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Modeling Mortality with Jumps: Transitory Effects and Pricing 

Implication to Mortality Securitization 

 

Abstract: 

In this paper, we incorporate a jump-diffusion process into the original Lee-Carter model, 

and use it to forecast mortality rates and analyze mortality securitization. The outlier-adjusted 

Lee-Carter model is examined to provide further evidence of mortality jumps. We also explore 

alternative models with transitory versus permanent jump effects. We find that modeling the 

mortality via permanent jump effects induces errors in parameter estimation and distortion in 

mortality securitization consequently. We use the Swiss Re mortality bond as an example to 

show how to apply our model and the distortion measure approach to value mortality-linked 

securities. Pricing the Swiss Re mortality bond is difficult because the mortality index is 

correlated across countries and over time. Cox, Lin and Wang (2006) employ normalized 

multivariate exponential tilting to take into account correlations across countries. We show in 

this paper how to account for correlations of the mortality index over time by simulating the 

mortality index and changing the measure on paths.  

 

Key words:  

Lee-Carter model, outlier-adjusted Lee-Carter model, transitory jump effects, permanent 

jump effects, market price of mortality risk. 
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1. Introduction 

Mortality risk management is fundamental to the life insurance and pension industries. 

Mortality models are crucial as a means of quantifying these risks and providing the basis of 

pricing and reserving. Traditionally reinsurance, and more recently, securitization, provide a 

means of transferring or hedging mortality risks. Naturally mortality models are fundamental to 

these transactions. 

Mortality securitizations differ from reinsurance transactions in several ways. Perhaps the 

most important is that the investor in a securitization typically does not have the mortality 

expertise that a reinsurer has. Also, in order to avoid moral hazard problems, the basis of a 

securitization may be a public index rather than the actual lives insured by the ceding party. 

Therefore, it is important that a mortality model clearly conveys the nature of risk transfer to 

investors, reflects the characteristics of available data, and provides for scenario analysis. 

A wide variety of stochastic models have been proposed for modeling the dynamics of 

mortality over time. Cairns, Blake and Dowd (2006a) provide a detailed overview and 

categorization. Most of the literature in this field is in the framework of short-rate models, 

among which continuous time models focus on the spot force of mortality and discrete time 

models concentrate on the spot mortality rates. Continuous time models (e.g, Milevsky and 

Promislow, 2001; Dahl, 2004; Dahl and Møller 2005; Miltersen and Persson 2005; Biffs 2005; 

Schrager 2006) help us understand the evolution of mortality rates over time, but are relatively 

intractable at the present time. We prefer discrete time models because they are easy to be 

implemented in practice.  

The Lee-Carter model is among the earliest discrete time models. Lee and Carter (1992) 

model the central mortality rates to be log-linearly correlated with a time-dependent mortality 
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index, and adjust for age-specific effects using two sets of age-dependent coefficients. In this 

way, the model captures both the mortality trend overall and the age-specific change on different 

age groups. Thus it describes the development of the mortality curve over time quite well. The 

age adjustment is necessary, because mortality improvement varies across age groups. Moreover, 

the short-term mortality shocks, such as the 1918 influenza pandemic, attack different groups 

with different intensities. We will discuss these two points in detail in the data section. The 

Lee-Carter approach has been extended by Brouhns, Denuit and Vermunt (2002), Renshaw and 

Haberman (2003), Denuit, Devolder and Goderniaux (2007), and further revisited by Li and 

Chan (2007). Recently, Cairns, Blake and Dowd (2006b) propose a two-factor model for 

mortality modeling and morality-linked security pricing. The first factor equally affects mortality 

at all ages, whereas the second factor’s effect on mortality is proportional to age. However, the 

mortality curve is increasing in ages in their model setup, which does not reflect the fact that 

mortality rates of infants and children are much higher than those at middle ages. Moreover, their 

model does not allow mortality jumps. We show that this may lead to a pricing error in morality 

securitizations.  

Mortality jumps must be taken into account in mortality securitization modeling, because 

the rationale behind selling or buying mortality securities is to hedge mortality risks (Cox, Lin 

and Wang 2006). Nevertheless, most of papers on this topic, as in Cairns, Blake and Dowd 

(2006b), ignore mortality jumps (see Renshaw, Haberman, and Hatzoupoulos, 1996; Sithole, 

Haberman, and Verrall 2000; Milevsky and Promislow, 2001; Olivieri and Pitacco, 2002; Dahl, 

2003; Denuit, Devolder and Goderniaux, 2007). Even if they recognize that short-term 

catastrophe shocks may cause mortality jumps, they do not model mortality jumps explicitly. For 

example, Lee and Carter (1992) treat the 1918 influenza pandemic as a highly unusual event and 
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employ an intervention model to remove its influence. Li and Chan (2007) regard pandemic 

events as non-repetitive exogenous intervention too, and implement outlier detection and 

adjustment to unveil the “true” model underlying the outlier-free mortality series. 

To our knowledge, there are only a few papers considering mortality jumps in mortality 

securitization modeling. Biffis (2005) uses affine jump-diffusions to address the risk analysis and 

market valuation of life insurance contracts in the continuous time framework. Cox, Lin and 

Wang (2006) find that mortality jumps do have a significant effect on mortality modeling. They, 

however, model the age-adjusted death rates instead of the mortality curve. Thus their model 

fails to represent age-specific changes of mortality rates. Furthermore, they model the jump 

process in a way that mortality jumps have permanent effects on mortality rates, although many 

mortality jumps are caused by short-term catastrophic events and have transitory effects only. 

In this paper we propose to incorporate a jump-diffusion process into the Lee-Carter model, 

restricting mortality jumps to have one-period effects. We fit the model to US age-specific 

mortality rates and forecast the development of the mortality curve. We show that the model with 

jumps outperforms that without jumps, and the model with permanent jump effects induces big 

deviations in the parameter estimation compared with that with transitory jump effects. We then 

discuss the outlier-adjusted Lee-Carter model presented by Li and Chen (2007) to further explore 

the source of mortality jumps. We find that the so-called “outliers” are actually very important to 

our morality securitization modeling, and we cannot delete the outliers from our time-series data 

in order to establish a proper model for pricing mortality securities. We use the Swiss Re 

mortality bond (2003) as an example of pricing the mortality-linked securities, and illustrate that 

the model with permanent jump effects results in large pricing distortions. 

