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Abstract

The theme of this paper relates to solving portfolio selection problems using linear pro-
gramming. We extend the well-known linear optimization framework for Conditional Value-
at-Risk (CVaR)-based portfolio selection problems (see Rockafellar and Uryasev [30, 31]) to
optimization over a more general class of risk measure known as the class of Coherent Distor-
tion Risk Measure (CDRM). In addition to CVaR, CDRM includes many other well-known
risk measures including the Wang Transform measure, the Proportional Hazard measure,
and the lookback measure. A case study is conducted to illustrate the flexibility of the linear
optimization scheme, explore the efficiency of the %—portfolio strategy, as well as compare
and contrast optimal portfolios with respect to different CDRMs.
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1. Introduction

The problem of optimal portfolio selection is of paramount importance to investors,
hedgers, fund managers, among others. Inspired by the seminal work of Markowitz [27],
the research on optimal portfolio selection has been growing rapidly. Researchers and prac-
titioners are constantly seeking better and more sophisticated risk and reward tradeoff in
constructing optimal portfolios. The classical Markowitz model used variance as the mea-
sure of risk and this is perceived to be undesirable since it penalizes equally, regardless of
downside risk or upside potential. Consequently, other measures of risk have been proposed
in connection to portfolio optimization. These include semi-variance (see Markowitz [28]),
partial moments (see Bawa and Lindenberg [5]), safety first principle (see Roy [32]), skewness
and kurtosis (see Lai [26], Chunhachinda et al. [11], and Harvey et al. [21]).

More recently, both value-at-risk (VaR) and conditional value-at-risk (CVaR)? risk mea-
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sures have been advocated in the context portfolio selection. See for example Gaivoronski
and Pflug [18] and Rockafellar and Uryasev [30]. These two risk measures are widely ac-
cepted measure of financial risk among market participants and they have been adopted by
the regulators for risk quantification. For example, VaR was adopted as the “first pillar” in
Basel II, which are recommendations on banking laws and regulations mandated by Basel
Committee on Banking Supervision (see Cooke [12]). CVaR is recommended by the National
Association of Insurance Commissioners (NAIC) for setting regulatory risk-based capital re-
quirements for variable annuities and similar products (see Tim Gaule [33]). See also Jorion
[23] and Pritsker [29] which provided comprehensive discussions on risk management using
VaR. Despite its popularity, a number of researchers cautioned the use of VaR as a measure
of risk and instead supported CVaR. Basak and Shapiro [4] showed theoretically that optimal
decisions based on VaR could result in higher risk exposure than when decisions were based
on expected losses. Through an axiomatic approach, Artzner et al. [3] defined an important
class of risk measures known as the coherent risk measure (CRM) and they shown that VaR
fails to satisfy the sub-additivity property and hence it is not a CRM. CVaR, in contrast,
satisfies all the properties of a CRM.

Another interesting class of risk measures is known as the distortion risk measure (DRM)
which was studied by Wang [35, 36]. The axioms that were used to define DRM were origi-
nated from the insurance premium principles (see Goovaerts et al. [19] and Wang et al. [37]).
Campana and Ferretti [10] considered the applications of DRM for discrete loss distributions.
Gourieroux and Liu [20] provided a statistical framework for analyzing the sensitivities of
DRMs with respect to various risk aversion parameters. Generally speaking, a DRM is the
expectation of portfolio loss random variable under a distorted probability measure. Differ-
ent distortions reflect different risk appetites of decision makers. From a mathematical point
of view, DRM is a Choquet integral and all the standard results about Choquet integrals,
such as those discussed in Denneberg [14], are applicable to DRM.

It is important to point out that both CRM and DRM are not subclasses of each other.
Kusuoka [25] studied subclasses of CRM and proved a representation theorem for comono-
tonic law-invariant coherent risk measures. For continuous loss distributions, any comono-
tonic law-invariant coherent risk measure can be represented as a convex combination of
CVaR’s at different confidence levels. Bertsimas and Brown [8] proved similar results for dis-
crete loss distributions and strengthen their claim by proving only finite number of CVaR’s
are needed in the representation. To the best of our knowledge, Bellini and Caperdoni [6] was
the first to synchronize CRM and DRM and to study the intersection of both classes. They
named the intersection of both CRM and DRM as the coherent distortion risk measures
(CDRM) and CVaR is one of such members. They showed that the class of comonotonic
law-invariant CRMs is precisely the class of CDRM. Acerbi and Simonetti [1] studied spectral
measures of risk and applied them in portfolio selection problems. A spectral risk measure
with admissible spectrum defined in their work can be viewed as a CDRM yet it overlooks
the connection with its underlying distortion function and hence lack of interpretation of its
risk appetite.

