Suboptimality of Asian Executive Indexed Options

Carole Bernard
Phelim Boyle
Jit Seng Chen

Actuarial Research Conference

August 13, 2011

UNIVERSITY OF WATERLOO
Outline

1. Options Preliminaries
2. Assumptions
3. Asian Executive Indexed Option
4. Cost-Efficiency
5. Constructing a Cheaper Payoff
6. True Cost Efficient Counterpart
7. Numerical Results
8. Stochastic Interest Rates
Options Preliminaries

Sample Price Paths

- $\hat{S}_4 = \sqrt[4]{S_1 S_2 S_3 S_4} = 92.12$, $\hat{H}_4 = \sqrt[4]{H_1 H_2 H_3 H_4} = 99.19$
- European Call Option Payoff $= \max(S_4 - K, 0) = 0$
- Asian Option Payoff $= \max(\hat{S}_4 - K, 0) = 2.12$
- Asian Indexed Option Payoff $= \max(\hat{S}_4 - \hat{H}_4, 0) = 0$
Assumptions

1. Black-Scholes market:
 - Extension to Vasicek short rate
2. Stock S_t and benchmark H_t driven by Brownian motions
3. Existence of state-price process ξ_t
4. Agents preferences depend only on the terminal distribution of wealth
Asian Executive Indexed Option (AIO) proposed by Tian (2011):

- **Averaging**: Prevent stock price manipulation
- **Indexing**: Only reward out-performance
- More cost-effective than traditional stock options
- Provide stronger incentives to increase stock prices

Construct a better payoff:

- Same features as the AIO
- Strictly cheaper
- Use the concept of **cost-efficiency**
Cost-Efficiency

From Bernard, Boyle and Vanduffel (2011):

Definition (1)
The cost of a strategy with terminal payoff X_T is given by

$$c(X_T) = E_P[\xi_T X_T]$$

where the expectation is taken under the physical measure P.

Intuition: ξ_T represents the price of a particular state

Definition (2)
A payoff is cost-efficient (CE) if any other strategy that generates the same distribution costs at least as much.
Cost-Efficiency

Theorem (1)

Let ξ_T be continuous. Define

$$ Y_T^* = F_{X_T}^{-1}(1 - F_{\xi_T}(\xi_T)) $$

as the cost-efficient counterpart (CEC) of the payoff X_T. Then, Y_T^* is a CE payoff with the same distribution as X_T and is almost surely unique.

Intuition: CEC is achieved by reshuffling the outcome of X_T in each state in reverse order with ξ_T while preserving the original distribution.
Constructing a Cheaper Payoff

1. Apply Theorem 1 to each term of the AIO

\[\hat{A}_T = \max(\hat{S}_T - \hat{H}_T, 0) \]

to get

\[A^*_T = \max \left(d_S S_T^{1/\sqrt{3}} - d_H H_T^{1/\sqrt{3}}, 0 \right) \]

2. It can be shown that:
 - \(\hat{A}_T \overset{d}{=} A^*_T \)
 - \(A^*_T \) costs strictly less than \(\hat{A}_T \)

\(A^*_T \) inherits the desired features of \(\hat{A}_T \), but comes at a cheaper price
True Cost Efficient Counterpart

True CEC

\[A_T = F_{\hat{A}_T}^{-1}(1 - F_{\xi_T}(\xi_T)) \]

is estimated numerically

Examples:

1. Empirical cumulative distribution functions (CDFs) for each payoff in the base case \(^1\)
2. Reshuffling of \(\hat{A}_T\) to \(A^*_T\) and \(A_T\)
3. Order of \(\hat{A}_T\), \(A^*\) and \(A_T\) vs \(\xi_T\)
4. Price of each payoff and the efficiency loss

\(^1\) \(K = 100, S_0 = 100, r = 6\%, \mu_S = 12\%, \mu_I = 10\%, \sigma_S = 30\%, \sigma_I = 20\%, \rho = 0.75, q_S = 2\%, q_I = 3\%, T = 1\)
Numerical Results

Figure: Comparison of the CDFs of A_T, A^*_T and \hat{A}_T.
Numerical Results

Figure: Reshuffling of outcomes of \hat{A}_T to A^*_T
Numerical Results

Plot of \hat{A}_T vs A_T

Figure: Reshuffling of outcomes of \hat{A}_T to A_T
Numerical Results

Figure: Plot of outcomes of \hat{A}_T vs ξ_T
Plot of $A^*_T \ vs \ \xi_T$

Figure: Plot of outcomes of $A^*_T \ vs \ \xi_T$
Numerical Results

Plot of A_T vs ξ_T

Figure: Plot of outcomes of A_T vs ξ_T
Numerical Results

<table>
<thead>
<tr>
<th>Case</th>
<th>A_T</th>
<th>A^*_T</th>
<th>\hat{A}_T</th>
<th>\hat{V}_T</th>
<th>Eff Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_T</td>
<td>V^*_T</td>
<td>Eff Loss</td>
<td>\hat{V}_T</td>
<td>Eff Loss</td>
</tr>
<tr>
<td>Base Case</td>
<td>3.26</td>
<td>4.34</td>
<td>33%</td>
<td>4.36</td>
<td>34%</td>
</tr>
<tr>
<td>$r = 4%$</td>
<td>2.96</td>
<td>4.37</td>
<td>48%</td>
<td>4.40</td>
<td>49%</td>
</tr>
<tr>
<td>$\mu_s = 8%$</td>
<td>3.97</td>
<td>4.35</td>
<td>10%</td>
<td>4.36</td>
<td>10%</td>
</tr>
<tr>
<td>$\mu_l = 13%$</td>
<td>3.26</td>
<td>4.34</td>
<td>33%</td>
<td>4.36</td>
<td>34%</td>
</tr>
<tr>
<td>$\sigma_s = 35%$</td>
<td>3.97</td>
<td>5.04</td>
<td>27%</td>
<td>5.07</td>
<td>28%</td>
</tr>
<tr>
<td>$\sigma_l = 15%$</td>
<td>3.27</td>
<td>4.34</td>
<td>33%</td>
<td>4.36</td>
<td>33%</td>
</tr>
<tr>
<td>$\rho = 0.9$</td>
<td>2.28</td>
<td>2.86</td>
<td>25%</td>
<td>2.87</td>
<td>26%</td>
</tr>
<tr>
<td>$q_s = 1.5%$</td>
<td>3.27</td>
<td>4.35</td>
<td>33%</td>
<td>4.37</td>
<td>34%</td>
</tr>
<tr>
<td>$q_l = 2%$</td>
<td>3.25</td>
<td>4.34</td>
<td>33%</td>
<td>4.36</td>
<td>34%</td>
</tr>
</tbody>
</table>

Table: Prices and efficiency loss of A^*_T and \hat{A}_T compared against A_T across different parameters.
Stochastic Interest Rates

Extension to a market with Vasicek short rate:

1. State price process expressed as a function of market variables

2. Pricing formula for the AIO
Summary

- Reviewed the use of *averaging* and *indexing* in the context of executive compensation
- Constructed a strictly cheaper payoff with the same features as the AIO using *cost-efficiency*
- Numerical examples that illustrate reshuffling of payoffs and loss of efficiency
- Extension to the case of stochastic interest rates