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Abstract

In this paper we propose a model that can be used to analyse correlated claims

data. In the process we introduce a class of multivariate generalized Poisson

distributions; then we present posterior distributions of its parameters. These

distributions are difficult to manipulate, so we employ markov chain monte

carlo methods to draw random numbers from posteriors and predictive distri-

butions. We present a collection of EXCEL VBA functions and subrouines to

perform the simulations.
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1 Introduction

Let us assume an actuary has collected claims data over a number of periods

for number of different classes in one product; the following three tables are

an extraction of claims data for three classes over three periods.
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Period 1: Claims

Class 1 Class 2 Class 3

27 7 18

60 19

24

Period 2: Claims

Class 1 Class 2 Class 3

17 30 5

21 7 17

13 18

Period 3: Claims

Class 1 Class 2 Class 3

17 16 22

19 10 20

13 15

20 16

7

Based on the above claims experience we can construct the following table for

claim counts across classes over the three periods.
Period Class 1 Class 2 Class 3

1 3 2 1

2 2 3 3

3 4 5 2

It is obvious that for each additional class of claim counts experience we will

add one more claim counts column and for each additional period we will add

one more row in the claim counts data. From the above data it is clear that

we could use the following to model past experience.

1. Let Ni be the number of claims in one period in class i for i = 1, 2, 3, . . . , p.

2. Let Xij be the jth claim in the ith class for j = 1, 2, . . . , Ni and i =

1, 2, 3, . . . , p.

With this representation (N1, N2, N3, . . . , Np) forms a claim count vector.

We assume that after a preliminary analysis the actuary has drawn the

following conclusions:

1. Compound frequency severity model is appropriate for each class.

2. Gamma distribution is a reasonable model for claim sizes.

3. Poisson distribution is not an appropriate model for modeling claim

counts for some classes.

4. There is a positive correlation among claim counts across classes.

These assumptions are very strong and the actuary would have completed a

large part of the modeling at this point. We are not interested in presenting

details of such an analysis as it is peripheral to our discussion. Readers inter-

ested in intricate details of such analyses should consult Klugman, Panjer and

Willmot (1998).
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With this setting we have to choose a multivariate discrete distribution

to model claim counts data. There are large number of multivariate discrete

distributions to choose from. Johnson et al. (1997) is a book length account of

such distributions. Also, one can use Copulas to create multivariate distribu-

tions with given marginals as prescribed in Nelson (2006). However, in general

multivariate discrete distributions are complicated and difficult to manipulate

as opposed to multivariate continuous distributions. Also, we know very little

about parameter estimation of multivariate discrete distributions. It has been

shown that the generalized Poisson distribution is a good alternative to Pois-

son distribution in many situations; see for example Consul (1987). Therefore,

in this paper we use a form of multivariate generalized Poisson distribution to

model claim counts. We must emphasize that the actuary needs to compare a

few different models before choosing one; the purpose of this paper is not to

describe model selection, it is to facilitate the use the multivariate generalized

Poisson distribution for modeling claim counts.

In this paper we present a method for simulating individual claims condi-

tioned on the experience; i.e. we will present a technique to simulate predictive

distribution.We do it as a two stage process. We first simulate multivariate

observations from the predictive distribution of the claim counts for the next

period. Then we simulate the posterior parameters of the individual claim

sizes distribution. Then we simulate multivariate total claims. We use Markov

Chain Monte Carlo (MCMC) method to simulate predictive distributions. We

implement algorithms in Visual Basic for Applications (VBA 2003), so that

users can integrate them in their applications as macros in Excel.

In Section 2 we present details necessary to carry out the MCMC simula-

tion for posterior distribution of claim sizes. In Section 3 we first introduce

the multivariate generalized Poisson distribution. Then we develop posterior

distributions of parameters. In Section 4 we present the Excel VBA imple-

mentation details and results of our simulation.

