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Abstract 
 

In this paper, we fit the model of 
)]exp(1[ ctb

ay
−+

=   to the actual data of 

cumulative cases from the 2003 SARS outbreak. The model proves a good fit for 

the four areas we examine, China (mainland), Canada, Hong Kong and Singapore, 

as evident from the high R2 values and the randomness of the residuals.  

 

In addition, we obtain second order derivatives of our curve fits and propose the 

use of T*, the time in days taken to slow the rate of the increase in the number of 

cumulative SARS cases, as a measure of the effectiveness of control measures in 

each country.   

 

We then incorporate explanatory variables to link the model parameters to 

economic and demographic indices of areas hit heavily by SARS. The work 

enables prediction of the future behavior of SARS or other epidemics should they 

ever strike again.  

 

mailto:bizchenr@nus.edu.sg
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1. Background  

 

The Severe Acute Respiratory Syndrome (SARS) epidemic in 2003 affected as many as 29 

countries across the world and was the first severe contagious disease to emerge in the 21st 

century (World Health Organization, 2004a).  This new disease sparked numerous researches 

into the epidemiology of SARS, unveiling transmission dynamics of the disease and the impact 

of control measures1. Even though all human chains of SARS transmission had been declared 

successfully contained in July 2003, four new cases in Beijing and Anhui Province, China were 

reported in April 2004 (World Health Organization, 2004b). These new cases, which were 

subsequently contained, raised serious concerns about the possible future re-emergence of the 

outbreak.  

 

2. Motivation 

 

Among numerous researches conducted on SARS, a few have attempted to model the cumulative 

incidence of cases attributed to SARS during the global outbreak in 2003, but very few have 

carried out the study on a global scale.  If the SARS outbreak were to re-emerge, such a model 

will be useful in predicting the cumulative cases and deaths that may arise. The emergence of the 

avian influenza in early 2004 has sparked warnings of a possible pandemic. The World Health 

Organization (WHO) asserted that it could take years to eliminate the avian influenza from the 

environment while recent findings reported its widespread occurrence across poultry and wild 

birds in Asia (2004c). The model derived from the SARS outbreak will be helpful to examine 

other diseases such as the avian influenza.  

 

In this study, we examine SARS data from Singapore, Canada, Hong Kong, Taiwan and China 

and propose a model for the SARS outbreak. Following which, we examine the validity of our 

model using these data and analyze the resulting curve fits using R2 and residual analysis. 

Economic and demographic explanatory variables are then introduced to enable predictive 

function of the model.  Implications of the findings will be discussed, before we end off with the 

limitations of this study. 

                                                 
1 See Lipsitch et al. (2003) and Ghani et al. (2005) 
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3. Data and Methodology 

 

We gather data from the World Health Organization (2005), the Ministry of Health Singapore 

(2004) and the Public Health Agency of Canada (2003) on the cumulative SARS cases in five 

regions: Singapore, Canada, Hong Kong, China (mainland) and Taiwan. These regions were 

chosen based on their high number of cumulative cases ranging from 238 (in Singapore) to 5327 

(in China) (World Health Organization, 2004a), as well as the availability of the data required.  

 

After examining the data, we find the figures on the number of cumulative cases in Taiwan to be 

unreliable for modeling due to the many errors in the initial estimation of probable SARS cases. 

Out of over 600 cumulative cases, 325 cases (about 50%) were discarded (World Health 

Organization, 2004a). Because these discarded cases are a substantial percentage of the total, and 

we do not have data on the dates these discarded cases were first labeled as probable SARS 

cases, we are not able to make a reliable model based on the available data. Hence, Taiwan is 

omitted from this project.  

 

Thanks to the availability of epidemic curves of the SARS outbreaks in Singapore and Canada 

from their public health authorities, the graphs of cumulative cases that we generate for these two 

countries represent the number of cumulative cases by symptom onset date. In contrast, as 

epidemic curves of the SARS outbreaks in Hong Kong and China are unavailable in local 

reports, we turn to the cumulative SARS cases reported by WHO, though one must be reminded 

of the possible time lag between symptom onset and reporting of a new probable SARS case. 

