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ABSTRACT

Premium computation in a Bayesian context requires the use of a prior distribution

(structure function) that the risk parameter follows in the heterogeneous portfolio. This

paper contributes to the analysis of credibility theory by identifying the unique relation-

ship between the prior distribution and credibility formula. The latter corresponds to a

suggestive form of expressing the premium to be charged to a policyholder as a weighted

sum of the sample mean and collective premium. Results for net premium principle and

Poisson and negative binomial likelihood functions are shown.
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1 Introduction

Credibility theory provides a tool to compute premiums calculated by combining the sam-

ple information together with collateral information by incorporating a prior distribution

to the risk parameter. Assuming that the individual risk, X, has a density f(x|θ), indexed

by the risk parameter θ ∈ Θ which has a prior distribution with density π(θ). Let P be

the action space, L(θ, P ) be the loss if the premium P ∈ P is chosen, and θ the state of

nature. Let, now, π(θ|k) be the posterior density when a sample X = (X1, . . . , Xn) of

size n is observed, k =
∑n

i=1 Xi, and ρ(π(θ|k), P ) the posterior expected loss of P . Then

a Bayes premium can be obtained by minimizing ρ(π(θ|k), P ). The loss is usually chosen

to belong to the family L (θ,P) = h(θ) (w(θ)− P)2, where h and w are functions of θ.

By minimizing the posterior expected loss above, denoting g(θ) = h(θ)w(θ), we get

P =

∫
Θ

g(θ)f(k|θ)π(θ)dθ∫
Θ

h(θ)f(k|θ)π(θ)dθ

, (1)

which is known in the literature as the ratemaking or Bayes premium (PB).

When we assume that h(θ) = 1 and w(θ) = θ, we get the net premium principle and for

h(θ) = eαθ, α > 0, and w(θ) = θ the Esscher premium principle. Other combinations are

possible providing, for example, the variance and exponential premium principles. For

a more detailed information on premium calculation principles, the reader can consult

Caldeŕın et al. (2008), Heilmann (1989), Hürlimann (1994) and Young (2004); among

others.

In many ocasions it is possible to write (1) as a weighted sum of the sample mean

and the collective premium, the premium to be charged to a group of policyholders in

a portfolio. The weighted factor is referred as the credibility factor and, therefore, the

premium obtained adopts this suggestive expression:

PB = znl(X̄) + (1− zn)PC , (2)

for some function of the sample mean l(X̄), where X̄ is the sample mean, PC the collective
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premium and zn the credibility factor satysfing zn ∈ (0, 1), limn→0 zn = 0 and limn→∞ zn =

1.

Some historical references on credibility theory are Whitney (1918), Mowbray (1914),

Bailey (1945), Bühlmann (1967), Jewell (1974), Kahn (1975), Gerber and Arbor (1980),

Eichenauer et al. (1988), Heilmann (1989), Goovaerts et al. (1990) and Herzog (1996).

For a recent revision of the credibility theory see Bühlmann and Gisler (2005), Landsmand

and Makov (1999), Promislow and Young (2000), Young (2000), Gómez-Déniz (2008) and

Gómez-Déniz et al. (2006).

On the other hand, in the statistical literature a basic problem for a mixture model,

f(x) =
∫

Θ
f(x|θ)π(θ)dθ, is its identifiability. This problem deals with indentifying in a

one to one correspondence between the distribution of the likelihood of the model and

the prior, given the posterior mean of the parameter of interest,
∫

Θ
θπ(θ|k)dθ. Some

important contributions in this field are Cacoullos and Papageorgiou (1982), Gupta and

Wesolowski (1997, 1999), Johnson (1957, 1967), Papageorgiou (1984), Papageorgiou and

Wesolowski (1997) and Wesolowski (1995); among others. Nevertheless, in the actuarial

setting the posterior magnitude, called the Bayes premium, usually does not coincide

with the posterior mean of the parameter. Therefore, we consider that this topic about

indentifiability of Bayes premium has never been analyzed in the actuarial literature.

