Regime-Switching Portfolio Replication

Matthew C. Till
(joint with Dr. Mary Hardy and Dr. Keith Freeland)

Dept. of Statistics and Actuarial Science
University of Waterloo
Waterloo, ON, Canada

July 30, 2009
Acknowledgements

- Standard Life Assurance Company
- Institute for Quantitative Finance and Insurance
- NSERC
- University of Waterloo
1 Investment Guarantees
 - Portfolio Replication
 - The S&P 500

2 Regime Switching Portfolio Replication
 - Hidden Markov Models
 - Regime Switching Replication

3 Regime Switching Bayesian Portfolio Replication
 - Bayesian Estimation of Regime Switching Models
 - Example Results
 - Conclusion and Future Work
Long-Term Guarantees

Contract: Long-term Equity Guarantees/Options
Eg.
 - Guaranteed Minimum Maturity Benefit
 - Long-Term Stock Options

Due to the catastrophe nature of this risk, choose to hedge the contract.
Black-Scholes Hedging

Black-Scholes Put Option Price:

\[BSP_t = K \cdot e^{-r(T-t)} \cdot \Phi(-d_2) - S_t \cdot \Phi(-d_1) \]

\[d_1 = \frac{\log(S_t/K) + (T-t)(r + \sigma^2/2)}{\sqrt{T-t}\sigma} \]

\[d_2 = d_1 - \sigma\sqrt{T-t} \]

Hedge: Hold \(H_t = -\Phi(-d_1) \) in stock.

One assumption of the framework: continuous re-balancing of the hedge.
Continuous re-balancing is obviously not feasible.

Monthly Re-balancing
- This will introduce Hedging Error
 \[HE_{t+1} = BSP_{t+1} - (H_t \cdot S_{t+1} + B_t \cdot e^r) \]

Another assumption: \(S_t \) follows a geometric Brownian Motion with constant variance \(\sigma^2 \).

Goal: Find a good \(\sigma \) for the S&P 500.
Figure: S&P 500 Monthly Index and Log-Return Levels
S&P 500 Volatility

- One could just estimate the volatility of the entire process.
 - Such an approach would not capture the volatility clustering of the process.
- A better approach would be to let the volatility parameter change over time, mimicking the volatility of the index.

Approach: Use a model that captures the volatility clustering of the index.
Hidden Markov Models

- First introduced in the 1960’s by Baum.
- First applications were speech recognition in the 1970’s

Suppose we have a time series that from $t = 1, 2, \ldots, t_0$ is governed by

$$y_t = \mu_1 + \sigma_1 \epsilon_t$$

At time t_0, there was a significant change in the parameters of the series. Over t_0, \ldots, t_1, the series behaves as

$$y_t = \mu_2 + \sigma_2 \epsilon_t$$

Then, at t_1, it changes back.
Hamilton (1989) proposed hidden Markov models for financial applications.

The idea being the market passes through different states:

- A stable normal market
- A high-volatility market
- Periods of uncertainty in transition between the above two states

Hidden Markov models can capture volatility clustering through the underlying state process.
Hidden Markov Models in Finance

Regime Switching Model Characteristics:

- The distribution of Y_t is only known conditional on $\rho_t \in \{1, 2, \ldots, K\}$, the regime of the process at time t.
- The unobserved regime process is Markov.
- The one-period transition probabilities are defined as

$$p_{i,j} = P[\rho_t = j|\rho_{t-1} = i] \quad \forall i, j \in \{1, 2, \ldots, K\}, \forall t \in \{1, 2, \ldots, T\}$$

RSLN-2 Model: $Y_t = \log(S_t/S_{t-1})$

$$Y_t|\rho_t = \mu_{\rho_t} + \sigma_{\rho_t} \cdot \epsilon_t$$

$$\rho_t|\rho_{t-1} = k \text{ w.p. } p_{\rho_{t-1},k} \quad k \in \{1, 2\}$$
RSLN-2 Model for the S&P 500

Maximum Likelihood Parameters for the S&P 500:

<table>
<thead>
<tr>
<th>Regime</th>
<th>μ</th>
<th>σ</th>
<th>Transition Parameters</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>0.00990</td>
<td>0.03412</td>
<td>$p_{1,2} = 0.0475$</td>
<td>$\pi_1 = 0.809$</td>
</tr>
<tr>
<td>Two</td>
<td>-0.01286</td>
<td>0.06353</td>
<td>$p_{2,1} = 0.2017$</td>
<td>$\pi_2 = 0.191$</td>
</tr>
</tbody>
</table>
Generating a Volatility from the RSLN-2 Model

Static Unconditional Volatility

\[\sigma = \sqrt{\text{Var}[Y_t]} \]

\[= \sqrt{\text{Var}[E[Y_t|\rho_t]] + E[\text{Var}[Y_t|\rho_t]]} \]

using the \(\pi_k \)'s as regime weights.

This approach seems counterproductive:

- If one went to all the trouble of modeling volatility clustering, why use a static volatility?

Need to use the information in the data to more accurately select a volatility.
The recent data observations provide insight into the current regime of the process.