In an incomplete insurance market, there are mainly two approaches for security valuation. 
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One way is to adapt the arbitrage-free pricing framework of interest-rate derivatives to the 

valuation and securitization of mortality risk. Cairns, Blake and Dowd have a detailed discussion 

on this issue and give as an example the pricing of the EIB longevity bond (see Cairn, Blake and 

Dowd 2006a, 2006b). The second method is to use a distortion operator to create an equivalent 

risk-adjusted distribution, and obtain the fair value of the security under this risk-neutral measure. 

Examples of this approach, based on the Wang transform (Wang 2000, 2002), include Lin and 

Cox (2005), Dowd, Blake, Cairns and Dawson (2006), Denuit, Devolder and Goderniaux (2007). 

The Swiss Re mortality bond (2003) covers mortality risks across countries and over time, which 

makes the valuation problem very difficult. Previous research (e.g. Cox, Lin and Wang, 2006) 

employ the normalized multivariate exponential tilting, which is a generalization of the Wang 

transform, to take into account correlations across countries. They, however, modify the contract 

terms by linking the principal repayment with the maximum of the mortality index in three years, 

and ignore correlations over time. In this article, we employ the Wang transform and make the 

first attempt to account for correlations of the mortality index over time. The basic idea is to 

forecast the mortality index on paths and change the measure on each path to get the 

risk-adjusted mortality index. 

The remaining of this article proceeds as follows. In section 2 we describe the data and 

demonstrate historical facts for further motivation of the problem. The mortality jump caused by 

the 1918 Spanish flu is clearly evidenced. The high correlation between death by flu and death 

by all causes suggests we cannot ignore flu events which may cause a huge jump in mortality. In 

section 3 and 4 we briefly review the Lee-Carter model, propose a jump-diffusion process with 

temporary jump effects to fit the mortality index, and use conditional maximum likelihood 

estimation (CMLE) to calibrate the parameters. In Section 5 we discuss the outlier-adjusted 
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Lee-Carter model, further explore the source of mortality jumps and justify the necessity of 

modeling mortality with jumps. In Section 6 we take the Swiss Re mortality bond (2003) as an 

example to illustrate how to use our mortality model and the Wang transform to price the Swiss 

Re mortality bond with the mortality index weighted by ages and correlated over time. 

Concluding remarks and discussions are provided in Section 7. 

 

2. Data descriptions and historical facts: further motivation 

Our data are from the National Center for Health Statistics (NCHS). The NCHS reports the 

age-adjusted death rate and age-specific death rate per 100,000 population (2000 standard) for 

selected causes of death from 1900 to 2003.1 Age-adjusted death rates are used to compare 

relative mortality risks across groups and over time; they are indices rather than direct measures. 

The age-specific death rates are tabulated for age 0, age group 1-4, then 10-year groups 5-14, 

15-24, up to 75-84, and the age group 85 and over. Selected causes include heart disease, cancer, 

stroke, influenza and pneumonia. 

Table 1 provides evidence of mortality improvement. Overall, the age-adjusted death rate by 

all causes decreased to 832.7 per 100,000 in 2003, which is 33.1% of the 1990’s level (2518.0 

per 100,000). However, the improving mortality has variant effects across age groups. The 

mortality rates for age group 1-4 fell to 1.6% of its initial value, but that for age group 85 and 

over only dropped to 55.9% of its initial value. These proportions differ by a factor of 35 at the 

extremes! A proper mortality model should capture this age-specific effect of mortality 

improving on all ages.  

 

                                                                 
1 Source: http://www.cdc.gov/nchs/datawh/statab/unpubd/mortabs.htm 
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Table 1: The mortality improvement by different age-groups, from 1990 to 2003 

Age 
groups 

1900 2003 Ratio Age 
groups 

1900 2003 Ratio 

All 2518.0 832.7 0.331 35-44 1023.1 201.6 0.197 

<1 16244.8 700.0 0.043 45-54 1495.4 433.2 0.290 

1-4 1983.8 31.5 0.016 55-64 2723.6 940.9 0.345 

5-14 385.9 17.0 0.044 65-74 5636.1 2255.0 0.400 

15-24 585.5 81.5 0.139 75-84 12330.0 5463.1 0.443 

25-34 819.8 103.6 0.126 >=85 26088.2 14593.3 0.559 

Note: The “all” row is the age-adjusted death rate by all causes per 100,000, from NCHS reports HIST293 and 
GMWK293R. The other rows are the age-specific death rates per 100,000, from NCHS reports HIST290 and 
GMWK290R. The mortality improvement ratio is calculated by the authors. 
 

The trend of mortality improvement is further demonstrated in Figure 1. Furthermore, 

Figure 1 compares the dynamics of age-adjusted death rates by all causes to that by influenza and 

pneumonia from 1900 to 2003. Although the death rates caused by influenza and pneumonia 

become small after 1950 (less than 0.00005), which makes the comparison difficult to visualize, 

we can still observe the similar pattern of fluctuations of death rates by all causes and by flu in 

the first half of the past century. The two graphs even jump at the same time, which is 

remarkably evidenced in year 1918. The correlation coefficient between the two trends is 0.9116, 

which also indicates a close correspondence between flu-caused deaths and all deaths. By our 

calculation, deaths caused by flu account for 9.4% of all deaths before 1950 in average, 3.4% 

from 1950 to 2003, and 6.3% for the whole period examined. In 1918, this proportion reaches its 

historic peak at 24.1%. The high correlation between the two graphs and high portion of deaths 

caused by flu suggest that we should not exclude flu events when modeling the mortality.  
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Figure 1: US age-adjusted death rate per 100,000 by all causes and by influenza and Pneumonia, from 1900 to 
2003.  