In this paper, the prior distribution under different likelihoods is shown to be com-

pletely indentifiable by the form of the Bayes net premium, which results under appro-

priate likelihood and prior distribution a credibility formula. This will be made through

by a one to one correspondence between the likelihood and the prior distribution if the

credibility expression is given. Results for net premium principle and Poisson, negative

binomial and binomial likelihood functions are shown.

For that reason, we will observe that for a sample X = (X1, . . . , Xn) of size n from

model f(x|θ) and prior distribution π(θ), θ ∈ Θ it is verified

π(θ|X)m(X|π) = f(X|θ)π(θ), (3)

which is obtained directly from Bayes’ Theorem. Here, π(θ|X) represents the posterior
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distribution of θ given the sample information X and
∫

Θ
f(X|θ)π(θ)dθ is the marginal

distribution of X.

Section 2, 3 and 4 includes the results for the Poisson, negative binomial and binomial

cases, respectively. Conclusions and extensions are given in the last Section.

2 The Poisson case

Let X be a random variable with the Poisson probability mass function, i.e.

f(x|θ) =
1

x!
e−θθx, θ > 0, x = 0, 1, . . . (4)

For a sample X = (X1, . . . , Xn) of size n, the likelihood function from model (4) is

f(k|θ) ∝ e−nθθk,

The fact that the regression of X on k is linear, i.e. a credibility formula, was proved

by Johnson (1957). In this section, we reproduce the proof in an alternative way.

Theorem 1. Let us suppose that (X, θ) is a mixture model with pmf given by (4), then

the prior distribution of θ is uniquely determined by the posterior mean IE(θ|k), being

k =
∑n

i=1 Xi.

Proof. From (3) we have that

π(θ|k)

∫ ∞

0

f(k|θ)π(θ)dθ = f(k|θ)π(θ).

Therefore, ∫ ∞

0

θπ(θ|k)dθ

∫ ∞

0

f(k |θ)π(θ)dθ =

∫ ∞

0

θf(k|θ)π(θ)dθ.

Now, replacing f(k|θ) by the likelihood in (4) we get∫ ∞

0

θπ(θ|k)dθ

∫ ∞

0

θke−nθπ(θ)dθ =

∫ ∞

0

θk+1e−nθdθ.
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Let us define now a prior distribution in the form π1(θ) = c e−nθπ(θ), where c =

1/IEπ

(
e−nθ

)
, is the normalizing constant. Let also U the random variable with prob-

ability density function π1(θ). By putting m(k) =
∫

Θ
θπ(θ|k)dθ, we have that m(k) =

IEUk+1/IEUk, from which it is easy to obtain that

IEUk =
k−1∏
j=0

m(j),

Thus, the distribution of U is uniquely determined by the function m and therefore

π(θ) is unique.

It is known (see Heilmann, 1989) that if we assume a Poisson distribution, Po(θ), for

the risk X and θ has the Pearson Type III distribution, G(a, b), a > 0, b > 0, with the

density

π(θ; a, b) =
ba

Γ(a)
θa−1e−bθI(0,∞)(θ), (5)

being Γ(·) the gamma function, the posterior mean (Bayes net premium) of P (θ) = θ (the

risk net premium) is a credibility formula as in (2), where l(x) = x, zn = n/(b + n) and

PC = IEΘ = a/b.

Therefore we have the following result.

Corollary 1. If X ∼ Po(θ) as in (4), the only form of prior probability density func-

tion satysfing that the Bayes net premium takes the form (2), is the Pearson Type III

distribution (5).

Proof. It follows directly by applying Theorem 1.

It is well–known that the mean of the predictive distribution coincides with the pos-

terior mean when IE(y|θ) = θ, see Herzog (1996) for details. Therefore, we have the

following result.

