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Abstract

A classical risk model with a multi-layer premium rate is considered in this paper.

In the two-layer case, an explicit expression is obtained for the joint distribution of

the maximal surplus up to ruin, the surplus immediately before ruin and the deficit

at ruin. Such an expression involves some known results on the joint distribution

at ruin for a risk model with a constant premium rate. In the multi-layer case, a

scheme is proposed to compute its ruin probability.
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1. Introduction and preliminaries

The following risk model with a varying premium rate is considered in this paper.

Let Nt be a Poisson process with intensity λ. Let Uj, j = 1, 2, . . ., be i.i.d. positive

random variables with a common density function f and a finite mean µ. c is a

function taking nonnegative values. We write the surplus process R as

Rt = u−
Nt∑
j=1

Uj +

∫ t

0

c(Rs)ds,

where u ≥ 0 represents the initial surplus, Nt represents the number of claims up

to time t, Uj represents the size of the j-th claim, and c(r) represents the rate at

which the premium is collected when the current surplus is r. R stands for a model

in which the insurance company would adjust its premium rate according to the

current surplus level. A remarkable feature of this model is that it is not spatially

homogenous, which leads to additional difficulties in its study. In this paper we only

concern an n-layer model in which c is a positive step function; i.e.

c(r) := ci for vi−1 ≤ r < vi,

where 0 ≡ v0 < v1 < v2 < . . . < vn−1 < vn ≡ ∞. Such a model has been proposed

and discussed in Chapter VII of Asmussen (2000) for the case n = 2; also see Zhou

(2004).
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Write

Ri
t := u + cit−

Nt∑
j=1

Uj, i = 1, 2, . . . , n.

Then Ri is a model with a single premium rate ci. It is clear that Rt follows the

probability law of Ri
t when its value is between vi−1 and vi.

Put

τ := inf{t ≥ 0 : Rt < 0}

with the convention that inf ∅ := ∞. Put

ψ(u) := P{τ < ∞|R0 = u} and R̄ := sup
0≤t≤τ

Rt.

τ is the so-called ruin time. ψ(u) is the probability of ever ruin given that the initial

surplus is u. R̄ is the maximal value of the surplus before ruin ever occurs. Notice

that ψ(u) is not necessary one even if the positive safety loading condition

ci > λµ, i = 1, 2, . . . , n,

is violated.

Similarly, we can define R̄i, τi and ψi for model Ri, i = 1, 2, . . . , n, accordingly

in the obvious way. The Laplace transform for ψi(u) is well known. ψi(u) can also

be expressed using the Pollaczeck-Khinchine formula. See Chapter III of Asmussen

(2000) for detailed accounts.

In this paper we are interested in the joint distribution of (R̄, Rτ−,−Rτ ), i.e.

the joint distribution of the maximal surplus before ruin, the surplus immediately

before ruin and the deficit caused by ruin. The distribution of (Rτ−,−Rτ ) is well

understood for the classical risk model with a single premium rate. Earlier work

in this respect can be found in Dufresne and Gerber (1988) and in Dickson (1992).

Expressions for such a joint distribution are also obtained in Schmidli (1999) for

models with either positive safety loading or negative safety loading, and in those

models the claim size distribution does not have to be absolutely continuous. We

refer to Schmidli (1999) for a summary of related work and references therein. Recent

work in this direction can be found in Wu et al. (2003).

For u, x, y, z ≥ 0, let

G(u; x, y, z) := P{τ < ∞, R̄ ≤ x, Rτ− > y,−Rτ > z|R0 = u}.
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It will be clear from the proof for Proposition 2.1 that G(u; x, y, z) is differentiable

in both y and z. Write

g(u; x, y, z) :=
∂2

∂y∂z
G(u; x, y, z),

i.e.

P{τ < ∞, R̄ ≤ x,Rτ− ∈ dy,−Rτ ∈ dz|R0 = u} = g(u; x, y, z)dydz.

In the classical risk model with a single premium rate, the expression for

G(u;∞, y, z) is known. For i = 1, 2, . . . , n, write Gi(u; x, y, z) for the corresponding

joint distributions for Ri
t; write

gi(u; x, y, z) :=
∂2

∂y∂z
Gi(u; x, y, z)

for the defective density function of Gi(u; x, y, z).