Parallel to the development of the more advanced portfolio models, there is also an



increased demand for more sophisticated mathematical programming methods in solving the
resulting optimization problems. Special features of the optimization problems are exploited
to facilitate the formulation and solving of the mathematical programming methods. To
elaborate, it is well known that solving the CVaR-based portfolio problem directly can be
quite challenging as it is formulated as a non-linear programming. On the other hand, as
shown in Rockafellar and Uryasev [30, 31] that the CVaR-based optimization problem can
be equivalently formulated as a linear program. Their results drastically stimulated the
applicability of the optimization problems associated with CVaR. For example, Krokhmal
et al. [24] investigated three different formulations of CVaR portfolio selection problems.
Fébidn [17] considered CVaR objectives and constraints in two-stage stochastic models.

The rest of the paper is organized as follows. Section 2 and 3 review, respectively,
the CVaR minimization approach developed in Rockafellar and Uryasev [30, 31] and the
classes of CRM and DRM. Main contributions of the paper are collected in Section 4. We
begin the section by first listing some properties associated with CDRM. We then generalize
the finite generation theorem Bertsimas and Brown [8] for CDRM. We also show that any
CDRM can be defined as a convex combination of ordered portfolio losses and equivalently a
convex combination of CVaRs. We solve the CDRM-based portfolio optimization via linear
programming and thus generalize the results of Rockafellar and Uryasev [30, 31]. Section 5
complements the paper by providing some numerical examples to illustrate the applicability
of our proposed optimization problems. In particular, we implement four different CDRM-
based portfolio models and these results are compared to the naive %—portfolio strategy.
Section 6 concludes the paper.

2. CVaR-Based Portfolio Optimization Model

The purpose of this section is to introduce two of the most popular risk measures known
as the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR). The connection to
portfolio optimization, particularly the convex formulation and linearization scheme for the
CVaR minimization problems of Rockafellar and Uryasev [30, 31] is highlighted.

Let I = f(x,y) be portfolio losses associated with the decision vector @, to be chosen
from a set § C R", and the random vector y € R™. The vector @ represents what we may
generally call a portfolio, with S capturing the set of all feasible portfolios subject to certain
portfolio constraints. For every @, the loss f(,y) is a random variable having a distribution
in R induced by the distribution of y € R™. The underlying probability distribution of y is
assumed to be discrete with probability masses p, i.e., Pr[l = l(x,y;)] =p; fori=1,--- ;m.

Note that in many cases it is assumed that p; = %, i.e., the portfolio loss has a discrete
uniform distribution. This is not a very limiting assumption if we restrict ourselves to discrete
portfolio loss distributions, which is typically the case if we are obtaining distributional
information via scenario generation or from historical data samples. In addition, given any
arbitrary discrete distribution representable with rational numbers, we may always convert it
to discrete uniform distribution for some large enough m. While we impose this assumption in
our numerical example (see Section 5), we emphasize that we do not rely on such assumption
in our proposed risk measure based optimization framework to be discussed in Section 4.



For every portfolio @, denoted by W(x,-) the cumulative distribution function for the
portfolio loss I = f(x,y),

U(x, () = Zpil{lzé(} (1)
=1

Then a-VaR and a-CVaR are defined as follows (see Rockafellar and Uryasev [31, Proposition

8]):

Definition 2.1. Suppose for each ® € S, the distribution of the portfolio loss l = f(x,y)
is concentrated in m < oo points, and V(x,-) is a step function with jumps at these points.
Now fizing & and let l(1) < lig) < -+ < () denote the corresponding ordered portfolio loss
points and piy > 0,4 =1,--- ,m, represent the probability of realizing loss lyy. If i, denotes

the unique index satisfying
ia—1

Do za> ) v, (2)
=1 1=1

then a-VaR and a-C'VaR of the portfolio loss are given, respectively, by

Cal(@) = i), (3)

and

$a(T) = 1 i - [(iﬁ(i) - CY) li, + Z p(i)l(i)] : (4)

1=t +1

Essentially, VaR is a quantile risk measure which measures the potential loss over a
defined period for a given confidence level while CVaR captures the average losses from
extreme event. These risk measures are used by banks and insurance companies, respectively,
for the calculation of regulatory capital risk charge. In addition to been adopted by the
regulators for quantifying risk, these risk measures have also been exploited in the context
of portfolio selection. In fact a general portfolio optimization model can be formulated as
follows:

min p(z) (5)

xeS

for appropriately defined feasible portfolios S and appropriately chosen risk measure p.