Corollary 2. Suppose that (X, θ) is a mixture model with pmf given by (4), then the

prior distribution of θ is uniquely determined by the mean of the predictive distribution

f(y|k) =
∫

Θ
f(y|θ)π(θ|k)dθ.

Proof. It follows directly by applying Theorem 1 having into account that IE(y|θ) = θ.
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3 The negative binomial case

Let now X be a random variable with the negative binomial probability mass function,

i.e.

f(x|θ) =

(
r + x− 1

x

)
θr(1− θ)x, 0 < θ < 1, r > 0, x = 0, 1, . . . (6)

For a sample X = (X1, . . . , Xn) of size n, the likelihood function from model (6) is

f(k|θ) ∝ θnr(1− θ)k,

where k = n
∑n

i=1 Xi ∈ IN. The net risk premium under this probability model is given

by P (θ) = r(1− θ)/θ (see Heilmann, 1989).

The following Lemma will be used to show that only exists one prior distribution

which generates a linear with respect to the data Bayes premium.

Lemma 1. Suppose that a random variable U satisfies that

rIEUx+1 = m(x)
(
IEUx − IEUx+1

)
,

for x ∈ IN, r > 0 and some function m(x), then it is verified that

IEUx =
x−1∏
j=0

m(j)

r + m(j)
.

Proof. It is easy to prove by expanding the recursive formula.

Now, we have the following result.

Theorem 2. Suppose that (X, θ) is a mixture model with pmf given by (6), then the prior

distribution of θ is uniquely determined by the posterior mean IE [r(1− θ)/θ|k], being

k =
∑n

i=1 Xi.

Proof. From (3) we have that

π(θ|k)

∫ 1

0

f(k|θ)π(θ)dθ = f(k|θ)π(θ).
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Therefore,∫ 1

0

r(1− θ)/θπ(θ|k)dθ

∫ 1

0

f(k |θ)π(θ)dθ =

∫ 1

0

r(1− θ)/θf(k|θ)π(θ)dθ.

Now, replacing f(k|θ) by the likelihood in (7) we get∫ 1

0

r(1− θ)/θπ(θ|k)dθ

∫ 1

0

θnr(1− θ)kπ(θ)dθ =

∫ 1

0

rθnr−1(1− θ)k+1dθ.

Define now a prior distribution in the form π1(θ) = c θnr−1 π(θ), where c = 1/IEπ (θnr−1),

is the normalizing constant. Let also W the random variable with probability density func-

tion π1(θ). By putting m(k) =
∫ 1

0
r(1 − θ)/θπ(θ|k)dθ, and by using Lemma 1 we have

that

IEUk =
k−1∏
j=0

m(j)

r + m(j)
,

where U = 1 −W . Therefore, the distribution of U and hence of W are uniquely deter-

mined by the function m and π(θ) is unique.

It is known (see Heilmann, 1989) that if we assume a negative binomial distribution,

NB(r, θ), for the risk X and θ has the beta distribution of the first kind, Be(a, b), a >

0, b > 0, with the density

π(θ; a, b) =
θa−1(1− θ)b−1

B(a, b)
I(0,1)(θ), (7)

being B(·, ·) the beta function, the posterior mean (Bayes net premium) of P (θ) = r(1−

θ)/θ (the risk net premium) is a credibility formula as in (2), with l(x) = x, zn =

rn/(a + nr − 1), a + nr > 1 and PC = IE (r(1−Θ)/Θ) = rb/(a− 1), a > 1.

Therefore we have the following result.

Corollary 3. If X ∼ NB(r, θ) as in (6), the only form of prior probability density

function satysfing that the Bayes net premium takes the form (2), is the beta distribution

of the first kind (7).

Proof. It can be easily proved by using Theorem 2.
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Let us suppose now that X be a random variable with the following negative binomial

probability mass function, i.e.

f(x|θ) =

(
r + x− 1

x

) (
r

r + θ

)r (
θ

r + θ

)x

, θ > 0, r > 0, x = 0, 1, . . . (8)

This parameterization of the negative binomial model in the actuarial context has been

considered by Gómez-Déniz and Vázquez (2003) and Meng et al. (1999), among others.