 
Note: Data are from NCHS reports HIST293 and GMWK293R 
 

The high correlation between deaths by flu and all deaths is more evident if we examine 

age-specific death rate data. We can calculate the correlation coefficient between death rates by 

all causes and death rates by flu across different age groups for each year from 1900 to 2003, 

which is shown in Figure 2. The correlation is above 0.95 for most of the time with only a few 

exceptions, and it averages to 0.9787. Interestingly, the correlation falls to the lowest value of 

0.86 in 1918, which indicates the 1918 Spanish flu has different effects on the death rates of 

different age-groups. The age-specific effect of this flu attack on death rates is revealed in more 

details in Table 2. The 1918 influenza pandemic raised the mortality rate by 30% overall. It 

affected the age groups 15-24 and 25-34 the most, whereas for individuals aged 55 and over the 
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death rates decreased a little bit. A proper mortality model should reflect the age-specific effect 

of short-term catastrophic shocks on mortality.  

Figure 2: Correlation coefficients between the age-specific death rates per 100,000 by all causes and that by 
Influenza and Pneumonia, each year from 1900-2003  

 
Note: Age-specific death rates are from NCHS reports HIST290 and GMWK290R. The correlation coefficients are 
calculated by the authors.  
 

Table 2: The change of death rates per 100,000 for each age group, from 1917 to 1919 

Age groups 1917 1919 Ratio Age groups 1917 1919 Ratio 

All 1397.1 1810 1.296 35-44 900.8 1339.3 1.487 

<1 10457.2 11167.2 1.068 45-54 1385.6 1524.1 1.1 

1-4 1066 1573.5 1.476 55-64 2678.6 2648.1 0.989 

5-14 256 412.8 1.613 65-74 5728.4 5505 0.961 

15-24 468.9 1070.6 2.283 75-84 12386.2 11295.7 0.912 

25-34 649.1 1643.5 2.532 >=85 24593.6 22213.5 0.903 

Note: Data are from NCHS report HIST290 and GMWK290R. The mortality improvement ratio is calculated by the 
authors. 
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3. Mortality modeling: the classical Lee-Carter Model 

Ever since Lee and Carter presented their original work in 1992, the Lee-Carter model has 

been widely used in mortality trend fitting and projection. The Census Bureau population 

forecast has used it as a benchmark for their long-run forecast of US life expectancy. The two 

most recent Social Security Technical Advisory Panels have recommended the adoption of the 

method, or forecasts consistent with it, by the Trustees. 

 Let txm ,  be the central death rate for age x  at time t , then the model decomposes this 

time series of age-specific death rates into two sets of age-specific constants xa  and xb , and a 

time-varying index tk . Mathematically, the Lee-Carter model can be represented as follows: 

(1)                                                       )ln( ,, txtxxtx ekbam ++=  

Where xa  represents the age pattern of death rates, xb  represents age-specific reactions to the 

time-varying index, and txe ,  is the error term which captures the age-specific effect not 

reflected in the model.  

The Lee-Carter model cannot be fitted by the ordinary least square approach, because all 

variables on the right side of the model are unobservable. Moreover, this model is obviously 

under-identified. To obtain a unique solution, we impose the normalization conditions such that 

the xb  terms sum to unity and the tk  terms sum to zero, i.e.,  

(2)                                                      0  and  1 == ∑∑
t

t
x

x kb  

Then xa  becomes the average value of )ln( ,txm over time, i.e.,  

(3)                                                             )ln( ,∑=
t

txx ma  

Lee and Carter suggest a two-stage procedure to solve this problem. In the first stage, the 

singular value decomposition (SVD) method is applied to the matrix of xtx am −)ln( ,  to obtain 

estimates of xb , and tk . In the second stage, the tk  factors are re-estimated by iteration, given 
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the values of xa  and xb  in the first step, such that the implied number of deaths equals to the 

actual number of deaths. 

( ) (4)                                              )exp(,∑ +=
x

txxtxt kbaPopD  

where tD  is the actual total number of deaths at time t , and txPop ,  is the population in age 

group x  at time t .  

Based on the U.S. mortality data for different age groups from 1900 to 2003, we implement 

this two-stage procedure, report the fitted values of xa , xb  for 11 age groups in Table 3, and 

plot the final estimates of the mortality index tk  in Figure 3. We can see that generally the 

mortality rates of young age groups respond more rapidly when the mortality index changes. As 

we expect, the mortality index tk  is decreasing over time, which shows the trend of mortality 

improvement. The big jump around 1918 indicates the severe influenza pandemic in that year.  

Table 3: Fitted value of xa  and xb (SVD) for the Lee-Carter model, from 1990 to 2003 

Age group 
xa  xb  

Under 1 -3.3935 0.14501 

1-4 -6.2072 0.19673 

5-14 -7.1833 0.14942 

15-24 -6.2877 0.10037 

25-34 -5.9837 0.10531 

35-44 -5.4745 0.085801 

45-54 -4.7734 0.060443 

55-64 -4.0071 0.046024 

65-74 -3.2289 0.041927 

75-84 -2.4146 0.040345 

85 over -1.6084 0.028619 
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Figure 3: Dynamics of the mortality index tk  for the Lee-Carter model, from 1990 to 2003 

 

 

4. Model tk  with a jump-diffusion process: permanent versus transitory effect? 

To make forecast of the future distribution of tk , we need to choose a suitable model to fit 

tk . Cox, Lin and Wang (2006) combine a geometric Brownian motion and a compound Poisson 

process to model the age-adjusted mortality rates for US and UK. We cannot apply their model 

here. First, the mortality index tk  decreases from positive to negative values. This property 

restrains us from modeling it with a geometric Brownian motion, because a geometric Brownian 

motion will never become negative when starting from a positive value. Instead, a process driven 

by a standard Brownian motion may be applicable. Second, Cox, Lin and Wang (2006) include 

jumps into the stochastic differential equation, which makes the jumps have permanent effects on 
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mortality rates. However, most of the mortality jumps, like the 1918 Spanish flu and the 2004 

earthquake and tsunami, are caused by short-term catastrophic events and have merely transitory 

effects on mortality rates. We can observe mortality rates pop up when the catastrophic events 

happen, and fall back to the normal level when the events end. We believe that a model with 

permanent jump effects is inappropriate for mortality modeling, especially for mortality 

securitization modeling. Therefore, in this section we model the mortality index tk  with a 

standard Brownian motion and a discrete Markov chain with jumps which only have transitory 

effects. For the purpose of comparison, we also present the model with permanent jump effects 

in the Appendix A. 