2 Gamma distribution for modelling Claim Sizes

We use the gamma distribution in the following form:

f(x|α, β) =
βαxα−1

Γ(α)
e−βx, x > 0, α > 0, β > 0. (1)

Instead of writing the above functional form we may write X ∼ Gamma(α, β)

to denote that the random variable X is distributed as gamma with parameters

α and β.
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For each of the portfolios we can fit a different distribution, or by aggregat-

ing all the claims we could fit one distribution. In either case, without using

too many subscript, let us assume the observed claim sizes are x1, x2, . . . , xn.

Then the likelihood function L(x|α, β) takes the form

L(x|α, β) =
n∏

i=1

f(xi|α, β). (2)

Let us assume the prior distribution for each parameter is also gamma, i.e.

π1(α) =
γδ1

1 αδ1−1

Γ(δ1)
e−γ1α (3)

π2(β) =
γδ2

2 βδ2−1

Γ(δ2)
e−γ2β, (4)

with γi, δi, i = 1, 2 known values. Using these priors we could get the following

conditional posterior distributions for the parameters α and β

p(α|x, β) ∝ L(x|α, β)π1(α) (5)

β|x, α ∼ Gamma(nα + δ2,
n∑

i=1

xi + γ2). (6)

Now we can use the MCMC method to draw random numbers from the pos-

terior distribution of p(α, β|x).

3 Multivariate generalized Poisson distribu-

tion for modelling claim counts

Let us assume Mi, the ith element of a random column vector M of size q, is

distributed as generalized Poisson with parameters λi, θ for i = 1, 2, . . . , q; i.e.

Pr(Mi = m) = f(m|λi, θ) =
λi(λi + mθ)m−1

m!
exp(−λi−mθ), m = 0, 1, 2, . . . ;

where the parameters λi > 0 and 0 ≤ θ < 1. The means and variances of Mi’s

are given by,

E(Mi) =
λi

1− θ
(7)

V ar(Mi) =
λi

(1− θ)3
. (8)
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Let us assume that M1, M2, . . . ,Mn are independent. Note that having a

common parameter θ across all q distributions ensures that the distribution of

any binary combination of M1, M2, . . . ,Mp is generalized Poisson. This means

that if A is a p× q binary matrix and if N is a column vector defined as

N = AM, (9)

is then distributed as multivariate generalized Poisson.

With a little manipulation we can show that the mean vector and the

covariance matrix of N in (9) becomes,

E[N] = AE[M] (10)

COV (N) = ADAT , (11)

where D is a diagonal matrix of size q × q with

diag(D) = [V ar[M1], V ar[M2], . . . , V ar[Mq]].

From these results we can write the mean vector of our multivariate GPD as

E[N] = A



λ1

(1−θ)
λ2

(1−θ)
...

λq

(1−θ)

 . (12)

The covariance matrix can be obtained by substituting

diag(D) = [
λ1

(1− θ)3
,

λ2

(1− θ)3
, . . . ,

λq

(1− θ)3
], (13)

in (11). Since all the elements in COV (N) are non-negative, the correlation

between elements of N are positive. To use this multivariate generalized dis-

tribution we need to specify the matrix A. We could write

A = [Ip×p|Bp×(q−p)], (14)

with I as the identity matrix of dimension p× p; q could take any value in the

range p+1 to 2p−1. The matrix B is a binary matrix of dimension p×(q−p).

If q = 2p − 1 the matrix takes special form. The first column is [1, 1, . . . , 1]T ;

the next pC2 columns contain exactly two elements of 1 and 0 in other places;

these followed pC3 columns containing exactly 3 elements of 1 and 0 in other

places. In general pCj columns followed by
∑j−1

i=2
pCi columns of B contains
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j elements of 1 and 0 in other places for j = 2 to j = p − 1. For values of

q < 2p − 1 we may take a subset of columns of Bp×(2p−1−p).

Note that B as a p × (2p − 1 − p) matrix was first suggested in Teicher

(1954) for defining the multivariate Poisson distribution. Since then many

have used the form with only the first column of B, for example Prekopa and

Szantai (1978) used it to generate multivariate gamma distribution; Vernic

(1997) used it to generate bivariate generalized Poisson distribution.

Let us write M1 for the column vector containing the first p elements of

M, and M2 for the column vector containing the remaining elements. Thus,

N = [Ip×p|Bp×(q−p)]

[
M1p×1

M2(q−p)×1

]
. (15)

We can simplify (15) as

N = M1 + BM2

M1 = N−BM2.