For a sample X = (X1, . . . , Xn) of size n, the likelihood function from model (8) is

f(k|θ) ∝
(

r

r + θ

)nr (
θ

r + θ

)k

,

where k = n
∑n

i=1 Xi ∈ IN. In this case, the net risk premium is given by P (θ) = θ.

Theorem 3. Suppose that (X, θ) is a mixture model with pmf given by (8), then the prior

distribution of θ is uniquely determined by the posterior mean IE(θ|k), being k =
∑n

i=1 Xi.

Proof. From (3) we have that

π(θ|k)

∫ ∞

0

f(k|θ)π(θ)dθ = f(k|θ)π(θ).

Therefore, ∫ ∞

0

θπ(θ|k)dθ

∫ ∞

0

f(k |θ)π(θ)dθ =

∫ ∞

0

θf(k|θ)π(θ)dθ.

Now, replacing f(k|θ) by the likelihood in (13) we get∫ ∞

0

θπ(θ|k)dθ

∫ ∞

0

(
r

r + θ

)nr (
θ

r + θ

)k

π(θ)dθ =

∫ ∞

0

θ

(
r

r + θ

)nr (
θ

r + θ

)k

π(θ)dθ.

Now, if we denote

I(k, s) =

∫ ∞

0

1

(r + θ)s

(
θ

θ + r

)k

π(θ)dθ

and writing

m(k) =

∫ ∞

0

θπ(θ|k)dθ
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we have

(m(k) + r)I(k, s) = I(k, s− 1). (9)

On the other hand, from the definition of the function I we get

I(k + 1, s− 1) = I(k, s− 1)− rI(k, s), (10)

After combining the two equations (9) and (10) it can be verified the following recur-

rence formula:

I(k + 1, s− 1) = I(k, s− 1)

(
m(k)

m(k) + r

)
.

Let us define a new prior distribution in the form π1(θ) = π(θ)/(c(r + θ)s−1), where

c = I(0, s−1) is the normalizing constant. If Θ is a random variable with prior distribution

π(θ) then U = Θ/r + Θ is the random variable with probability density function π1(θ).

Then we have that

IEUk+1 = IEUk m(k)

m(k) + r
,

and

IEUk =
k−1∏
j=0

m(j)

m(j) + r
.

Therefore, the distribution of U is uniquely determined by the function m and, for

that reason, π(θ) is unique.

It is known (see Gómez-Déniz and Vázquez, 2003 and Meng et al., 1999) that if we

assume a negative binomial distribution, NB(r, θ) as in (8), for the risk X and θ has

the generalized Pareto distribution, GP(ζ, r, s), ζ > 0, r > 0, s > 0, with the following

density function

π(θ; ζ, r, s) =
Γ(sζ + sr + 1)

Γ(sζ)Γ(sr + 1)

rsr+1θsζ−1

(r + θ)sζ+sr+1
I(0,∞)(θ), (11)

the posterior mean (Bayes net premium) of P (θ) = θ (the risk net premium) is a credibility

formula as in (2), where l(x) = x, zn = n/(s + n) and PC = IEΘ = ζ.

Thus, we have the following result.
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Corollary 4. If X ∼ NB(r, θ) as in (8), the only form of prior probability density

function satysfing that the Bayes net premium takes the form (2), is the generalized Pareto

distribution in (11).

Proof. The result can be obtained directly by applying Theorem 4.

4 The binomial case

Finally, let us suppose that X is a random variable with the following binomial probability

mass function, i.e

f(x|θ) =

(
N

x

)
θx

(1 + θ)N
, θ > 0, , x = 0, 1, . . . , N (12)

For a sample X = (X1, . . . , Xn) of size n, the likelihood function from model (12) is

f(k|θ) ∝ θk

(1 + θ)nN
, (13)

where k =
∑n

i=1 Xi ∈ IN. In this case, the net risk premium is P (θ) =
Nθ

1 + θ
.