Let tN  be the total number of jumps during the time interval ),0( t . Suppose there is at 

most one jump event in each of time period ),( tht − , then tN  can be expressed as a discrete 

Markov chain with 00 =N  and transition path: 

(5)                                                   
1     ,

,1

⎩
⎨
⎧

−=
=+

=+ pprobN
pprobN

N
t

t
ht  

    Let htttht NNN −− −=],[  be the number of jumps occurring in the period ),( tht − , then 

],[ thtN −  is a Bernoulli random variable with probability of jump p . 

Let )(~ tk denote the mortality index when there are no jump events. It can be driven by a 

standard Brownian motion: 

(6)                                                           )(~
tdWudttkd σ+=  

where u  and σ  are the instantaneous rate of change and the instantaneous volatility of the 

mortality index when there are no jumps, and tW  is a standard Brownian motion with mean 0 

and variance t .  

If a jump occurs in the interval ),( tht − , i.e., 1],[ =− thtN ,  we assume the jump size ],[ thtY −  
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are identically independently distributed normal variables with mean m  and standard 

deviation s , and ],[ thtY −  is independent of the Brownian motion tW . The jump ],[ thtY −  makes 

the actual mortality index )(tk  change from )(~ tk to ],[)(~
thtYtk −+ . That is,  

(7)                                                                 )(~)( ],[ thtYtktk −+=  

If there is no jump in the interval ),( tht − , i.e., 0],[ =− thtN , we know that: 

(8)                                                                        )(~)( tktk =  

(7) and (8) can be combined and written in one equation: 

(9)                                                       )(~)( ],[],[ thttht NYtktk −−+=  

Therefore, the dynamics of the mortality index )(tk  can be completely expressed as:  

(10)                                                    
)(~)(

)(~

],[],[⎪⎩

⎪
⎨
⎧

+=

+=

−− thttht

t

NYtktk

dWudttkd σ
 

By integrating the first equation in (10) from t  to ht + , we get 

(11)                                       ,][)(~)(~
tht WWuhtkhtk −++=+ +σ  

From the second equation in (10), we can derive 

    ],[],[)(~)( htthtt NYhtkhtk ++++=+   

           ],[],[][)(~
htthtttht NYWWuhtk +++ +−++= σ  

           ],[],[],[],[ ][)( htthttthtthttht NYWWuhNYtk +++−− +−++−= σ                    (12)             

Let )()( tkhtkzt −+= . If we have a time series of K  observations of )(tk , there will be 

1−K  observations of z ’s values with time interval equal to h=1. tz  and htz +  can be 

expressed as: 

],[],[],[],[][ thtththtthttthtt NYNYWWuhz −−+++ −+−+= σ ,                             (13) 

],[],[]2,[]2,[2 ][ htthtthththththththt NYNYWWuhz +++++++++ −+−+= σ ,                     (14) 

If 0],[ =+httN , then tz  is independent on htz + . If 1],[ =+httN , then tz  is correlated with 
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htz +  because of the ],[ httY +  part. We cannot use the traditional maximum likelihood estimation to 

calibrate the parameters when the data are not independent. 2 Instead, we should use conditional 

probability to derive the log-likelihood function, which is so-called Conditional Maximum 

Likelihood Estimation (CMLE). Detailed derivation of the log-likelihood function is included in 

Appendix B. 

Table 4: Parameter estimates via Maximum Likelihood Estimation, using mortality data from 1900 to 2003 

Model with jumps-transitory effect: Ln(likelihood) = -62.52 

Parameter Estimate Parameter Estimate 

u  -0.2173 σ  0.3733 

m  0.8393 s  1.4316 

p  0.0436   

Model with jumps:-permanent effect 

Parameter Estimate Parameter Estimate 

u  -0.2172 σ  0.3872 

m  -0.3062 s  2.3133 

p  0.0396   

Model without jumps: Ln(likelihood) = -94.27 

Parameter Estimate Parameter Estimate 

u  -0.2172 σ  0.6043 

Likelihood Ratio Test (LRT) statistics = 63.49 
Note: The critical value for the chi-square distribution (d.f =3, alpha=0.01) is 11.34. Therefore, our likelihood ratio test rejects the 
model without jump at the significance level of 0.01.  
 

The upper panel of Table 4 reports the parameter estimates for the model with transitory 

jump effects. The expected rate of change of the mortality index, u , is -0.2173, which implies 

                                                                 
2 Lin and Cox (2006) try to combine a geometric Brownian motion with a Markov chain to capture the transitory 
effect of mortality jumps. However, they don’t take into account the correlations of the data, which may bring big 
errors in their maximum likelihood estimation and cause the estimation results to deviate from the true values. If we 
don’t consider the correlations of the data, then the parameter estimates are u = -0.2172, σ = 0.4018, m = 
-3.2391, s = 0, p = 0.0098. 
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the mortality index tk  decreases by -0.2173 per year on average. The negative sign of u  is 

consistent with the fact that the U.S population mortality improves over time. The instantaneous 

volatility is equal to 0.3733. The probability that there is a jump in a given year is equal to 

0.0436.  

We also estimate the parameters for the model with permanent jump effects3, the results of 

which are shown in the middle panel of Table 4. The instantaneous mean and volatility of the 

mortality index are roughly the same as before, while there are significant differences in the 

mean and variance of the jump severity distribution between two models. The frequency of 

jumps decreases from 0.0436 to 0.0396. We will show later that modeling jumps to have 

permanent effects brings a large pricing error in the mortality securitization. 

The estimation results for the model without jumps are in the lower panel of Table 4. The 

instantaneous mean of the mortality index is unchanged, while the instantaneous volatility 

increases to 0.6043, which is an increment by 61 percent, because the model without jumps 

incorporates the variations caused by the jump process into the volatility term. We report the 

values of the log-likelihood functions for the model with transitory jump effects and for the 

model without jumps in Table 4, and perform the likelihood ratio test. Our test result rejects the 

model without jumps at the significance level of 1%. 

 

5. Evidence from the outlier-adjusted Lee-Carter Model: Do outliers matter? 

We have already shown that a jump-diffusion process fits the mortality index better than the 

model without jumps. Our next question is where the mortality jumps come from. Before 

answering this question, we need to briefly review the work done by Li and Chan (2005, 2007). 

