cost of moving data, these data are largely bound. The exploration of potential application 
scenarios of FL in the insurance industry can fully unleash the capability of FL to advance the growth of insurance 
companies. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

  

https://soa.qualtrics.com/jfe/form/SV_cTFAdgtTa9furBk?Code=AIT130&Type=PR
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