Optimal Retention Levels in Dynamic (Re)insurance Markets

Enrico Biffis

Faculty of Actuarial Science and Insurance
Cass Business School, London

Montreal, 10th August 2006
Outline

1. Introduction
2. Setup
3. Dynamic constrained MV problem
4. Examples
5. Conclusion
Intro & Motivation

General problem statement:

optimal dynamic insurance strategy for given risk exposure,
Intro & Motivation

General problem statement:

optimal dynamic insurance strategy for given risk exposure,

where:

- optimality: maximize expected utility from terminal wealth/dividend payouts, minimize ruin probability...

my setup:

○ (re)insurance decision in a MV setting (De Finetti, 1940)
Intro & Motivation

General problem statement:

optimal dynamic insurance strategy for given risk exposure,

where:

- optimality: maximize expected utility from terminal wealth/dividend payouts, minimize ruin probability...

my setup:

 ○ (re)insurance decision in a MV setting (De Finetti, 1940)

- setting: sources of randomness, financial market...

my setup:

 ○ Brownian filtration
 ○ financial market
 ○ randomness in claims/market parameters
The model

\((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}) \), with \(\mathbb{F} \hat{=} \mathbb{F}^B \) (\(B \) Brownian motion)

Wealth and shocks:

- Wealth/exposure process: \(X(t) \)
- Proportional wealth shocks: \(dX(t) = -X(t) [\delta(t)dt + \sigma(t) \cdot dB(t)] \)
The model

\((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}), \text{ with } \mathbb{F} = \mathbb{F}^B (B \text{ Brownian motion})\)

Wealth and shocks:

- Wealth/exposure process: \(X(t)\)
- Proportional wealth shocks: \(dX(t) = -X(t)[\delta(t)dt + \sigma(t) \cdot dB(t)]\)

Insurance market:

- Exposure: \(w(t)\) covered by insurance, \(v(t) = X(t) - w(t)\) retained.
- Premium rate per unit of insured capital/wealth: \(\pi(t)\)
 \[w(t)\pi(t)dt = \text{premium paid to instantaneously insure exposure } w(t)\]
The model

\((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P}), \text{ with } \mathbb{F} \doteq \mathbb{F}^B (B \text{ Brownian motion})\)

Wealth and shocks:

- Wealth/exposure process: \(X(t)\)
- Proportional wealth shocks: \(dX(t) = -X(t)[\delta(t)dt + \sigma(t) \cdot dB(t)]\)

Insurance market:

- Exposure: \(w(t)\) covered by insurance, \(v(t) = X(t) - w(t)\) retained.
- Premium rate per unit of insured capital/wealth: \(\pi(t)\)
 \[w(t)\pi(t)dt = \text{premium paid to instantaneously insure exposure } w(t)\]

Financial market:

- money market account: \(r(t)\) risk-free rate
- risky stocks: \(dS_i(t) = S_i(t)[\mu_i(t)dt + \sigma_i(t) \cdot dB(t)]\) \(i = 1, \ldots, m\)
- \(\delta, \sigma, \mu, \bar{\sigma}\) are \(\mathbb{F}\text{-adapted}\)
Insurance-investment strategies

Insurance/investment strategy: \(u(t) = (v(t), \bar{v}_1(t), \ldots, \bar{v}_m(t))^T \).
Insurance-investment strategies

Insurance/investment strategy: \(u(t) = (\nu(t), \nu_1(t), \ldots, \nu_m(t))^T \).

Wealth dynamics:

\[
dX(t) = X(t)(r(t) - \pi(t))dt + \nu(t)[(\pi(t) - \delta(t))dt - \sigma(t) \cdot dB(t)] \\
+ \sum_{i=1}^{m} \nu_i(t)[(\mu_i(t) - r(t))dt + \sigma_i(t) \cdot dB(t)]
\]
Insurance-investment strategies

Insurance/investment strategy: $u(t) = (v(t), \bar{v}_1(t), \ldots, \bar{v}_m(t))^T$.

Wealth dynamics:

$$dX(t) = X(t)(r(t) - \pi(t))dt + v(t)[(\pi(t) - \delta(t))dt - \sigma(t) \cdot dB(t)]$$

$$+ \sum_{i=1}^{m} \bar{v}_i(t)[(\mu_i(t) - r(t))dt + \bar{\sigma}_i(t) \cdot dB(t)]$$

Constraints: $v(t) \geq 0$ and...
Insurance-investment strategies

Insurance/investment strategy: $u(t) = (v(t), \bar{v}_1(t), \ldots, \bar{v}_m(t))^T$.

Wealth dynamics:

$$dX(t) = X(t)(r(t) - \pi(t))dt + v(t)[(\pi(t) - \delta(t))dt - \sigma(t) \cdot dB(t)]$$

$$+ \sum_{i=1}^{m} \bar{v}_i(t)[(\mu_i(t) - r(t))dt + \bar{\sigma}_i(t) \cdot dB(t)]$$

Constraints: $v(t) \geq 0$ and...