Note that if p captures the variance of the return of portfolio «, then the above optimiza-
tion problem recovers the standard Markowitz model. Similarly, if p is replaced by VaR,
CVaR or any other risk measure, then we have a generalization of the Markowitz portfolio
model.

Gaivoronski and Pflug [18] pointed out that the portfolio optimization problem (5) as-
sociated with VaR is numerically very challenging due to its lack of convexity. In contrast,
the CVaR-based portfolio optimization problem (5) is a convex program and hence is more
tractable computationally. The CVaR-based portfolio model becomes even more popular and
more practical when Rockafellar and Uryasev [30] shown that the convex program can in
fact be formulated as a liner program. The key to the development of Rockafellar-Uryasev’s



linear optimization scheme of CVaR-based portfolio selection problem is a characterization
of ¢o(x) and (,(x) in terms of a special function F,(x,() given by

1 1 «
Fuw, Q) = C+ B4 y) — %] = C+ == > pulli— O )
i=1
As shown in Rockafellar and Uryasev [31], if f(x,y) is convex with respect to @, then ¢, ()
is convex with respect to . In this case, F,(x, () is also jointly convex in (z, ().
Armed with these findings, they derived the following key equivalence formulation (Rock-
afellar and Uryasev [31, Theorem 14]):

Theorem 2.1. Minimizing ¢.(x) with respect to x € S is equivalent to minimizing Fy(x, ()
over all (x,() € S x R, in the sense that

i o = ‘ Fa ) 7
min ¢o (2) o (x,¢) (7)

where moreover

(z*",¢*) € argmin F,(z,() <= x* € argmin ¢, (), (* € argmin F,(z*, () (8)
(x,0)eSxR zeS CeER

The above theorem links the representation (6) explicitly to both VaR and CVaR simul-
taneously. The theorem asserts that for the purpose of determining an optimal portfolio with
respect to CVaR, we can replace ¢, (x) by F,(x, () in portfolio selection problems. More im-
portantly, by exploiting (6) the general convex programming of CVaR portfolio optimization
problem can be linearized into a linear objective function with an additional linear auxiliary
constraints. With such linear representation we can cast any portfolio selection problem
with CVaR objective and linear constraint(s) as a linear program (LP). This significantly
reduces the computation effort in obtaining the optimal portfolios.

3. Coherent Risk Measure (CRM) and Distortion Risk Measure (DRM)

In this section, we review two important families of risk measures known as coherent risk
measure (CRM) and distortion risk measure (DRM).

The uncertainty for future value of an investment position is usually described by a
function X : Q — R, where 2 is a fixed set of scenarios with a probability space (2, F,P).
Let X be a linear space of random variables on (2, i.e., a set of functions X : Q — R. It
is assumed that X is bounded. In particular, X C L*(Q, F,P).* For introduction, X can
be thought of as a loss from an uncertain position. For X,Y € X, we denote the state-wise
dominance by X > Y, ie., X >Y & X(w) > Y(w) for all w € €.

In Artzner et al. [3] CRM is defined through the following set of axioms:

4When we impose that |Q] is finite and supported by finite elements, this is automatically satisfied.



Definition 3.1. A mapping p : X — R is called a coherent risk measure if it satisfies, for
all X, Y € X:

C1 Monotonicity: p(X) > p(Y) for all XY € X and X > Y.

C2 Translation invariance: p(X +a) = p(X) 4+ a for all X € X and a € R.
C3 Positive homogeneity: p(AX) = Ap(X) for all X € X and \ > 0.

C/4 Subadditivity: p(X +Y) < p(X) 4+ p(Y) for all XY € X.

The financial meaning of monotonicity is clear: The risk of a portfolio is at least as much
as another one if former incurs at least as much losses as the latter in very state of economy.
Translation invariance is motivated by the interpretation of p(X) as a reserve requirement,
i.e., p(X) is the amount which should be raised in order to make X acceptable from the point
of view of a supervising agency. Thus, if there is a constant loss added to all future state
of economy, then the reserve requirement is increased by the same amount. The positive
homogeneity axiom states that risk scales linearly with the size of a position. Under positive
homogeneity, the axiom of subadditivity is equivalent to convexity, which fosters the notion
that diversification should not increase risk.