From this we can write the multivariate probability function of N as

Pr[N = n|Θ] =
∑
m′

Pr[M1 = n−Bm′] Pr[M2 = m′]

=
∑
m′

p∏
i=1

f(ni −Bim
′|λi, θ)

q∏
i=p+1

f(mi−p|λi, θ), (16)

where the summation is over all possible values of m′ = [m′
1, m

′
2, . . . ,m

′
q−p]

T

with the restriction ni − Bim
′ ≥ 0 for all i = 1, 2 . . . , p and Bi is the ith

row of B. Also the parameter vector Θ = (λ1, λ2, . . . , λq, θ) contains q + 1

parameters. Let us assume the observed multivariate claim count sample over

k periods is the p× k matrix n with n = [n1,n2, . . . ,nk]. Then the likelihood

function can be written as

L(n|Θ) =
k∏

t=1

Pr[N = nt|Θ]. (17)

Once we substitue the multivariate probability function given in (16), we see

that the likelihood function takes a very complicated form. Let us write π1(λi)

for the prior pdf of λi for i = 1, 2, . . . , q (i.e. they all have the same functional

form) and π2(θ) for the prior of θ. Then the posterior distribution of the

parameter p(Θ|n) will take the form,

p(Θ|n) ∝
k∏

t=1

Pr[N = nt|Θ]
q∏

i=1

π1(λi)π2(θ). (18)
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It can easily be seen that manipulating this posterior distribution is diffi-

cult due to the form of the likelihood function. However, if we consider M2 as

parameters then we could look at the posterior distribution of the parameters

which are conditionally independent. This technique is called data augmenta-

tion in Bayesian literature. Let us assume [m′
1,m

′
2, . . . ,m

′
k] is the augmented

sample (parameter vector) where each element is a column vector of size q−p.

In this case the posterior distributions of parameters would take a slightly

different form.

p(λi|n,m′, θ) ∝
k∏

t=1

f(nit −Bim
′
t|λi, θ)π1(λi), i = 1, 2, . . . , p (19)

p(λi|n,m′, θ) ∝
k∏

t=1

f(m′
it|λi, θ)π1(λi), i = p + 1, p + 2, . . . , q (20)

p(θ|n,m′,Θ/θ) ∝
{ p∏

i=1

k∏
t=1

f(nit −Bim
′
t|λi, θ)

}
q∏

i=p+1

k∏
t=1

f(m′
it|θi, θ)

 π2(θ)

(21)

p(m′
t|n,Θ) ∝

p∏
i=1

f(nit −Bim
′
t|λi, θ)

q∏
j=p+1

f(m′
(j−p),t|θj, θ),

for t = 1, 2, . . . , n. (22)

Here π1() is the prior distribution of λi and the π2() is the prior of θ.

4 VBA Implementation details

We have implemented four Forms in VBA so that user could navigate through

a series of dialogue boxes indicating the desired inputs. The first dialogue

box is for the user to specify the data range. The second dialogue box is for

choosing the B matrix. The third box allows the user to select parameters

for prior distributions. The final box allows the user to indicate the required

number of simulations. All the user inputs are checked for validity.

4.1 Implementation of Claim size analysis

With (5) and (6) we implement MCMC method to simulate the joint posterior

distribution for α, β. In the development stage, we realized that when the

mean of the gamma distribution is very large the Excel worksheet function

GAMMAINV() does not compute the appropriate values. Therefore we use the

Metropolis-Hasting (MH) algorithm to simulate from the conditional posterior
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distribution β conditioned on x and α. For the proposal distribution we use

the normal distribution with the mean as the value in the preceding iteration

and the standard deviation of 0.05 for α and 0.005 for θ2. We use moment

estimates of α and β as the initial values in MH algorithm; i.e. we use

α =
x̄

s2

β =
x̄2

s2
,

as the initial values; x̄ is the sample mean and s is the sample standard devia-

tion. In the Excel macros users may change the appropriate prior distribution

parameter values γi, δi, i = 1, 2. Also users may use numerous charting fa-

cilities available in Excel to make sure that simulated parameter sequence is

random.

