Optimal Consumption Strategy in the Presence of Default Risk: Discrete-Time Case

K. C. Cheung and Dr. Hailiang Yang
Department of Statistics and Actuarial Science
The University of Hong Kong

39th Actuarial Research Conference
7 August, 2004
Regime-Switching Model

- Market situation may change \Rightarrow distribution of asset’s return will change over time

- Regime-Switching model: market environment may switch among different regimes in a Markovian manner \Rightarrow distribution of asset’s return will change over time in a Markovian manner
Regime-Switching Model

Model

Discrete-time setting: investor can decide the level of consumption, \(c_n \) at time \(n = 0, 1, 2, \ldots, T \)

After consumption, all the remaining money will be invested in a risky asset

The random return of the risky asset in different time periods will depend on the state of a time-homogeneous Markov chain \(\{\xi_n\}_{0 \leq n \leq T} \) with state space \(\mathcal{M} = \{1, 2, \ldots, M\} \) and transition probability matrix \(P = (p_{ij}) \)
Absorption State — Default Risk

Assume that state M of the Markov Chain is an absorbing state:

\[
p_{Mj} = 0 \quad j = 1, 2, \ldots, M - 1, \\
p_{MM} = 1.
\]

Default occurs at time n if $\xi_n = M$. In this case, the investor can only receive a fraction, δ, of the amount that he/she should have received.

The recovery rate δ is a random variable, valued in $[0, 1]$.
\{W_n\}_{0 \leq n \leq T}: \text{wealth process of the investor}

\begin{align*}
W_{n+1} &= \begin{cases}
(W_n - c_n)R^\xi_n (1_{\{\xi_n+1 \neq M\}} + \delta 1_{\{\xi_n+1 = M\}}) & \text{if } \xi_n \neq M, \\
W_n - c_n & \text{if } \xi_n = M,
\end{cases} \\
& \quad n = 0, 1, \ldots, T - 1, \text{ where } 1\{\ldots\} \text{ is the indicator function.}
\end{align*}

R_i^m is the return of the risky asset in the time period $[n, n + 1]$, given that the Markov chain is at regime i at time n.
Assumptions

1. The random returns $R^i_0, R^i_1, \ldots, R^i_{T-1}$ are i.i.d. with distribution F_i; they are strictly positive and integrable

2. R^i_n is independent of R^j_m, for all $m \neq n$

3. The Markov chain $\{\xi\}$ is stochastically independent to the random returns in the following sense:

$$
\mathbb{P}(\xi_{n+1} = i_{n+1}, R^i_n \in B \mid \xi_0 = i_0, \ldots, \xi_n = i_n) = p_{i_n i_{n+1}} \mathbb{P}(R^i_n \in B)
$$

for all $i_0, \ldots, i_n, i_{n+1} \in S, B \in \mathcal{B}(\mathbb{R})$ and $n = 0, 1, \ldots, T - 1$
Assumptions

4. $0 \leq c_n \leq W_n$ (Budget constraint)

5. The recovery rate δ is stochastically independent of all other random variables
Given that the initial wealth is W_0 and the initial regime is $i_0 \in \mathcal{M}^* := \mathcal{M} \setminus \{M\}$, the objective of the investor is to

$$\max_{\{c_0, \ldots, c_T\}} \mathbb{E}_0 \left[\sum_{n=0}^{T} \frac{1}{\gamma} (c_n)^\gamma \right]$$

over all admissible consumption strategies. Here $0 < \gamma < 1$.

Admissible consumption strategy: a feedback law $c_n = c_n(\xi_n, W_n)$ satisfying the budget constraint

Optimal Consumption Strategy: $\hat{C} = \{\hat{c}_0, \ldots, \hat{c}_T\}$
Definition 1 For \(n = 0, 1, \ldots, T \), the value function \(V_n(\xi_n, W_n) \) is defined as

\[
V_n(\xi_n, W_n) = \max_{\{c_n, c_{n+1}, \ldots, c_T\}} \mathbb{E}_n \left[\sum_{k=n}^{T} \frac{1}{\gamma} (c_k)^\gamma \right].
\]

Bellman’s Equation:

\[
\begin{cases}
V_n(\xi_n, W_n) = \max_{0 \leq c_n \leq W_n} \mathbb{E}_n [U(c_n) + V_{n+1}(\xi_{n+1}, W_{n+1})] \\
V_T(\xi_T, W_T) = \frac{1}{\gamma} W_T^\gamma \\
\end{cases}
\]