With positive safety loading ci > λµ, it is obtained in Gerber and Shiu (1997)

and Schmidli (1999) that

gi(u;∞, y, z) =
λ

ci − λµ

[
(1− ψi(u))f(y + z)− 1{u>y}(1− ψi(u− y))f(y + z)

]
.

An expression for gi(u;∞, y, z) under negative safety loading condition can be found

in Schmidli (1999).

When there is no restriction on the safety loading, such a result is also available

in the fluctuation theory for Lévy processes. Write ρi for the unique nonnegative

solution to equation

cit + λ(f̂(t)− 1) = 0,

where f̂ denotes the Laplace transform for f . By Theorem 1 and Corollary 2 in

Bertoin (1997), and Theorem VII.1 in Bertoin (1996), we can show that

gi(u;∞, y, z) =
[
Wi(u)e−ρiy − 1{u≥y}Wi(u− y)

]
λf(y + z), (1.1)

where W is determined by the following Laplace transform
∫ ∞

0

e−txWi(x)dx =
1

cit + λ(f̂(t)− 1)
, t > ρi. (1.2)

Notice that under positive safety loading, we have

ρi = 0 and Wi =
1− ψi

ci − λµ
.

Let

Ti(x) := inf{t ≥ 0 : Ri
t 6∈ [0, x]}
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and

pi(u; x) := P{Ri
Ti(x) = x|Ri

0 = u}, 0 ≤ u ≤ x.

pi(u; x) is just the probability that, starting from u, the surplus process Ri ever

reaches level x before ruin. It is known (eg. Theorem VII. 8 in Bertoin (1996)) that

pi(u; x) =
Wi(u)

Wi(x)
, x ≥ u. (1.3)

Under positive safety loading, (1.3) becomes

pi(u; x) =
1− ψi(u)

1− ψi(x)
, x ≥ u.

pi(u; x) will be needed in our study on the risk model with a multi-layer premium

rate.

We further point out that for x > u and x > y,

gi(u; x, y, z) = gi(u;∞, y, z)− pi(u; x)gi(x;∞, y, z). (1.4)

To see this, observe that for the event R̄ > x > u to occur, the surplus process R

has to first move above level x before a possible ruin occurs. Applying the strong

Markov property at the time when it first reaches level x we have that

Gi(u;∞, y, z)−Gi(u; x, y, z) = P{R̄1 > x, Rτi− > y,−Rτi
> z}

= pi(u; x)Gi(x;∞, y, z).
(1.5)

Then (1.4) follows by taking derivatives on both sides of (1.5). gi(u; x, y, z) will also

be needed to reach an expression for g(u; x, y, z).

One of the main results in this paper concerns a model with a two-layer premium

rate. In Section 2 we recover an explicit expression for g in terms of ψi and gi, i = 1, 2.

It generalizes Proposition 7.1.10 in Asmussen (2000). To our best knowledge such

a result is new. Observe that R is not even a Lévy process. One would not expect

such an expression to be as neat as the one for the classical model.

Since the surplus process R only allows negative jumps, it has to reach level v

before it ever upcrosses v. This fact plays a key role in our proofs. By applying the

strong Markov property at the time when R first downcrosses or upcrosses level v,

and taking use of some known results for models with a constant premium rate.

Our approach can be adapted to study a model with an n-layer premium rate.

We discuss the ruin probability for such a model in Section 3. We also obtain some

numerical results for a model with exponential claims. If the premium rate changes
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continuously according to the current surplus, the problem remains open except for

certain special examples; see e.g. Paulsen and Gjessing (1997).

Positive safety loading is not assumed in Section 2 and Section 3.

2. Joint distribution for a model with a two-layer premium rate

In this section we only consider a model with a two-layer premium rate. In

this relatively simple case we could work out an explicit expression for g(u; x, y, z).

Expression for G follows by taking integrations.

In the next proposition we first find a formula for g(v1; x, y, z). Then using

g(v1; x, y, z) we can obtain a general expression for g(u; x, y, z). Eventually, g can

be written in terms of W1,W2 and f .