                                                                 
3 See Appendix A for the model setup of the model with permanent jump effects. 
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They argue that mortality series are often contaminated with discrepant observations, which may 

result from recording or typographical errors, or from non-repetitive exogenous interventions, 

such as pandemics or hostilities. In order to reveal the “true” mortality trend, they perform a 

systematic time-series outlier analysis for the mortality data in US and Canada, and fit the 

adjusted outlier-free mortality series to the Lee-Carter model. For the US data from 1900 to 2000, 

they find 7 outliers, which occurred in year 1916, 1918, 1921, 1928, 1936, 1954 and 1975, 

respectively. These outliers are closely related to or resulted from influenza epidemics according 

to their explanations, except for the data in 1954 and 1975.  

So do the mortality jumps in our model mainly come from the flu events? Do these outliers 

really stand outside the mortality trend? We delete the outliers found by Li and Chan from our 

original mortality data, estimate the mortality index tk  again (Figure 4), and compare the 

results of the model with transitory jump effects and that without jumps (Table 5). We can see 

that after eliminating the outliers the mortality index tk  declines more smoothly and doesn’t 

show significant jumps in the evolution process. In addition, when we fit the mortality index 

using the model with transitory jump effects, the probability of a jump in a given year p becomes 

zero, which actually makes the model with jumps indifferent with the model without jumps. We 

therefore infer that the mortality jumps in our model arise from these so-call “outliers”, which 

are mostly caused by flu epidemics. 
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Figure 4: Dynamics of the mortality index tk  for the outlier adjusted Lee-Carter Model, from 1990 to 2003 

 
Note: Mortality data in year 1916, 1918, 1921, 1928, 1936, 1954, and 1975 are deleted according to the outliers 
analysis of Li and Chan (2007) 
 
Table 5: Parameter estimates via Maximum Likelihood Estimation, using the adjusted outlier-free mortality 
data from 1900 to 2003 

Model with jumps-transitory effect: Ln(likelihood) = -48.38 

Parameter Estimate Parameter Estimate 

u  -0.2317 σ  0.4005 

m  -0.3774 s  0.9316 

p  0   

Model without jumps: Ln(likelihood) = -48.38 

Parameter Estimate Parameter Estimate 

u  -0.2317 σ  0.4005 

Likelihood Ratio Test (LRT) statistics =0 
Note: Based on our Likelihood ratio test, we cannot reject the model without jumps at the 99% significance level. 
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Actually, for the model with transitory jumps effects the estimated values of m , s  , and p are not very stable if 

we choose different initial values. However, the value of the log-likelihood function remains unchanged. 
 

Is it appropriate to exclude the outliers when we model the death rates for pricing 

mortality-linked securities? As Chan (2002) recognizes, “Whether or not it is appropriate to 

adjust the data for outliers depends on the purpose to which the model so derived will be used… 

If…the model will be used in an application for which extreme stochastic fluctuations are 

important (such as pricing catastrophe risks…), then a model which is sympathetic to outliers in 

the data ought to be used.”4 We have witnessed the high correlation between deaths caused by 

flu and deaths by all reasons in data section, and recognized that mortality jumps mostly result 

from influenza epidemics. We conclude that outliers should not be neglected and that mortality 

jumps should be explicitly modeled in mortality securitization, since the rationale behind selling 

or buying mortality securities is to hedge mortality risks. Besides, historic data shows that 

influenza pandemics happen with frightening regularity, occurring every 30 to 50 years (Knapp, 

2006). We should not view the pandemic as a one-time event which will never happy again.  

 

6. Example of pricing mortality securities: the Swiss Re mortality bond 

In general, there are two types of mortality risks we need to consider. The first is longevity 

risk, which refers to the uncertainty in future improvement in mortality rates. If the realized 

mortality rate is much lower than the assumed mortality rates in the premium pricing and reserve 

calculating, life annuity providers will incur large losses. The EIB/BNP longevity bond offered in 

November 2004 was designed as a hedge for pension plans and other annuity providers. 

Although it failed to generate sufficient demand to be launched, it did attract public attention and 

                                                                 
4 See Chan (2002), page 559-560 
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provided an instructive case study.  

The second mortality risk is short-term catastrophe shocks, which are caused by 

catastrophic events and result in much higher mortality rates than would normally be 

experienced. The 1918 Spanish flu killed up to 50 million people worldwide and 500,000 in the 

United States (Rasmussen 2005). The earthquake and tsunami in 2004 resulted in 300,000 dead 

and missing across southern Asia and eastern Africa (Cox, Lin and Wang 2006). The Swiss Re 

mortality bond issued by the Swiss Reinsurance company in 2003 is an example of a 

securitization designated as a hedge for life insurers. It expanded Swiss Re’s capacity to pay 

catastrophe mortality losses. 

Modeling mortality jumps seems more important for securities linked to short-term 

catastrophic risks. Ignoring mortality jumps may cause us to underestimate the probability of 

having a catastrophic event, and overestimate the variation of the mortality index (see Table 4) at 

the same time, which may bring large errors in pricing mortality-linked securities and calculating 

the risk premium. We, therefore, take the Swiss Re mortality bond (2003) as an example to show 

how to apply the model here to mortality securitization. 

The Swiss Re mortality bond and the pricing difficulties 

The Swiss Reinsurance company is the second largest reinsurance company in the world. In 

order to reduce its exposure to catastrophic mortality risks, it issued its first pure mortality bond 

of $400 million in December 2003. The bond matured on 1 January 2007. Coupons are paid 

quarterly at a rate of three-month U.S. dollar LIBOR plus a spread of 135 basis points. However, 

the principal is at risk and depends on a weighted average of the mortality index across five 

countries and different age-groups.5 If the mortality index does not exceed 1.3 times the 2002 
                                                                 
5 The five countries are U.S., U.K., France, Italy and Switzerland. The weights assigned to each country are: U.S. 
70%, U.K. 15%, France 7.5%, Italy 5%, Switzerland 2.5%. 
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base level during any of the three years, the principal is fully repayable. Otherwise, the investors 

will receive a reduced principal repayment if the mortality index exceeds this threshold, and will 

get nothing back if the index is above 1.5 times the base level. Let tq  denote the weighted 

average mortality index at year t ( t =2004, 2005, 2006), and 0q  be the 2002 base level of the 

mortality index, then the payoff schedule of this bond is shown as follows: 
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There are two difficulties we need to deal with in order to value the Swiss Re mortality 

bond. First, the mortality index defined in the contract is a weighted average across five 

countries. The correlation of mortality risks across countries makes the pricing problem difficult. 