4.2 Implementation of claim count analysis

We used (19) to (22) to generate parameters in each step of the MH algorithm.

First we wrote Excel function to compute the probability function of the GPD

for given parameters. To avoid overflowing the calculation with factorials we

computed probabilities recursively. i.e. we used the fact

Pr[N = n]

Pr[N = n− 1]
=

(
λi + nθ

λi + (n− 1)θ

)n−2

(λi + nθ) exp(−θ), for n = 1, 2, . . .

with

Pr[N = 0] = exp(−λi).

We choose prior distributions of λi to be gamma for i = 1, 2, . . . , q and θ

to be Beta as suggested by Scollnik (1998). The proposal distribution for each

parameter is normal with mean as the value of the parameter in the preceding

iteration; standard deviation for λi is 0.05 for i = 1, 2, . . . , q and for θ it is

0.005. We wrote numerous procedures and functions to perform calculations

in intermediate steps.

In testing, we realize that the implementation of (22) does not work prop-

erly. Therefore we just simulated each element m′
t from the GPD with appro-

priate parameters and with the added condition that nit − Bim
′
t ≥ 0 for all

i.

The initial values for the parameters are obtained through the “Solver”

in Excel. These values can be considered as some form of modified moment
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estimates. Let us write x̄ for the sample mean vector and S for the sample

covariance matrix. Then let us define the following two quantities

D1 =
p∑

i=1

(x̄i −Meani)
2 (23)

D2 =
p∑

i=1

p∑
j=1

(Si,j − V ar(i, j))2, (24)

where Meani is the ith element in (12) and V ar(i, j) is the i, jth element in

the covariance matrix for multivariate GPD (i.e. (11)). We call the solver

within our VBA modules to solve for the parameters by setting D1 = 0 while

minimizing D2.

4.3 VBA Implementation of predictive multivariate to-

tal claims distribution

This module is the simplest among all three modules. It reads appropriate

claim counts to be generated and the posterior parameters of the claim sizes

and then it simulates that many claims and computes the total claims. Since

all the inputs to this module are generated from previous modules, no error

checking is required.

As a test we simulated the total claims distribution with 1000 burn-in sim-

ulations followed by 5000 simulations for the hypothetical data set with mini-

mum number of parameters and default prior parameters. The percentiles are

given in the following table.

Portfolio Percentiles

95% 90% 75% 50%

1 88.03 69.80 42.62 17.36

2 112.91 93.06 59.16 29.07

3 134.38 108.85 74.43 40.44
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A Markov Chain Monte Carlo Method Algo-

rithm

In this appendix we briefly describe the implementation of MCMC algorithm

in a general setting. For a thorough discussion of MCMC methods and their

applications one may refer to standard text books such Gelman et al. (1992)

or Gilks et al. (1996). Let us define

X = (x1, x2, . . . , xn)T

as an observed sample of size n from the univariate distribution f(x|Θ). Here

the parameter Θ is a vector containing p elements,

Θ = (θ1, θ2, . . . , θp)
T .

We assume the parameters are conditionally independent and the prior dis-

tribution of θj is pj(θj), for j = 1, 2, . . . , p. Therefore the likelihood function

L(X|Θ) takes the form

L(X|Θ) =
n∏

i=1

f(xi|Θ).

The joint posterior distributions of the parameter vector up to the normalizing

constant is

p(Θ|X) ∝
n∏

i=1

f(xi|Θ)
p∏

j=1

pj(θj). (25)

Except in a few cases, the posterior distribution in (25) can not be evalu-

ated. However, the MH method prescribes an attractive way to simulate the

posterior distribution. We describe the algorithm in the following manner.

Step 1 Specify the initial guess of the parameter vector Θ0(for example this

could be the modes of each of the prior distributions).

Step 2 Specify proposal distributions, qj(θj|θ) for each of the parameters θj, for

j = 1, 2, . . . , p.