 

3.1 Fit each region separately with no explanatory variables 

 

With varying periods of outbreaks, the start dates of t=0 are fixed as the onset date of the first 

probable SARS case in each region.  

 

The ending date for the regression is set at 20 days after the onset of the last probable SARS case 

as defined by WHO as the date marking the containment of the disease and a break to the 
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human-to-human transmission chain of SARS. Table 1 summarizes the various dates of the first 

and last cases, as well as the end dates of our regression: 

 

Table 1: Summary of First and Last Cases and Ending Dates for Regression 
 

Cumulative cases 
Regions First case, 

t=0 
Last case End date for 

regression 
Singapore Feb 25, 2003 May 5, 2003 May 25, 2003
Hong Kong Feb 15, 2003 May 31, 2003 Jun 20, 2003

Feb 23, 2003 Apr 19, 2003 May 9, 2003Canada 
Apr 20, 2003 Jun 12, 2003 Jul 2, 2003

China  Nov 16, 2002 Jun 3, 2003 Jun 23, 2003
  
 

Researchers have contributed in the area of epidemic modeling following the 2003 SARS 

outbreak. Brauer (2005) reviews and updates the so-called Kermack-McKendrick approach and 

its application to general epidemic models. Hsu and Roeger (2007) introduce “a basic 

reproductive number” to establish the relation between the final susceptible population and the 

initial susceptible population. Massad et al. (2005) design a deterministic mathematical model of 

the susceptible-infected-recovered type to analyze the impact of control measures against SARS 

and validate their model using the SARS data of Hong Kong, China and Toronto, Canada. A 

similar research is conducted by Zhang (2007) for the analysis of SARS data of the mainland of 

China.  

Of previous works, several papers (for example, Brauer (2005), Zhang (2007) and Rozema 

(2007)) identify that the development pattern of SARS in terms of cumulative cases can be 

modeled by the logistic function 
)exp(1 ctb

ay
−+

= . These works are all focused on examination 

of SARS data of one single region. The current paper makes use of the information from 

multiple regions. 
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With the accumulation of data, graphs of the cumulative cases are plotted against time. The 

plotting is done to determine the approximate shape of the SARS trends. Plot points 

corresponding to data which are not reported on certain days are classified as missing data and 

these points are eliminated. Also, upon examination of the epidemic curve of the SARS outbreak 

in Canada, we spot two waves of the outbreaks, one starting on February 23, 2003 and the other 

starting around April 20, 2003. The first wave was started by a woman returning to Toronto from 

Asia while the second phase was reportedly evolved among nurses and visitors who had been in 

close proximity to an elder patient first admitted to hospital for a fractured pelvis (Centers for 

Disease Control and Prevention, 2003). As a result, we generate two curve fits for the cumulative 

SARS cases to correspond to the two separate outbreaks in Canada.  

 

Following previous research and the hint revealed by the curve of raw data, we adopt logistic 

curve to model the cumulative number of cases. Specifically, let y be the number of cases by 

time t, M the ultimate cumulative number of cases, then M-y denotes the number of cases yet to 

be developed. The product of y and M-y hence is the total number of possible contacts between 

the two groups. Assuming the growth rate of case number is proportional to the number of 

contacts between the two groups we have 

)( yMy
M
r

dt
dy

−=  

where r is a constant. Solving the equation for y we obtain the logistic curve. 

 

For each region the model is    

                                                 
)exp(1, tcb

a
y

ii

i
ti −+
=                                            (1) 

 

where i denotes the region and t the number of days after the first onset. 

 

We perform preliminary analysis to establish the best fitting curves to the observed data through 

non-linear regression. Residuals and goodness-of-fit statistics are obtained to further analyze the 

validity of our model. 

 

 5



3.2 Fit all regions altogether incorporating explanatory variables 

 

As mentioned earlier, previous research utilizing actual SARS data share a common 

disadvantage by concentrating on one region and isolating the SARS behavior of one region 

from another, thus neglecting the fact that the 2003 SARS outbreak took place in the 21st 

century, when an infected person can travel thousands of miles in hours from one country to 

another and spread the disease before the onset of any symptoms.   