Proposition 2.1. For the risk model R with a two-layer premium rate, given

u, x, y, z > 0, we have that

g(v1; x, y, z) =
g2(0; x− v1, y − v1, v1 + z)

1− I2(x, 0)
1{v1≤y<x} +

I1(x, y, 0)

1− I2(x, 0)
1{y<v1<x} (2.1)

and

g(u; x, y, z)

= g1(u; x, y, z)1{u<v1,y<x≤v1} + p1(u; v1)g(v1; x, y, z)1{u<v1≤y<x}

+ (g1(u; v1, y, z) + p1(u; v1)g(v1; x, y, z))1{u<v1≤x,y<v1}

+ (g2(u− v1; x− v1, y − v1, v1 + z) + g(v1; x, y, z)I2(x, u− v1)) 1{v1<u≤x,v1≤y<x}

+ (I1(x, y, u− v1) + g(v1; x, y, z)I2(x, u− v1)) 1{y≤v1<u≤x},
(2.2)

where

I1(x, y, r) :=

∫ v1

0

g1(v1 − w; v1, y, z)dw

∫ x−v1

0

g2(r; x− v1, y
′, w)dy′

and

I2(x, r) :=

∫ v1

0

p1(v1 − w; v1)dw

∫ x−v1

0

g2(r; x− v1, y
′, w)dy′.

Proof. We are going to show (2.1) first. Given R0 = v1 and y ≥ v1, in order for the

event {τ < ∞, R̄ ≤ x,Rτ− ∈ dy,−Rτ ∈ dz} to occur, the process R has to follow

the law of R2 until it jumps downwards across level v1. If this jump is large enough

it causes ruin. Otherwise, R first jumps to somewhere between 0 and v1, and then

starting from there it follows the law of R1 and comes back to level v1 before ruin,
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and then starts all over again from v1. During this period the maximum of R keeps

below x. As a result of the strong Markov property, it yields that

g(v1; x, y, z)

= g2(0; x− v1, y − v1, v1 + z)

+ g(v1; x, y, z)

∫ v1

0

p1(v1 − w; v1)dw

∫ x−v1

0

g2(0; x− v1, y
′, w)dy′.

(2.3)

Solve it for g we will reach the first part of (2.1).

If y < v1, given that R0 = v1, to make the event {τ < ∞, R̄ ≤ x,Rτ− ∈ dy,−Rτ ∈
dz} happen process R has to first jump downwards across lever v1 to somewhere

between 0 and v1. Starting from between 0 and v1, either a ruin occurs before R

goes back to level v1 or R reaches level v1 before ruin. Then we obtain another

equation

g(v1; x, y, z)

=

∫ v1

0

g1(v1 − w; v1, y, z)dw

∫ x−v1

0

g2(0; x− v1, y
′, w)dy′

+ g(v1; x, y, z)

∫ v1

0

p1(v1 − w; v1)dw

∫ x−v1

0

g2(0; x− v1, y
′, w)dy′.

(2.4)

We thus obtain the second part of (2.1) by solving the above equation.

As to (2.2), if v1 < u and v1 ≤ y, for the ruin to occur and the event {Rτ− ∈ dy}
to happen as well the process R has to first jump downwards across level v1. If it

overshoots then ruin occurs. Otherwise, R first jumps to between 0 and v1 and then

from there it comes back to level v1 without ruin; i.e.

g(u; x, y, z)

= g2(u− v1; x− v1, y − v1, v1 + z)

+ g(v1; x, y, z)

∫ v1

0

p1(v1 − w; v1)dw

∫ x−v1

0

g2(u− v1; x− v1, y
′, w)dy′.

(2.5)

Similarly, for y ≤ v1 < u, R has to downcross level v1 to between 0 and v1 before

ruin. Then either ruin occurs before R comes back to level v1 or R comes back to
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level v1 before ruin, i.e.,

g(u; x, y, z)

=

∫ v1

0

g1(v1 − w; v1, y, z)dw

∫ x−v1

0

g2(u− v1; x− v1, y
′, w)dy′

+ g(v1; x, y, z)

∫ v1

0

p1(v1 − w; v1)dw

∫ x−v1

0

g2(u− v1; x− v1, y
′, w)dy′.

(2.6)

Finally, consider the case for u < v1. If y < x ≤ v1, then R can never reach level

v1, and it has to follow the law of R1 until ruin. If v1 ≤ y < x, then R first reaches

level v1 before ruin. If y ≤ v1 < x, then either ruin occurs before R ever reaches

level v1, or R reaches level v1 before ruin.