Theorem 4. Suppose that (X, θ) is a mixture model with pmf given by (12), then the

prior distribution of θ is uniquely determined by the posterior mean IE (Nθ/(1 + θ)|k),

being k =
∑n

i=1 Xi.

Proof. From (3) we have that

π(θ|k)

∫ ∞

0

f(k|θ)π(θ)dθ = f(k|θ)π(θ).

Therefore,∫ ∞

0

Nθ

1 + θ
π(θ|k)dθ

∫ ∞

0

f(k |θ)π(θ)dθ =

∫ ∞

0

Nθ

1 + θ
f(k|θ)π(θ)dθ.

Now, replacing f(k|θ) by the likelihood in (13) we get∫ ∞

0

Nθ

1 + θ
π(θ|k)dθ

∫ ∞

0

θk

(1 + θ)nN
π(θ)dθ =

∫ ∞

0

Nθk+1

(1 + θ)nN+1
π(θ)dθ.
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Now, if we denote

I(k, s) =

∫ ∞

0

θk

(1 + θ)s
π(θ)dθ

and putting

m(k) =

∫ ∞

0

Nθ

1 + θ
π(θ|k)dθ

we have

m(k)I(k, s) = NI(k + 1, s + 1). (14)

From the definition of the function I, we can derive

I(k + 1, s + 1) = I(k, s)− I(k, s + 1), (15)

Combining now (14) and (15) it is easy to verify the following recurrence formula:

I(k + 1, s + 1) = I(k, s + 1)

[
m(k)

N −m(k)

]
.

Let us define now a prior distribution in the form π1(θ) =
1

c(1 + θ)s+1
π(θ), where

c = I(0, s + 1) is the normalizing constant. Let also U be a random variable with

probability density function π1(θ). Then we have that

IEUk =
k−1∏
j=0

m(j)

N −m(j)
,

where U = Θ. Therefore, the distribution of U is uniquely determined by the function m

and therefore π(θ) is unique.

If we assume a binomial distribution, Bi(N, θ) as in (13), for the risk X and θ has the

second kind Beta distribution (inverted Beta distribution), IB(θ, a, b), θ > 0, a > 0, b >

0, with the following density function

π(θ; a, b) =
1

Be(a, b)

θa

(1 + θ)a+b
I(0,∞)(θ), (16)

11



the posterior mean (Bayes net premium) of P (θ) =
Nθ

1 + θ
(the risk net premium) is

a credibility formula as in (2), where l(x) = x, zn = Nn/(a + b + Nn) and PC =

IE (NΘ/(1 + Θ)) = Na/(a + b).

Therefore we have the following result.

Corollary 5. If X ∼ NB(r, θ) as in (8), the only form of prior probability density

function satysfing that the Bayes net premium takes the form (2), is the generalized Pareto

distribution in (16).

Proof. It follows directly by using Theorem 4.

5 Conclusions and extensions

The aim of this paper has been to illustrate some basic notions about identifiability. A

basic question for credibility formulas is to determine the unique relationship between

these expressions and the prior distributions. Usually, it is connected with one to one

correspondence between the structure function and the likelihood function if the credibility

expression is provided.

One possible aspect to extend this work is based on the search of marginal distributions

generated by identifiability method whose posterior expectations satisfy a given format, in

the line of the work of Papageorgiou and Wesolowski (1997). This is surely an attractive

problem which deserves to be studied deeply in the future.
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Bühlmann, H. and Gisler, A. (2005). A Course in Credibility Theory and its Application.

Springer-Verlag, Berlin.

Cacoullos, T. and Papageorgiou, H. (1982). Journal of Applied Probability, 19, 3, 742–

743.
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