\(n = 0, 1, \ldots, T - 1 \)
Define some symbols recursively:

\[M^{(i)} = \{ \mathbb{E}[R^i]^\gamma \} \frac{1}{1-\gamma}, \quad i \in \mathcal{M}^*, \]
\[L_0^{(i)} = 0, \quad i \in \mathcal{M}, \]
\[L_n^{(i)} = M^{(i)} K_n^{(i)} 1_{\{i \neq M\}} + n 1_{\{i = M\}}, \quad i \in \mathcal{M}, n = 1, 2, \ldots, T, \]
\[K_1^{(i)} = [1 - p_{iM} + p_{iM} \mathbb{E}(\delta^\gamma)] \frac{1}{1-\gamma}, \quad i \in \mathcal{M}^*, \]
\[K_n^{(i)} = \left\{ \frac{M-1}{\sum_{j=1}^{M-1} p_{ij} (1 + L_{n-1}^{(j)})^{1-\gamma} + p_{iM} \mathbb{E}(\delta^\gamma)(1 + L_{n-1}^{(M)})^{1-\gamma}} \right\}^{\frac{1}{1-\gamma}}, \]
\[i \in \mathcal{M}^*, n = 2, \ldots, T. \]

Note that \(K_{(M)} \)'s are not defined. \(M^{(i)} \) is well-defined since we have assumed that \(R^i \) is integrable.
Theorem 1 For $n = 0, 1, \ldots, T$, the value functions are given by

$$V_{T-n}(i, w) = \frac{1}{\gamma} w^\gamma (1 + L_n^{(i)})^{1-\gamma},$$

and the optimal consumption strategy \hat{C} is given by

$$\hat{c}_{T-n}(i, w) = \frac{w}{(1 + L_n^{(i)})}.$$
From Theorem 1, we see that if we are now at time $T - n$, and at regime i, then we should consume a fraction of our wealth which is equal to

$$\frac{1}{1 + L_i^{(n)}}.$$

Thus our optimal consumption strategy depends heavily on the current regime and the remaining investment time through the function L.
Proposition 1 (a) For fixed $i \in \mathcal{M}$, $L_n^{(i)}$ is increasing in n:

$$0 = L_0^{(i)} \leq L_1^{(i)} \leq \ldots \leq L_T^{(i)}.$$

(b) For fixed $i \in \mathcal{M}^*$, $K_n^{(i)}$ is increasing in n:

$$0 \leq K_1^{(i)} \leq K_2^{(i)} \leq \ldots \leq K_T^{(i)}.$$
The monotonicity of L implies at the same regime, we should consume a larger fraction of our wealth when we are closer to the maturity.

This strategy is quite reasonable. If we are closer to the maturity, a short-term fluctuation in the return of the risky asset will bring a loss to us that we may not have enough time to cover. Therefore, we should consume more and invest less.
Next, we may guess that at any time period, say $T - n$, if we are at a “better” regime, then we should consume less and invest more.

Need two ingredients:

1. A criterion to compare the distributions of the returns in different regimes \implies **second order stochastic dominance**

2. Market has to “regular” enough \implies **stochastically monotone transition matrix**
Definition 2 Suppose that \(X \) and \(Y \) are two random variables satisfying

\[
\mathbb{E}[g(X)] \leq \mathbb{E}[g(Y)]
\]

for any increasing and concave function \(g \) such that the expectations exist, then we say \(X \) is dominated by \(Y \) in the sense of second order stochastic dominance and it is denoted by \(X \leq_{SSD} Y \).
Definition 3 Suppose $P = (p_{ij})$ is an $m \times m$ stochastic matrix. It is called stochastically monotone if

$$\sum_{l=k}^{m} p_{il} \leq \sum_{l=k}^{m} p_{jl}$$

for all $1 \leq i < j \leq m$ and $k = 1, 2, \ldots, m$.
Suppose P is a $M \times M$ matrix. Let $e_k = (1, \ldots, 1, 0, \ldots, 0)'$ (i.e. first k coordinates are 1, the rest are 0) for $k = 1, 2, \ldots, M$. Let $\mathcal{D}_M = \{(x_1, \ldots, x_M)' \in \mathbb{R}^M \mid x_1 \geq \cdots \geq x_M\}$ and $P_D = \{y \in \mathcal{D}_M \mid Py \in \mathcal{D}_M\}$.