 

To tackle this issue Hufnagel, Brockmann and Geisel (2004) introduce a probabilistic 

susceptible-infected-recovered model to describe the worldwide spread of infectious diseases in 

today’s closely-connected world.   

 

In this paper making use of the SARS data from four regions we incorporate economic and 

demographic indices of each region in the analysis of the behavior of the specific disease. 

Specifically with the region index i and time variable t, the parameters ai, bi and ci in the 

equation 
)exp(1, tcb

a
y

ii

i
ti −+
=  for each region are rendered as functions of demographic and 

economic indices, namely, population, human development index (HDI), health manpower, and 

a dummy variable indicating a second wave hitting an area shortly after the first wave. In detail,  

 

kikiii XXa ααα +++== ...110X*αT  

kikiii XXb βββ +++== ...110X*βT                            (2) 

kikiii XXc γγγ +++== ...110X*γT  

 

where Xi is the vector of all explanatory variables for region i, including the constant, and 

coefficient vectors α, β and γ are common to all regions. The estimate of the coefficient vectors 

are achieved by minimizing the overall sum of squared errors of the estimated case number from 

the actual ones. That is,  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

i t
titi yy 2
,,

,,
ˆmin)ˆ,ˆ,ˆ( arg

γβα
γβα . 
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The advantage of fitting all regions together and incorporating explanatory variables over 

separate fitting include 1) the behavior of epidemic in a region is related to its overall economic, 

demographic and public health status, which are key in the battle against the disease; 2) the 

common coefficients apply to all regions observed, and potential to other countries. This makes 

it possible to predict the pattern of next SARS outbreak should it ever strike again. More 

generally the approach can be employed in the analysis of other epidemics. Table 2 lists the 

explanatory variables employed in the analysis and data sources. 

 

Table 2: Summary of Explanatory Variables and Data Sources 

 

Variable Description and Source 

Population Population in millions, logarithmic value is used. (WHO, 2006 a, b)  

Population 
density 

Population per square kilometer, logarithmic value is used. (WHO, 
2006 a, b) 

HDI Human development index reported by United Nations. A relative 
measure used to determine whether a country is developed, developing, 
or underdeveloped, it is an equally weighted function of the 
achievements in three basic dimensions of human development: general 
health care, education, and standard of living. Original value varies 
from 0 to 1. HDI*100 is used in the analysis. (United Nations 
Development Programme, 2005) 

Manpower Number of medical professionals (doctors, nurses, pharmacists) per 
thousand of population. ((WHO, 2006 a, b) 

2nd Wave Indicator of the second wave outbreak. It equals 1 for the 2nd wave in 
Canada and 0 otherwise.  

 

 

4. Results and discussion of separate fitting with no explanatory variables 

 

From Figure 1, we observe a logistic distribution in the cumulative cases, which is consistent to 

previous research. This observation is reasonable as the tapering-off of a logistic curve towards 

the end of the period would correspond to the depletion of those susceptible to SARS and the 

implementation of control measures to contain the spread of the disease.  

 

We fit the model below to the data of each region by conducting non-linear regression analysis: 
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)exp(1, tcb
a

y
ii

i
ti −+
=  ,  

Where  = cumulative SARS cases at time t, t = time in days from the corresponding start dates 

as mentioned in the Methodology and a, b, c = model parameters. 

ty

 

Figure 1. Collected Data 
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Table 3 summarizes curve fits we have derived. For a graphical representation of the plotted 

points and the curve fits, See Figure 2. 
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Table 3. Equations of Curve Fits from Non-linear Regression, by Region 

 

Region Cumulative cases 

Singapore 

 

Hong Kong 

 

Canada (1st wave) 
 
 
 
Canada (2nd wave) 

 

 

China 

 

      241.3513 

1+ exp(3.4293-0.1104t) 

y = 

1738.3818 

1+ exp(5.7134-0.1097t) 
y = 

      142.8214 
y = 

1+ exp(5.1354-0.1644t) 

      107.8214 
y = 

1+ exp(5.3650-0.2294t) 

5436.6893 

1+ exp(15.8454-0.0992t) y = 
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Figure 2. Fitted Model and Data 
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4.1 Pseudo-R2 and Analysis of Residuals 