Cox, Lin and Wang (2006) solve this problem by adopting the normalized multivariate 

exponential tilting to take into account correlations across countries. Second, the principal 

repayment of the Swiss Re mortality bond is based on the experience of the mortality index in 

three consecutive years. The correlation of the mortality index over time makes the problem even 

more difficult. Cox, Lin and Wang (2006) take the maximum of the mortality index in three 

years and link the principal repayment to this maximum value. In this way, they actually ignore 

the correlation over time and change the multiple-period problem into a single-period problem. 

In this paper, we adopt the Wang transform and find a way to take into account correlations 

of the mortality index over time. For simplicity, we assume the mortality index only depends on 
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the US mortality rate which is a weighted average of the age-specific mortality rates, by the year 

2000 standard population. However, our derivation can be extended to the mortality index 

weighted by countries and age-groups, which can be done by the multivariate exponential tilting, 

for example.  

Pricing the Swiss Re via the Wang transform on paths 

As mentioned in the introduction section, the Wang transform has been widely used as a 

universal framework for pricing financial and insurance risks. Assumed that the true underlying 

probability distribution is known without ambiguity, for a given asset X  with cdf )(xF , the 

Wang transform will produce a risk-adjusted cdf )(* xF : 

(17)                                                      ],))(([)( 1* λ−ΦΦ= − xFxF  

where Φ  is the standard normal cumulative distribution and the parameter λ  is the market 

price of risk, reflecting the level of systematic risk.  

After we obtain the risk-adjusted distribution )(* xF , we can calculate the expectation of X  

under )(* xF , which is denoted by ][* XE . Further discounting this value back to time zero 

using the risk-free interest rate, we can get the fair value of the asset X . 

   One important feature of the Wang transform is that it preserves the normal and lognormal 

distribution, which enables it to replicate the CAPM if the return for an underlying asset has a 

normal distribution and recover the Black-Scholes formula if the return for the underlying asset 

is lognormally distributed. Specifically, if X  has a normal ),( 2σμ distribution under the 

physical measure P , then after the Wang transform X  is also normally distributed with 

λσμμ +=*  and σσ =*  under the risk-adjusted measure Q . If X  has a lognormal 

),( 2σμ distribution under P , then X  is still a lognormal variable with λσμμ +=*  and 

σσ =*  under Q . 
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Recall that in the model section, we work with the following dynamics under the physical 

probability measure P : 
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Assuming the Brownian motion tW , the jump severity Y , and the jump frequency N  are 

independent with each other, we can apply the Wang transform to tW , Y , and N  respectively. 

Under the risk-adjusted measureQ , *
tW  is normally distributed with mean t1λ  and variance t , 

*
],[ thtY −  is normally distributed with mean sm 2λ+  and variance 2s , and *

],[ thtN −  is a Bernoulli 

random variable with the probability of jumps *p , where ])1([1 3
1* λ−−ΦΦ−= − pp .6 7 

Mathematically, the dynamics of the mortality index under Q  becomes: 
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Here the parameter 1λ , 2λ  and 3λ  represent the market prices of risk associated with the 

Brownian motion, the jump severity and the jump frequency, respectively. Because we have an 

incomplete market for mortality-linked securities, the values of 1λ , 2λ  and 3λ , and thus the 

choice of the risk-adjusted measure Q , are not unique. 

Pricing procedures and results 

                                                                 
6 Here we denote the variables after the Wang transform with subscript *, which indicates that the distribution of the 
variable changes in the risk-adjusted measure. We DO NOT mean that we get a new variable.  
7 Note that the market price of risk increases with the time horizon, i.e., t1λλ = , where 1λ  represents the 

market price of risk per annum. ),(~),*(~),*(~ 11
* ttNtttNttNWt λλλ . See Wang (2002) for more 

detailed discussion on this issue. 
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We follow the procedure below to calculate the market prices of risk of the Swiss Re 

mortality bond (2003) based on the Wang transform. 

1. Because the mortality index )(tk  is correlated over time, we cannot simulate )(tk  for 

each year independently. We need to simulate the path of the mortality index )(tk  ( =t  2004, 

2005, and 2006). We do this by 10,000 times, using the jump-diffusion process (18) and the 

parameter estimates shown in the upper panel of Table 4. 

2. We use the Wang transform, change from the physical probability measure P  to the 

risk-adjusted probability measure Q , and calculate the values of )(* tk  on each path under Q  

using equation (14), given initial values of the market prices of risk 1λ , 2λ  and 3λ .  

3. We calculate the mortality rates for different age groups by the formula 

)exp( **
, xtxtx bkam +=  under Q . The year 2000 standard population and corresponding weights 

are used to compute the weighted average mortality index *
tq  under Q  for each year. 8 

4. We calculate the loss percentage, *
tloss , under Q  by the equation (16), and compute the 

risk-adjusted expected value of the principal repayment of the Swiss Re mortality bond as of the 

period T . 
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5. We discount the coupon payments each period and the principal repayment back to the 

beginning of year 2004, using the risk-free rate9. Letting the discounted expected payoff equal to 

                                                                 
8 The year 2000 standard population and corresponding weights can be obtained from the technique notes of the 
NCHS report GMWK293R. The weight is 0.013818 for age under 1 year, 0.055317 for age 1-4, 0.145565 for age 
5-14, 0.138646 for age 15-24, 0.135573 for age 25-34, 0.162613 for age 35-44, 0.134834 for age 45-54, 0.087247 
for age 55-64, 0.066037 for age 65-74, 0.044842 for age 75-84, 0.015508 for age 85 and over. 
9 We use the US Treasury yield rates on December 30, 2003 as the risk-free rates. We calculate the coupon payment 
by assuming it is paid annually, because we don’t have quarterly data for US Treasury yield rates.  
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the issue size of the Swiss Re mortality bond $400,000,000, we can obtain the market prices of 

risk, 1λ , 2λ  and 3λ , via the numerical iteration such as the Quasi-Newton method. 