Similar to the axiomatic approach for constructing CRM, Wang et al. [37] proposed the
following four axioms to characterize DRM.

Definition 3.2. A mapping p : X — R is called a distortion risk measure if it satisfies, for
all XY € X

D1 Conditional state independence: p(X) = p(Y) if X and Y have the same distribution.
This means that the risk of a position is determined only by the loss distribution.

D2 Monotonicity: p(X) < p(Y) if X <Y.
D3 Comonotonic additivity: p(X +Y) = p(X)+p(Y) if X and Y are comonotonic, where
random variables X and Y are comonotonic if and only

(X(w1) = X(w2))(Y(w1) = Y(w2)) >0 a.s. forwy,ws €
D4 Continuity:

lim p((X = d)") = p(X7), lim p(min{X,d}) = p(X), lim p(max{X,d}) = p(X)

d—0
where (X —d)t = max(X — d,0)

If two random variable X and Y are comonotonic, then X (w) and Y (w) always move in
the same direction as the state w changes. The notion of comonotonicity is central in risk
measures. See discussions on comonotonicity in Dhaene et al. [15] and Dhaene et al. [16].
Wang et al. [37] imposed axiom D3 based on the argument that the comonotonic random
variables do not hedge against each other, leading to additivity of risks. They also proved
(Wang et al. [37, Theorem 3]) that if X' contains all the Bernoulli(p) random variables,



0 < p < 1, then risk measure p satisfies axioms D1-D4 and p(1) = 1 if and only if p has a
Choquet integral representation with respect to a distorted probability; i.e.,

= /Xd(g olP) = / [g(P(X > x)) — 1]dz + /000 g(P(X > x))dx (9)

where g(-) is called the distortion function which is nondecreasing with g(0) = 0 and g(1) = 1,
and g o P(A) := g(P(A)) is called the distorted probability.

The Choquet integral representation of DRM can be used to explore its mathematical
properties. Furthermore, calculations of DRMs can be easily done by taking the expected
value of X under probability measure P* := g o P (see Wang [35, Theorem 1] and Wang [36,
Definition 4.2]). Here we list some commonly used distortion functions:

e CVaR distortion:

gover(w, @) = min{z— 1} with a € [0,1) (10)
e Wang Transform(WT) distortion:
gwr(z, B) = ©[@7(z) — ()] with 8 € (0,1) (11)
e Proportional hazard(PH) distortion:
gpu(x,7) = x7 with v € (0,1] (12)
e Lookback(LB) distortion:
gra(x,8) = 2°(1 — §1lnx) with § € (0,1]. (13)

The connection between CVaR and the distortion function (10) was observed in Wirch
and Hardy [39] while the remaining three distortion functions were proposed in Wang [36],
Wang [34], and Hiirlimann [22], respectively.

For discretely distributed portfolio losses random variable I = (Iy,--- ,[,,) and its prob-
ability masses Pr[l = ;] = p; for i = 1,--- m, we can obtain the cumulative distri-
bution function Fj(l) = Z?ilpil{ligl} Then the discrete survival function is given by
P(X > z) = Si(l) = 1 — F(l) and is applied in the distorted probability representation
of (9). We have

0 [e%S) m
p) = [ o) -+ [ gS@=EW=3pply ()
0 0 i=1
where o(Silln)) .
* tl) orv=1
| o= . 1
ho { Py = 9(Sili)) — 9(Sil)), fori =2+ .m. =
Since g is non-decreasing, ¢g(0) = 0 and ¢(1) = 1, hence pf > 0 for ¢ = 1,--- ,m, and

2t pi = 1= 9(Silm))) = 1.



4. Coherent Distortion Risk Measure (CDRM)-based Portfolio Selection

There are two ways to derive and define CDRM: Bellini and Caperdoni [6] defined CDRM
as a subclass of DRM, namely DRM with concave distortion function ¢g; Bertsimas and Brown
[8] defined CDRM as a subclass of CRM, namely CRM that is also comonotonic and law
invariant.> These two definitions are indeed equivalence since it is shown in Bellini and
Caperdoni [6] that the class of coherent distortion risk measures coincides with the class of
comonotonic law invariant coherent risk measures.

Definition 4.1. We say p is a coherent distortion risk measure (CDRM) if:

o p, is a distortion risk measure (DRM) with a concave distortion function g, or equiv-
alently,

e p is a coherent risk measure (CRM) that is also comonotonic and law-invariant.

The following representation theorem for CDRM is the key result that enables us to
develope a convex optimization framework for any CDRM portfolio selection problem.