 

Before we enter into a discussion of our results, it is necessary to analyze the goodness-of-fit of 

the nonlinear regression equations in Table 3 to determine if they sufficiently reflect the 

observed data in each country. Firstly, we shall observe the plotted residuals of our curve-fits 

(See Figure 3). Residuals reflect the difference between the observed data and the predicted data 

(from the nonlinear regression equation) at each data point. When the curve is a good fit, it will 

reflect random errors and appear to behave randomly in a graphical plot. There should be equal 

probability that the predicted data occurs above and below the actually y variable for the errors to 

be random. As we need to make a fair comparison between five different sets of residual data 

with different spreads in their standard deviations, we need to standardize the spreads of the raw 

data onto the same scale. The standardized deviations are given by the equation: 

 

Standardized Residual = (Raw Residual – Mean Raw Residual)/ Standard Deviation. 

 

The standardized residuals of the dependent y variables are graphed in 3a to 3e of Figure 3. The 

residuals appear to be randomly distributed about zero, indicating that the model describes the 

data well.  
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Figure 3: Residuals 
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To further analyze our fits, the following goodness-of-fit statistics are obtained and summarized 

in Table 4. 

Table 4 Goodness of fit statistics 

 
Region SSE Pseudo-R2  

Singapore 5823.8068 0.9922 

Hong Kong 55,791.4780 0.9980 

Canada Wave 1 

               Wave 2 

320.9885

175.7540

0.9985 

0.9988 

China 5,975,758.772 0.9822 

 
 

From our data, the spread of SSEs are large, with SSE of 5,975,759 for China, indicating a 

possible less-than-desired fit. However, a disadvantage of SSE is that there is no basis of 

comparison for the obtained values. The relative size of the SSE is inevitably affected by the 

number of data points in each non-linear regression, and the relative size of the data values of 

one data set compared to another data set. As such, we calculate the pseudo-R2 values to derive a 

better comparative analysis of the curve fits. 
 

R2 of linear regression provides a standardized measure of goodness-of-fit. Application of this 

measure to nonlinear models, however, may lead to a measure that may lie outside the [0,1] 

interval. A measure, relatively closely corresponding to R2 in the nonlinear case is: 

 

Pseudo-R2 = 1 - SS(Residual)/SS(TotalCorrected). 

 

For more details of non-linear regression see, for example, 

http://www.ats.ucla.edu/STAT/sas/library/SASNlin_os.htm. As seen from Table 4, our curve fits 

show high values of pseudo-R2, supporting the suitability of the derived model. 
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4.2 Analysis of results 

 

Following the reaffirmation of our curve fits in Section 4.1, we proceed to analyze the 

implications of our results.  

 

4.2.1 Model and parameters 

The logistic model
)exp(1 ctb

ay
−+

=  proposes a trend in the cumulative number of cases which 

initially increases at an increasing rate and then slows down after a particular point in time.  The 

initial exponential increase can be attributed to the unfamiliarity of this new disease, leading to 

the subsequent rapid spread of it due to either a lack of or inappropriate knowledge and measures 

to curb the disease. The rate of increase in the initial stage of the outbreak is affected by, among 

other factors, population, population density of the region (i.e. a measure of the number of 

people in contact with probable SARS cases) and the initial attack size (i.e. the number of index 

cases), since this disease is contagious. 

 

Subsequently, the increase in the cumulative cases/deaths slows down due to new-acquired 

knowledge of SARS and the implementation of adequate control measures. As countries learn 

more about the killer respiratory disease, they are able to react more efficiently and thus identify 

and quarantine patients much faster. Loss control reduces the frequency and severity of SARS 

cases and can be carried out through loss prevention (e.g. avoidance of travel to SARS infected 

areas, donning of protective masks and adopting hygienic living habits, home-quarantine of 

contacts with probable SARS cases and travelers returning from SARS-affected countries) and 

loss reduction (e.g. daily monitoring of SARS symptoms and immediate report when SARS-like 

symptoms appear).   