Data-dependent Regime Probabilities:

\[p_k(t) = Pr(\rho_t = k | y_t, \ldots, y_1) \]
Future Data-dependent Regime Probabilities

\[p_k^+(t) = Pr(\rho_{t+1} = k | y_t, \ldots, y_1) \]
\[= p_1(t) \cdot p_{1,k} + p_2(t) \cdot p_{2,k} \]

Question: How best can these probabilities be used in portfolio replication?
Generating a Volatility from the RSLN-2 Model

Dynamic Unconditional Volatility

\[
\sigma = \sqrt{\text{Var}[Y_t]}
= \sqrt{\text{Var}[E[Y_t|\rho_t]] + E[\text{Var}[Y_t|\rho_t]]}
\]

using the \(p^+_k(t) \)'s as regime weights.

- If the model is ‘correct’, this is the unconditional volatility of the upcoming observation.
- The regime will be one or the other; the dynamic volatility will generally not be equal to either of the regime volatilities.
- But, you’re somewhat covered against the less likely regime.
Indicator Volatility

\[\sigma = \sigma_k, \quad \text{where} \quad p_k^+(t) = \max(p_1^+(t), p_2^+(t)) \]

- If the model is ‘correct’, this method will pick the correct volatility often.
- But, when you’ve picked the wrong regime, your volatility is significantly off.
One observation about the two methods:

- The change in hedging volatility significantly affects your monthly hedging error
- The Dynamic Volatility method has the largest number of significant jumps.
- The Indicator method has the biggest jumps, but less of them.

Question: Which of these hedging options is better?
Regime Switching Optimization Methods

Answer: It’s actually option dependent.

S&P 500 10-Year Put Example

- Strike Price = $S_0 = 100$
- Monthly re-balancing.
- Bond: 5% per annum.
- Transaction Costs: 0.02% of change in stock position

Using the described hedging methods, simulate from the model to determine which method generates the smaller total option costs (initial hedge + hedging error)
S&P 500 10-Year Put Example Results

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Static</th>
<th>Dynamic</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPV[Total Option Cost]</td>
<td>2.9129</td>
<td>2.6406</td>
<td>2.3512</td>
</tr>
</tbody>
</table>

The Indicator method performs exceptionally well (19%!). But why?
The Dynamic and Indicator methods perform very similarly in most cases.

When moving from Regime 2 to Regime 1, the Dynamic is too slow to react.
Parameter uncertainty is an important consideration

- Quite important for the example since I simulated from the fitted model to obtain results.
- Especially for Regime-switching models

<table>
<thead>
<tr>
<th>Regime</th>
<th>μ</th>
<th>σ</th>
<th>Transition Parameters</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>0.00990</td>
<td>0.03412</td>
<td>$p_{1,2} = 0.0475$</td>
<td>$\pi_1 = 0.809$</td>
</tr>
<tr>
<td>Two</td>
<td>-0.01286</td>
<td>0.06353</td>
<td>$p_{2,1} = 0.2017$</td>
<td>$\pi_2 = 0.191$</td>
</tr>
</tbody>
</table>
Bayesian Modeling

- Treat each parameter as itself a random variable.
- Model beliefs about each parameter using prior distributions.
- Update your distributions based on the data to form posteriors.

For the RSLN-2, Metropolis-Hastings Algorithm was used

- Very quick simulation
Maximum Likelihood Parameters for the S&P 500:

<table>
<thead>
<tr>
<th>Regime</th>
<th>μ</th>
<th>σ</th>
<th>Transition Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>0.00990</td>
<td>0.03412</td>
<td>$p_{1,2} = 0.0475$</td>
</tr>
<tr>
<td>Two</td>
<td>-0.01286</td>
<td>0.06353</td>
<td>$p_{2,1} = 0.2017$</td>
</tr>
</tbody>
</table>

Bayesian Posterior-Means for the S&P 500:

<table>
<thead>
<tr>
<th>Regime</th>
<th>μ</th>
<th>σ</th>
<th>Transition Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>0.0099</td>
<td>0.0340</td>
<td>$p_{1,2} = 0.0620$</td>
</tr>
<tr>
<td>Two</td>
<td>-0.0129</td>
<td>0.0652</td>
<td>$p_{2,1} = 0.2631$</td>
</tr>
</tbody>
</table>
RSLN-2 Parameter Posterior Distributions

P12
 Mu1
 Sigma1

P21
 Mu2
 Sigma2
10-Year S&P Put Example

S&P 500 10-Year Put Example Revisited

- Use the posterior parameter distributions to generate the model simulations
- Still use the MLE parameter estimates for hedging decisions.
The Indicator still performs best, but by less of a margin (16%).

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Static</th>
<th>Dynamic</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPV[Total Option Cost]</td>
<td>3.0107</td>
<td>2.8290</td>
<td>2.5306</td>
</tr>
</tbody>
</table>
Conclusions & Future Work

Summary of Results:
- Regime-switching portfolio replication can be worth it.
- Best type of method depends on the option you’re hedging.
- Often, you want hedging strategies that react quickly.
- Parameter uncertainty can play a role.

Future Work
- More complicated Regime-Switching or Hybrid Models (RSGARCH)
- Relax the fixed interest rate assumption