- no shorting: $0 \leq \bar{v}_{k+1}(t), \ldots, \bar{v}_m(t)$ $(k = 0, \ldots, m + 1)$;
- ‘safer’ assets S_1, \ldots, S_k, ‘riskier’ assets S_{k+1}, \ldots, S_m: $\sum_{i=1}^{k} \bar{v}_i(t) \geq v(t)$;
- combinations of the above.
The Optimization Problem

• Constrained dynamic MV problem:

\[
\begin{align*}
\text{min} & \quad V [X(T)] \\
\text{sub} & \quad E [X(T)] = z^* \\
& \quad (X, u) \quad \text{admissible} \\
& \quad u \in C \quad \text{constraints set}
\end{align*}
\]
The Optimization Problem

- Constrained dynamic MV problem:

\[
\begin{aligned}
&\text{min} & & V [X(T)] \\
&\text{sub} & & E [X(T)] = z^* \\
& & (X, u) \text{ admissible} \\
& & u \in C \text{ constraints set}
\end{aligned}
\]

- Efficient strategy:

\[
\begin{aligned}
u^*(t) &= \begin{cases}
[X(t) - A(t)] \xi_1^*(t) & \text{if } X(t) > A(t) \\
[A(t) - X(t)] \xi_2^*(t) & \text{if } X(t) \leq A(t)
\end{cases}
\end{aligned}
\]

...and mean-variance frontier:

\[
E[X(T)] = f \left(\sqrt{V[X(T)]}; A(0), X(0) \right)
\]
Key BSDEs

$A(\cdot)$ depends on the solutions to the following BSDEs:

\[
\begin{align*}
 dP_{1,2}(t) &= f(t, P_{1,2}, \Lambda_{1,2}, H_{1,2}^*)dt + \Lambda_{1,2}(t) \cdot dB(t) \\
 P_{1,2}(T) &= 1 \\
 P_{1,2}(t) &> 0 \text{ a.s. } t \in [0, T]
\end{align*}
\]

$$
H_{1,2}^*(t, \omega) \doteq \min_{u \in C} H_{1,2}(t, \omega, u, P_{1,2}, \Lambda_{1,2})
$$
Key BSDEs

$A(\cdot)$ depends on the solutions to the following BSDEs:

\[
\begin{cases}
 dP_{1,2}(t) = f(t, P_{1,2}, \Lambda_{1,2}, H_{1,2}^*) dt + \Lambda_{1,2}(t) \cdot dB(t) \\
 P_{1,2}(T) = 1 \\
 P_{1,2}(t) > 0 \text{ a.s. } t \in [0, T]
\end{cases}
\]

\[
H_{1,2}^*(t, \omega) \doteq \min_{u \in C} H_{1,2}(t, \omega, u, P_{1,2}, \Lambda_{1,2})
\]

Look to H_1 when $X(t) > A(t)$, to H_2 when $X(t) \leq A(t)$.
Key BSDEs

\(A(\cdot) \) depends on the solutions to the following BSDEs:

\[
\begin{align*}
 dP_{1,2}(t) &= f(t, P_{1,2}, \Lambda_{1,2}, H_{1,2}^*) dt + \Lambda_{1,2}(t) \cdot dB(t) \\
 P_{1,2}(T) &= 1 \\
 P_{1,2}(t) &> 0 \text{ a.s. } t \in [0, T]
\end{align*}
\]

\[
H_{1,2}^*(t, \omega) \doteq \min_{u \in C} H_{1,2}(t, \omega, u, P_{1,2}, \Lambda_{1,2})
\]

Look to \(H_1 \) when \(X(t) > A(t) \), to \(H_2 \) when \(X(t) \leq A(t) \).

\(\xi_{1,2}(\cdot) \) are given by:

\[
\xi_{1,2}(t, \omega, P_{1,2}, \Lambda_{1,2}) \doteq \arg \min_{u \in C} H_{1,2}(t, \omega, u, P_{1,2}, \Lambda_{1,2})
\]
Example: \(u(t) = (v(t), \bar{v}(t))^T \)
Example: $\nu(t) \geq 0$, $\overline{\nu}(t)$ unrestricted
Example: $\nu(t), \overline{\nu}(t) \geq 0$
Conclusion

- De Finetti’s result in continuous-time:
 - Insurance market only:
 \[
 v^*(t) = \frac{\pi(t) - \delta(t)}{\sigma^2(t)} (A(t) - X^*(t))
 \]
Conclusion

- De Finetti’s result in continuous-time:
 - Insurance market only:
 \[v^*(t) = \frac{\pi(t) - \delta(t)}{\sigma^2(t)} (A(t) - X^*(t)) \]

- De Finetti & Markowitz:
 - efficient frontier
 \[\rightarrow \text{for fixed } \epsilon \in (0, 1), x^* \geq 0 \text{ choose } z^* \text{ such that } \mathbb{P}(X(T) < x^*) \leq \epsilon \]
 - constant retention levels are inefficient
 \[\rightarrow \text{market portfolio inefficient} \]
Some references

- Bäuerle N. (2005), Benchmark and mean-variance problems for insurers, MMOR.
- Briys E. (1986), Insurance and consumption: the continuous-time case, JRI.
 - De Finetti B. (1940), Il problema dei pieni, GIIA.
- Gollier C. (1994), Insurance and precautionary capital accumulation in a continuous-time model, JRI.
- Hipp C. (2003), Stochastic control with application in insurance, LNM, Springer.
- Hojgaard B. and M. Taksar (1998), Optimal proportional reinsurance policies for diffusion models with transaction costs, IME.
 - Hu Y. and X.Y. Zhou (2005), Constrained LQ control with random coefficients, and application to portfolio selection, SIAM JCO.
- Mnif M. (2002), Optimal risk control under proportional reinsurance contract: a dynamic programming duality approach, WP.