 

On closer examination, we realize parameter a (i.e. the numerator) of our model reflects the total 

number of cumulative cases. This observation is intuitive as our model is a logistic equation 

which approaches an asymptotic value as time tends to infinity. Consequently, the numerator of 

the equation (which reflects that asymptote) will have to point toward the total cumulative cases 

within each region. 
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Holding t, a and c constant, changing parameter b results in a roughly parallel shift of the curve 

along the horizontal axis of graphs (i.e. it determines the position of the curve in the x-direction).  

 

Parameter c varies directly with the number of cumulative cases. When c increases, the number 

of cumulative cases increases for each value of t (i.e. the curve fits become steeper with 

increasing c values).  The slope represents the rate of increase of the cumulative values. When 

the slope increases and the first and last cumulative values are fixed, the cumulative values take a 

shorter time to reach the final value. In addition, parameter c is a coefficient of time t. Hence, we 

postulate that parameter c represents the time period over which SARS cases appear. The 

following table compares the time periods and c values for the four regions. 

 
Table 5. Comparison of Parameter c and Time Periods 

 
Region  Date onset 

first probable 
case 

Date onset last 
probable case 

Time period of 
cases (days) 

c value 

Singapore February 25 May 5 70  0.1104 
Hong Kong February 15 May 31 106 

 
0.1097 

Canada (wave 1) February 23 April 19 56 0.1644 
Canada (wave 2) April 20 June 12 54 0.2294 
China November 16 June 3 200 

 
0.0992 

 

As shown in Table 5, parameter c corresponds inversely with the length of time over which the 

SARS cases appeared. The time period in increasing order for cumulative cases is 54 (Canada 

wave 1), 56 (Canada wave 2), 70 (Singapore), 106 (Hong Kong), 200 (China). The 

corresponding c values exhibit an inverse order with the time period.  

 

4.2.2 Indicator of the effectiveness of control measures 

By obtaining the second order differential equation of our curve fits and equating it to zero, we 

are able to determine the time (t = T*) at which the growth rate of cumulative cases stops 

increasing and starts to decrease. This marks the point in time where control measures slow the 

spreading rate effectively and hence signals the start of the containment of the epidemic. As 
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such, the number of days from t=0 to the time T* has a direct relationship with the 

responsiveness in implementation and the effectiveness of control measures in the country. Table 

6 shows the value of T*: 

 

Table 6. Time Taken to Slow the Rate of Increase of Cumulative Cases 

Region  T* Total days of outbreak 
Singapore 31.0 70 
Hong Kong 52.2 106 
Canada 

First wave 
Second wave 

 
31.2 
23.4 

 
56 
54 

China 159.7 200 
 

Currently there are no indicators to the efficacy of SARS control measures. T* is a suitable 

gauge to the speed at which control measures are adopted and the effectiveness of these 

measures, with a smaller value indicating higher responsiveness and effectiveness. Based on this 

indicator, Singapore was the most efficient in containing the disease since it only took 31 days 

for the increase in cumulative cases to slow down. Singapore has been praised by WHO officials 

for their serious attitudes in controlling SARS (Lian He Zao Bao, May 1 2003). For example, 

Singapore is the first country among these SARS affected regions in forming a national team to 

fight for SARS led by the Prime Minister, first country decided to close all primary and high 

schools, and many more similar measures in managing SARS risk.  

 
 
5 Results and discussion of fitting with explanatory variables incorporated 
 
5.1 Results  

 

Non-linear regression is conducted utilizing data from all four regions and incorporating 

explanatory variables, as described in Section 3.2. To compare the results with that of separate 

fitting, sum of squared errors is calculated. As pointed out earlier, a single value of SSE is 

affected by the number of data points and the relative size of the data values of the data set, thus 

is not an ideal measure of goodness of fit. However SSE does serve the purpose to compare two 

or more approaches applied to the same data set.   
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Values of sum of squared errors are reported below to compare the goodness of fit of cumulative 

case number for each region when fitted with and without explanatory variables.  