Step 3 MCMC Simulation

For t from 1 to B + N do /* first B simulations are burn-in */

Let Θt = [θt
1, θ

t
2, . . . , θ

t
p]

For j from 1 to p do
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simulate θ∗j from qj(θ|θt−1
j )

Let Θt
|j∗ = [θt

1, θ
t
2, . . . , θ

t
j−1, θ

∗
j , θ

t−1
j+1, θ

t−1
j+2, . . . , θ

t−1
p ]

Let r =
p(Θt

|j∗|X)qj(θ
t−1
j |θ∗j )

p(Θt−1|X)qj(θ∗j |θ
t−1
j )

simulate U from uniform[0,1]

set θt
j =

{
θ∗j if U < min(r, 1)

θt−1
j otherwise

end do

if t > B then

simulate xpred
t−B from f(x|Θt)

endif

end do

Step 3 Simulate observations from the predictive distributions after a cer-

tain number of burn-ins. At the end we could construct the empirical distri-

bution based on the simulated sample xpred
1 , xpred

2 , . . . , xpred
N and this would be

the predictive distribution.

B References

1. Consul, P. (1989). Generalized Poisson distributions: properties

and applications

2. Gelman, A., Carlin, J.B., Stern, H.S. and, Rubin, D. (1992). Bayesian

data analysis, Chapman & Hall.

3. Gilks, W.R., Richardson, S. and D.J. Spiegelhalter. (1996). Markov

chain monte carlo methods in practice, Chapman & Hall.

4. Johnson, N.L., Kotz, S., Balakrishnan, N. (1997). Discrete multivari-

ate distribution, John Wiley

5. Klugman, S.K, Panjer, H.H. and Willmot, G.E. (2004). Loss models:

from data to decisions (second edition), Wiley series in probability

and statistics.

6. Nelson, R.B. (2006). An introduction to copulas (second edition),

Springer series in statistics.

7. Prekopa, A. and Szantai, T. (1978). A new multivariate gamma distri-

bution and its fitting to empirical stream flow data, Water Resources

Research 14, 45-46.

11



8. Scollnik, D.P.M. (2001). Actuarial modeling with MCMC and BUGS.

North American Actuarial Journal 5(1), 96-125.

9. Scollnik, D.P.M. (1998). On the analysis of the truncated generalized

Poisson distribution using bayesian method. ASTIN Bulletin 28(1),

135-152.

10. Teicher, H. (1954). On the multivariate Poisson distribution. Scandi-

navian Actuarial Journal 37, 1-9.

11. Vernic, R. (1997). On the bivariate generalized Poisson distribution.

ASTIN Bulletin 27,23-31.

12



Software Disclaimer: 
 
Important: The  totalclaims.xls     ("Software") posted 
on this site is the property of the Society of Actuaries ("SOA") and is protected 
under U.S. and international copyright laws. It was created for the SOA by 
 Rohana S. Ambagaspitiya. .  
 
The Software has been developed for the benefit of actuaries FOR 
EDUCATIONAL USE ONLY, although others may find it useful. SOA makes the 
Software available to individual users for their personal use on a non-exclusive 
basis. No commercial use, reproduction or distribution is permitted whatsoever.  
 
SOA and the authors make no warranty, guarantee, or representation, either 
expressed or implied, regarding the Software, including its quality, accuracy, 
reliability, or suitability, and HEREBY DISCLAIM ANY WARRANTY 
REGARDING THE SOFTWARE’S MERCHANTABILITY OR FITNESS FOR ANY 
PARTICULAR PURPOSE. SOA and the authors make no warranty that the 
Software is free from errors, defects, worms, viruses or other elements or codes 
that manifest contaminating or destructive properties. In no event shall SOA or 
the authors be liable for any damages (including any lost profits, lost savings, or 
direct, indirect, incidental, consequential or other damages) in connection with or 
resulting from the use, misuse, reliance on, or performance of any aspect of the 
Software including any instructions or documentation accompanying the 
Software. SOA and the authors make no representation or warranty of non-
infringement of proprietary rights of others with respect to the Software. The 
entire risk as to the uses, outputs, analyses, results and performance of the 
Software is assumed by the user.  This Disclaimer applies regardless of whether 
the Software is used alone or with other software. 
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