Note that we have one mortality bond price and need to estimate three market prices of risk. 

Therefore, we cannot solve 1λ , 2λ  and 3λ simultaneously. As Cairns, Blake and Dowd (2006b) 

demonstrate, we can estimate 1λ , 2λ  and 3λ  by fixing two of them and then solving for the 

third. We can also assume the market prices of risk are equal, i.e., λλλλ === 321 , and solve 

for λ  consequently, which is the method used by Cox, Lin and Wang (2006). 10 

Table 6: Estimated market prices of risk for different models 

1λ  5.1449 0 1.5000 

2λ  0 3.4808 1.5000 Model with transitory jumps 

3λ  0 0 1.5000 

1λ  4.6408 0 0.8072 

2λ  0 2.0006 0.8072 Model with permanent jumps 

3λ  0 0 0.8072 

Model without jumps 
1λ  2.9921   

Based on the par spread of the Swiss Re bond 1.35%, the estimated market prices of risk for 

different models are shown in Table 7.11 What we estimate here are the market prices of risk 

associated with the Brownian motion, the jump severity, and the jump frequency for the 
                                                                 

10 The purpose of this paper is to propose an appropriate mortality model and develop a valuation strategy to 
account for the pricing difficulties of the Swiss Re Mortality bond. For simplicity, we only consider one transaction 
happened in 2003. Actually, the Swiss Reinsurance company issued another 3 transactions of mortality bonds in 
2006. Our model and pricing strategy can be easily extended to multiple-transaction situations. We can find 

optimal 1λ , 2λ  and 3λ  by minimizing the target function 2
321 ]),,(ˆ[ ii PP −∑ λλλ  , where ),,(ˆ

321 λλλiP  

is the modeled price of the i th issue depending on the parameters 1λ , 2λ  and 3λ , and iP  is the actual market 

quotes for the i th transaction. 
 
11 We don’t report the case where there is only systematic risk associated with the jump frequency. For the model 
with transitory jumps, our estimation results show that it is not enough to adjust the distribution of the jump 
frequency.  
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mortality index )(tk , instead of the true mortality rates. Because the mortality index )(tk has a 

much larger scale than the true mortality rates ( )(tk  changes from 10.6 in 1900 to -11.8 in 2003, 

and the age-adjusted mortality rate changes from 0.02518 in 1990 to 0.00833 in 2003), it is not 

surprised to see that the market prices of risk estimated in our paper have such high values.  

Under the model with transitory jump effects, if we assume that the risk associated with the 

jump process is diversifiable, i.e., 032 == λλ , the market price of risk associated with the 

Brownian motion is 5.1449. If there is no systematic risk of the Brownian motion and the jump 

frequency, i.e., 031 == λλ , the market price of risk associated with the jump severity is 3.5004. 

Of course, these can be regarded as the extreme cases. If we assume λλλλ === 321 , we can 

solve for 5.1=λ . 

We also notice that when we switch to the model with permanent jump effects, the 

estimated market prices of risk drop dramatically in each case. This can be explained by the large 

difference in the volatility of the jump severity distribution and the difference in the intrinsic 

model setup. First, if we model mortality jumps to have permanent effects, the jump effects 

accumulate over time. The forecasted mortality rates are thereby more inclined to reach the 

predetermined threshold level, which indicates the risk on the principal repayment is higher. 

Second, from Table 4 the volatility of the jump severity is 2.3133 in the model with permanent 

jump effects, while it is 1.4316 in the model with transitory jump effects. The higher volatility of 

the jumps in the former model raises the risk further. When the par spread of the Swiss Re is 

fixed at 1.35%, the higher risk imposed on the principle repayment, the lower market price of 

risk we estimate. Therefore, modeling the mortality with permanent jump effects leads to a large 

distortion of the market prices of risk.  

We come to the model without jumps at last. The estimated market price of risk associated 
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with the Brownian motion is 2.9921, which is much lower than that for the model with jumps, 

whether the jumps have permanent effects or transitory effects. The model without jumps 

overestimates the variation of the mortality index while underestimating the probability of 

catastrophic events. We suspect that the effect of overestimating the variation predominates the 

effect of underestimating the catastrophic probability, which brings down the market price of risk 

associated with the Brownian motion. 

 

7. Conclusion and discussion 

In this paper, we have a deep discussion in mortality modeling and mortality-linked security 

pricing. A good stochastic mortality model for pricing mortality securities should meet the 

following criteria, while none of the previous research addresses all these problems. 

1. The model should capture both the mortality trend over time and the age-specific changes 

for different age groups. Modeling the age-adjusted mortality rates is not enough, because the 

payoffs of mortality securities are sometimes linked to a mortality index based on different age 

groups.  

2. The model should incorporate a mortality jump process explicitly. Mortality jumps 

caused by short-term catastrophic events, such as the 1918 Spanish Flu, cannot be ignored 

because the rationale of mortality securitization is to hedge mortality risks. 

3. Mortality jumps should have transitory effects on mortality rates. It is inappropriate to 

model mortality jumps having permanent effects, especially when we value mortality bonds, 

because most of mortality jumps are caused by short-term catastrophic events and the effects 

should fade away after one or several periods. 

4. The model with transitory jump effects introduces correlations of the data. When 
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estimating the parameters in the model, we cannot simply assume the data are independent and 

use the traditional maximum likelihood estimation. 

We extend the work of Cox, Lin and Wang (2006), and address all problems mentioned 

above in this paper. We make the first attempt to incorporate a jump process into the Lee-Carter 

model and discuss in detail how to model the mortality index )(tk with transitory jump effects. 

Secondly, we derive the conditional log-likelihood function and estimate the parameters via the 

approach of Conditional Maximum Likelihood Estimation (CMLE), provided that the data are 

correlated over time. We show that big estimation errors occur if we assume data are 

independent, which is the problem in Lin and Cox (2005). Thirdly, we compare the model with 

permanent jump effects to that with transitory jump effects, and present how the difference will 

cause a large pricing distortion. Finally, our article contributes to the existing literature by 

showing how to account for correlations of the mortality index over time when pricing the Swiss 

Re mortality bond (2003). The basic idea is to simulate the paths of the mortality index and 

change measures on paths.  