 
Table 7. Comparison of Sum of Squared Errors 

 
Region Each region fitted separately, 

without explanatory 
variables 

All regions fitted altogether, 
incorporating explanatory 
variables 

Singapore     5823.8    5853.9 
Hong Kong   55791.5   56260.0 
Canada (1st wave)     321.0     432.7 
Canada (2nd wave)     175.8     277.9 
China (mainland) 5975758.8 5976849.6 
Total 6037870.9 6039674.1 
 
Note: The second column reports the SSE for each region when fitted separately, while 
the  third column the SSE when all regions are modeled altogether by a single regression 

. 
 

We see that by incorporating explanatory variables the fitting is almost as well as separate 

modeling, in the sense that the total sum of squared errors for all five series of cumulative case 

number stays virtually unchanged. A close examination reveals that SSE for Singapore is about 

the same as that of separate fitting, the value of SSE jumps by about 50% for Canada (both 

waves) compared to their original relative small values, while the SSE for Hong Kong and China 

experience less than one percent increase.   

 

Table 8 reveals the value of parameters a, b and c for each region under two fitting approaches. 

We can see all parameter values are very close under different fitting strategies. By modeling the 

SARS case numbers of all regions together we suffer a little loss of goodness of fit but achieve a 

lot more. The major advantage of incorporating explanatory variables is that we are able to 

identify factors that may have affected the spread-out pattern of the disease. This has more 

significant value than just a good fitting in terms of the ability to predict the pattern of another 

strike in the same or different country. 
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Table 8. Parameter Values from Different Fitting Methods 

 

 Each region fitted separately without 
explanatory variables 

All regions fitted together, with 
explanatory variables 

Region a b c a b c 

Singapore    241.3513   3.4293 0.1104   242.2040   3.4478 0.1105 

Hong 
Kong 

1738.3818   5.7134 0.1097 1739.3491   5.7607 0.1106 

Canada 
(1st wave) 

  142.8214   5.1354 0.1644   144.3380   5.2371 0.1648 

Canada 
(2nd wave) 

  107.8214   5.3650 0.2294   109.1387   5.4703 0.2293 

China 
(mainland) 

5436.6893 15.8454 0.0992 5441.1477 15.8627 0.0993 

 

 

 

Table 9. Effects of Explanatory Variables  Not mentioned in the paper 

 Coefficient vector α  

in the a-equation 

Coefficient vector β 

 in the b-equation 

Coefficient vector γ  

in the c-equation 

Variable Estimate Std Error Estimate Std Error Estimate Std Error 

Constant   7328.6163 174.3252  25.0101 0.0105 -0.5907 0.0004 

Population   1164.3580   4.1787   2.1413 0.0018  0.0124  0.0001 

Population 
Density 

  1579.4615   0.7744   1.9134 0.0032 -0.0137 0.0001 

HDI   -193.1080   1.9217  -0.3966 0.0001  0.0084 0.0001 

Manpower    497.7438   1.8014   0.7484 0.0014 -0.0065 0.0001 

2nd Wave    -35.1992   0.2253   0.2332 0.0389  0.0644 0.0016 

 

The results suggest that all the explanatory variables play a role explaining the behavior of the 

dread disease. However caution must be exercised when interpreting and applying the results to 

other countries. There are only five time series of four regions in the sample for analysis 

although the total number of data points is fairly large.      

 

 

 18



5.2 Analysis of the results 
 
In linear regression models, the effect of explanatory variable on dependent variable is 

straightforward to tell as revealed by the sign of the estimated coefficient. In non-linear 

regression, the relationship between dependent and explanatory variable, however, is not always 

ready to be revealed by the sign of coefficient only due to the complexity of the regression 

equation. In our analysis, as can be seen in equations (1) and (2) the explanatory variables appear 

in both denominator and numerator of the cumulative case number y, which suggests more 

complex association between dependent and explanatory variables. It is worthwhile to further 

analyze the relationship. 

 

Let’s drop the subscript i and t from the equations (1) and (2) when taking partial derivative of y 

with respect to explanatory variable Xk. Easy calculus shows that  

 

2)1(
)()1(

EXP
tEXPaEXP

X
y kkk

k +
+−⋅⋅++

=
∂
∂ γβα

 

where , and α)exp()exp( ctbtXXEXP TT −=⋅−= γβ k, βk, and γk are the coefficients of  

variable Xk in the three equations of (2).  