Lemma 1 The following statements are equivalent:

1. P is stochastically monotone
2. $P_D = \mathcal{D}_M$
3. $e_k \in P_D$ for all $k = 1, 2, \ldots, M$
Proposition 2 Suppose that the transition probability matrix P is stochastically monotone and

$$R^1 \geq_{SSD} R^2 \geq_{SSD} \cdots \geq_{SSD} R^{M-1}.$$

Assume further that

$$M^{(i)}_1 K^{(i)}_1 \geq 1 \quad \forall i \in \mathcal{M}^*.$$

Then we have for $n = 1, 2, \ldots, T$

$$L^{(1)}_n \geq L^{(2)}_n \geq \cdots \geq L^{(M-1)}_n \geq L^{(M)}_n,$$

as well as

$$K^{(1)}_n \geq K^{(2)}_n \geq \cdots \geq K^{(M-1)}_n.$$
Meaning of $R^1 \geq_{SSD} \cdots \geq_{SSD} R^{M-1}$

Preference of investor: increasing and concave utility function

+
Return of the risky asset in regime i: R^i

+
Definition of SSD order

⇓

The $M - 1$ regimes are ranked according to their favorability to the risk-averse investor:
regime 1 is the most favorable, regime $M - 1$ is the most unfavorable
Meaning of P being stochastically monotone:

For $1 \leq i < j \leq M - 1$ (regime i is more favorable to regime j)

- $\sum_{l=k}^{M} p_{il}$ is the probability of switching to the worst $m - k + 1$ regimes from regime i

- $\sum_{l=k}^{M} p_{jl}$ is the probability of switching to the worst $m - k + 1$ regimes from regime j

Intuitively, if the market is “regular” enough, we should have

$$ \sum_{l=k}^{M} p_{il} \leq \sum_{l=k}^{M} p_{jl} $$

for all possible k. This precisely means that P is stochastically monotone.
Meaning of $M^{(i)} K_{1}^{(i)} \geq 1 \quad \forall i \in \mathcal{M}^*$:

If 1 is invested today (regime i), then $M^{(i)} K_{1}^{(i)}$ is the expected utility of the amount one period later, allowing for default risk.

$M^{(i)} K_{1}^{(i)} \geq 1 \quad \forall i \in \mathcal{M}^*$ means that the risk-averse investor would prefer the risky asset to a risk-free asset (risk-free interest rate is zero) in any regimes.
Corollary 1 Suppose that the transition probability matrix P is stochastically monotone and

$$R^1 \geq_{SSD} R^2 \geq_{SSD} \cdots \geq_{SSD} R^{M-1}.$$

Assume further that

$$M^{(i)} K_1^{(i)} \geq 1 \quad \forall i \in \mathcal{M}^*.$$

Then for $w > 0$ and $n = 0, 1, \ldots, T,$

$$c_n(1, w) \leq c_n(2, w) \leq \cdots \leq c_n(M, w).$$
Effect of Recovery Rate

Proposition 3 Suppose that δ_1 and δ_2 are two $[0, 1]$-valued random variables that are independent of the Markov chain $\{\xi\}$ and all the random returns. If

\[\mathbb{E}[\delta_1^\gamma] \leq \mathbb{E}[\delta_2^\gamma], \]

then

\[c_n(i, w; \delta_1) \geq c_n(i, w; \delta_2). \]
Example

- \(\delta_1 \sim U(0, 1) \rightarrow \mathbb{E}(\delta_1^\gamma) = 1/(1 + \gamma) \)

- \(\delta_2 \equiv 1/2 \rightarrow \mathbb{E}(\delta_2^\gamma) = 1/2^\gamma \)

It is not difficult to show that

\[
\frac{1}{1 + \gamma} \leq \frac{1}{2^\gamma}
\]

for \(0 < \gamma < 1 \), i.e.

\[\mathbb{E}(\delta_1^\gamma) \leq \mathbb{E}(\delta_2^\gamma), \]

hence

\[c_n(i, w; \delta_1) \geq c_n(i, w; \delta_2). \]
THE END
THANK YOU