A line of future research may focus on how to decide an “optimal” transform in an 

incomplete market. As suggested by Cox, Lin and Wang (2006), although the change of 

measures is not unique in an incomplete market, we can try to apply the minimum martingale 

transform to find a strategy that minimizes the variance of the payoff risk. Secondly, we ignore 

the issue of parameter uncertainty in this paper. We simulate the mortality index using estimates 

of the parameters, assuming these parameter estimates are true values without ambiguity. 

Another line of further research is to relax this assumption and consider the valuation and 

hedging of mortality securities under parameter uncertainty.  
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Appendix A: log-likelihood function of the model with permanent jump effects 

If we assume that the jump events have permanent effects on mortality modeling, the 

dynamics of )(tk  can be expressed as: 
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It can be simplified to: 
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By integrating both sides from t  to ht + , we can get 
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The density function of tz , denoted by )( tzf , can be written in terms of conditional 

probabilities: 
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If we have a time series of K  observations of )(tk , there will be 1−K  observations of 

z ’s values with time interval equal to h=1. The log-likelihood function can be expressed as 

follows: 
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Appendix B: log-likelihood function of the model with transitory jump effects 

Recall in section 4, we have 

],[],[],[],[][ thtththtthttthtt NYNYWWuhz −−+++ −+−+= σ ,                            (B.1) 

],[],[]2,[]2,[2 ][ htthtthththththththt NYNYWWuhz +++++++++ −+−+= σ ,                    (B.2) 

If 0],[ =+httN , then tz  is independent on htz + . If 1],[ =+httN , then tz  is correlated with 

htz +  because of the ],[ httY +  part. Under the conditional maximum likelihood estimation, the 

likelihood function can be obtained as follows: 

    ),...,( 121 −Kzzzf  

    ),...,,(),...,( 2212211 −−−= KKK zzzfzzzzf  

    ),...,(),...,()( 321321221 −−−−−= KKKKK zzzfzzzzfzzf  

    )()()...()( 1123221 zfzzfzzfzzf KKKK −−−−= ,                                  (B.3) 

Therefore, the log-likelihood function is: 

    ),...,(ln 121 −Kzzzf  

    )(ln)(ln...)(ln)(ln 1123221 zfzzfzzfzzf KKKK ++++= −−−− ,                     (B.4) 

Next, we will derive )( tht zzf + and )( 1zf  respectively.  

If 0],[ =+httN , then )][ ]2,[]2,[2 hththththththt NYWWuhz +++++++ +−+= σ .                   (B.5) 

)0,0( ]2,[],[ == ++++ hththttht NNz  will be normally distributed with mean uhM nn = , and 

variance hSnn
22 σ= . )1,0( ]2,[],[ == ++++ hththttht NNz  will be normally distributed with mean 

muhM ny += , and variance 222 shSny += σ .  
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If 1],[ =+httN , we add equations (B.1) and (B.2) together and simplify to get: 

],[],[]2,[]2,[2 ][2 tktthththththtthttht NYNYWWuhzz −−++++++ −+−++−= σ ,                      (B.6) 

If no mortality jump event occurs during the period ),( tht −  and )2,( htht ++ , the 

variable )0,1,0,( ]2,[],[],[ === +++−+ hththttthttht NNNzz will be normally distributed with mean 

uhzM tnyn 2+−=  and variance hSnyn
22 2σ= .  

Similarly, )0,1,1,( ]2,[],[],[ === +++−+ hththttthttht NNNzz will be normally distributed with 

mean muhzM tyyn −+−= 2  and variance 222 2 shS yyn += σ . 

)1,1,0,( ]2,[],[],[ === +++−+ hththttthttht NNNzz  will be normally distributed with mean 

muhzM tnyy ++−= 2  and variance 222 2 shSnyy += σ . 

)1,1,1,( ]2,[],[],[ === +++−+ hththttthttht NNNzz  will be normally distributed with mean 

uhzM tyy 2+−=  and variance 222 22 shS yy += σ . 

The conditional density function of tht zz + , denoted by )( tht zzf + , can be written as: 

)( tht zzf +  

)0,0Pr()0,0( ]2,[],[]2,[],[ ===== +++++++ hththtthththttht NNNNzf  

)1,1Pr()1,0( ]2,[],[]2,[],[ ====+ +++++++ hththtthththttht NNNNzf  

)0,1,0Pr()0,1,0,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf

)0,1,1Pr()0,1,1,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf  

)1,1,0Pr()1,1,0,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf  

)1,1,1Pr()1,1,1,( ]2,[],[],[]2,[],[],[ ======+ +++−+++−+ hththttththththttthttht NNNNNNzzf  
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The variable )0,0( ]2,1[]1,0[1 == NNz  will be normally distributed with mean uhM nn =ˆ , 

and variance hSnn
22ˆ σ= .  

The variable )0,1( ]2,1[]1,0[1 == NNz  will be normally distributed with mean muhM yn −=ˆ , 

and variance 222ˆ shS yn += σ  

The variable )1,0( ]2,1[]1,0[1 == NNz  will be normally distributed with mean muhM ny +=ˆ , 

and variance 222ˆ shSny += σ  

The variable )1,1( ]2,1[]1,0[1 == NNz  will be normally distributed with mean uhM yy =ˆ , and 

variance 222 2ˆ shS yy += σ  

The density function of 1z , which is denoted by )( 1zf , can be written as: 

)( 1zf  

)0,0Pr()0,0( ]2,1[]1,0[]2,1[]1,0[1 ===== NNNNzf  

)0,1Pr()0,1( ]2,1[]1,0[]2,1[]1,0[1 ====+ NNNNzf  

)1,0Pr()1,0( ]2,1[]1,0[]2,1[]1,0[1 ====+ NNNNzf  

)1,1Pr()1,1( ]2,1[]1,0[]2,1[]1,0[1 ====+ NNNNzf  
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Substituting the formulas of )( tht zzf + and )( 1zf  into the log-likelihood function (B.4), 

we can calculate the log-likelihood function numerically.  