 

When the value of Xk increases, how the dependent variable y will respond is jointly determined 

by the coefficients αk, βk, and γk, the value of parameters a, b and c for each region, and the time 

variable t. Complexity is expected. Table 10 displays the sign of the partial derivative of y with 

respect to each of the explanatory variables evaluated for each region.  
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Table 10. Sign of Partial Derivative of Cumulative Case Numbers with Respect to 
Explanatory Variables, by Region 

 
Explanatory 
variable Xk

Singapore  Hong Kong Canada (1st 
wave) 

Canada (2nd 
wave) 

China 

Population positive negative for 
smaller t, 
then stay 
positive 

positive positive negative for 
smaller t, 
then stay 
positive 

Population 
density 

positive negative for 
smaller t, 
then stay 
positive 

positive positive negative for 
smaller t, 
then stay 
positive 

HDI negative positive for 
smaller t, 
then stay 
negative 

negative negative positive for 
smaller t, 
then stay 
negative 

Manpower positive negative for 
smaller t, 
then stay 
positive 

positive positive negative for 
smaller t, 
then stay 
positive 

    

Common sense tends to predict that cumulative case number would increase with population, 

population density, and decrease with human development index (HDI) and health manpower. 

However it is not always the case with our data set as reflected in Table 10. For Singapore and 

Canada the relationship between the cumulative case number and the first three explanatory 

variables are consistent with the common expectation, although the effect of Manpower is 

surprising. For Hong Kong and the mainland of China none of the partial derivatives keeps its 

sign throughout the time period in analysis (0≤ t ≤ 241), rather the sign varies with the value of 

time t. A revisit to the data set reveals that the characteristic common to Hong Kong and China 

which distinguishes them from Singapore and Canada is their rather large ultimate case number. 

However it is too impulsive to make any conclusion yet due to the small number of region in the 

data set. Further study is in call when more data is available.            

 

6. Limitations 

Although our model proves to be a good fit to the observed data, and it is useful to predict the 

pattern of future SARS outbreak, there are certain limitations regarding its applicability.  
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Firstly, we have identified certain explanatory variables in Section 5, however, further research 

will still be needed to validate them and expose other underlying factors that may drive the 

parameter values.  

 

Secondly, the data we have gathered from various sources was inconsistent, especially when 

comparing those from the World Health Organization with the local authorities and other 

publications. Attempts have been made to reconcile the data which sometimes meant the 

selection of one source of data over another. In addition, data from WHO may not reflect the 

actual cases on the respective days due to the time lag in the receipt and publishing of reports, as 

well as the lapse of time from the onset of symptoms to the report of the case.  

 

Moreover, SARS is a diagnosis of exclusion (WHO, 2003b), meaning its presence cannot be 

established with complete confidence from examination or testing. Diagnosis is therefore by 

elimination of other reasonable possibilities (Wikipedia, 2005). This definition has led to the 

presence of discarded cases in Hong Kong and China. As a result, there are inherent inaccuracies 

with the curve fits as knowledge of when these discarded cases were first reported was not 

available. Nevertheless, this limitation is not significant enough to affect the overall model. 

 

7. Conclusions 

In this paper, we fit the model of 
)]exp(1[ ctb

ay
−+

=  for the cumulative cases of SARS. The 

model proves a good fit for the five case number series from four regions, namely China, Canada, 

Hong Kong and Singapore. In addition, we obtain the second order derivatives of our curve fits 

and propose the use of T*, the time in days taken to slow the rate of the increase in the number of 

cumulative SARS cases, as a measure of the efficacy of control measures in each country.  

 

We then further incorporate explanatory variables in modeling all five case number series at the 

same time. Fitting with demographic variables enables the model to be useful in predicting the 

model parameters of future outbreak of the disease. In the midst of escalating fears of worldwide 

bird flu pandemic, research can be conducted to determine the applicability of our model to other 

disease.  
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Despite limited modeling and epidemiological knowledge, we have put forth a model well-fitted 

to the actual epidemiological data of SARS. We believe that using the model and methods 

introduced in this paper and with more data available, researchers can carry out more rigorous 

tests, refine the model to bring the world an improved understanding of the SARS epidemiology.  
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