Combining all the cases, (2.2) follows. ¤

3. The n-layer case

For u, z > 0 and i = 1, 2, . . . , n, put

gi(u; z) :=

∫ ∞

0

gi(u;∞, y, z)dy,

i.e.

gi(u; z)dz = P{τi < ∞,−Rτi
∈ dz}.

Now we consider the risk model with an n-layer premium rate. By an argument

similar to the proof of Proposition 2.1, we can show that,

• for 0 ≤ u < v1, we have

ψ(u) =
W1(u)

W1(v1)
ψ(v1) +

∫ ∞

0

g1(u; z)dz − W1(u)

W1(v1)

∫ ∞

0

g1(v1; z)dz; (3.1)

• for vk ≤ u < vk+1 and 1 ≤ k ≤ n− 2, we have

ψ(u) =
Wk+1(u− vk)

Wk+1(vk+1 − vk)
ψ(vk+1) +

∫ vk

0

gk+1(u− vk; vk − z)ψ(z)dz

− Wk+1(u− vk)

Wk+1(vk+1 − vk)

∫ vk

0

gk+1(vk+1 − vk; vk − z)ψ(z)dz

+

∫ ∞

vk

gk+1(u− vk; z)dz − Wk+1(u− vk)

Wk+1(vk+1 − vk)

∫ ∞

vk

gk+1(vk+1 − vk; z)dz;

(3.2)

• for u ≥ vn−1, we have

ψ(u) =

∫ vn−1

0

gn(u− vn−1; vn−1 − z)ψ(z)dz +

∫ ∞

vn−1

gn(u− vn−1; z)dz. (3.3)
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Given {gi} and {Wi}, we can solve this system of equations explicitly by the

following scheme. First, by letting u = 0 in (3.1), we can write ψ(v1) as a linear

transformation of ψ(v0). Then by (3.1) again we can write ψ(u), 0 ≤ u < v1, linearly

in terms of ψ(v0). Now let u = v1 in (3.2). We see that ψ(v2) can also be written as

a linear transform for ψ(v0). Repeating the previous procedure we can eventually

express ψ(u) linearly in terms of ψ(v0) for all 0 ≤ u ≤ vn−1. Then applying (3.3)

for u = vn−1, we can obtain a linear equation on ψ(v0) and solve it. At the end, we

are able to find an expression of ψ(u) for all 0 ≤ u < ∞.

An analytical expression for ψ(u) in terms of {gi} and {Wi} appears to be quite

complex even for the case that n = 3. But a numerical solution is certainly possible.

At the end of this paper we consider a risk model with an exponential claim size

and with n = 4.

Suppose that Ui follows an exponential distribution with mean 1/β. Then

f(x) = β exp{−βx} and f̂(t) = β/(β + t).

By inverting the Laplace transform (1.2) we obtain

Wi(x) =
1

ciβ − λ

(
β − λ

ci

exp

{
(λ− ciβ)x

ci

})
.

It follows from (1.1) that, for ciβ > λ,

ρi = 0 and gi(u; z) =
λ

ci

exp

{
(λ− ciβ)u

ci

− βz

}
;

for ciβ < λ,

ρi =
λ− cβ

c
and gi(u; z) = β exp{−βz}.

To implement the above-mentioned numerical procedure, we consider two cases.

In the first case, let β = 1, λ = 1, v1 = 5, v2 = 10, v3 = 15, c1 = 1.4, c2 = 1.3, c3 =

1.2, c4 = 1.1 and u = 2. We can obtain numerical values of the ruin probability ψ(u)

for different u values. The curve in the bottom in Figure 1 is a plot of ψ(u) in this

case.

To see what happens when the positive loading condition does not hold, we further

consider the second case in which β = 1, λ = 1, v1 = 5, v2 = 10, v3 = 15, c1 =

1.4, c2 = 0.9, c3 = 1.2, c4 = 1.1 and u = 2. Then the plot of ψ(u) is given by the

curve at the top in Figure 1. The abnormality of the part of the curve corresponding

to 5 < u < 10 is clearly due the lack of positive loading.

Some numerical values for ψ(u) in the two cases are recorded in the following

table.
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Figure 1. Ruin probabilities

u 0 5 10 15 20 30

First Case 0.7494 0.2730 0.1359 0.0823 0.0523 0.0211

Second Case 0.8697 0.6222 0.3903 0.2364 0.1501 0.0605
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