Theorem 4.1. For any random variable X and a given concave distortion function g, risk
measure p, is a CDRM if and only if there exists a function w : [0,1] — [0, 1], satisfying
f;zow(a)da =1, such that:

py(X) = / w(0)da(X)da (16)

-0
where ¢o(X) is the a-CVaR of X.

This representation theorem says that any CDRM can be represented as a convex com-
bination of CVaR,(X), a € [0,1] and we can construct any CDRM based on a convex
combination of CVaR,(X), o € [0,1]. Such result was proved by Kusuoka [25] for con-
tinuous portfolio loss distributions. Bertsimas and Brown [8] proved and strengthened the
representation theorem that any CDRM can be represented as a convex combination of finite
number of CVaR,(X)s under the assumption that the portfolio loss has discrete uniform
distribution. In addition to developing our convex programming formulation CDRM portfo-
lio selection problem, we also generalize the finite generation theorem for CDRM to general
discrete loss distributions. Before stating the main results of the paper, it is useful to state
the following definition:

Definition 4.2. For a given loss observation l = (ly,--- ,l,,) and the corresponding ordered
losses Iy < ly < -+ < lumy. Let pu) be the probability of realizing lgy, i = 1,--- ,m and

let Si(lyy) = 1 = > pu. Define a CVaR-matriz Q € R™ x R™ with columns Q; € R™,
=1

1=1,---,m as

®Definition 4.5 in Bertsimas and Brown [8] should be defining CDRM as oppose to defining DRM.
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i Py p() 0 R 0 ]
)
P 1=5,00) 0
P3) P(3) L.
Q=[Q,,Q,,--,Q,]=| P® T505) T50m) 0 : (17)
P(m) Py Py _
L P(m) 1=Sil(1y)  1-Si(le2)) 1-S1(l(m-1y) ~ =

Since portfolio losses are discretely distributed at m points, there are m jumps in the
cumulative function of I. By defining

0 fori=1
) im
= Yopy fori=2---m (18)
j=1
at these m jumps, then the m CVaRs at these probability levels are then given by
oy (1) = ! Zm:p(jﬂ(j) = Zm: Dy = Zm: Qijl), (19)
1-— (67 = = 1-— Sl<l(m—1)) =

for i =1,--- ,m and Q;; is the (4, j)-th entry of Q. Note that column Q) is essential to the
calculation of CVaRi-1(l) and hence explains the name of the matrix.

We now give a finite generation result for the CDRM, which generalizes Theorem 4.2 of
Bertsimas and Brown [8] to general discrete loss distributions.

Theorem 4.2. For a give portfolio loss sample I = (Iy, -+ ,l,), the corresponding ordered
losses l(1y, -+ , Iy and a given concave distortion function g, the resulting CDRM p, is given
by

pall) = aile (20)

where q;, i = 1,--- ,m are defined in Equation (15).
Moreover, every such q can be written in the form

q=Quw (21)
T

where w' = (wy,- - ,wy,,) denotes the conver weights satisfying w; > 0, i =1,--- ,m, and
Yo wp =1, and Q is to the CVaR-matriz (17). The convex weights w are given by

% if 1=1
Wy = PG ) Sil-1)) . (22)

(qi et e if 1=2,---,m.



We now make the following observations. First, it is easy to verify that the convex weights
defined in (22) satisfy w; > 0 for ¢ =1,--- ,m and )", w; = 1. Theorem 4.2 implies that
every CDRM can be defined as a convex combination of the ordered losses [(1), -, i) via
(20) or equivalently as a convex combination of CVaRs via (21). The latter formulation is
what we adopt in our CDRM portfolio optimization model.

Motivated by Theorem 2.1 and Theorem 4.2, we consider the following special function

1

My@.0) = [ w(@)Fa(@.G)da (23)

a=0
where w(a) > 0 and [!_ w(a)da = 1.

The representation Theorem 4.1 of CDRM ensures the existence of w(a), a € [0, 1] and
defines CDRM for a given set of weights. For each o € [0, 1] there is a corresponding auxiliary
variable (,. Taking partial derivatives with respect to all {, for a € [0,1] and setting them
equal to zeros give the extremal properties of My(x, ). This provides more insights about
the connection between a particular CDRM, p,(x), and its convex representation My(x, ¢).
Yet ¢ may have infinite many entries (,. Taking partial derivative with respect to all (,
for a € [0, 1] requires calculus of variations, which is outside the scope of this thesis. We
alleviate such difficulty by applying properties of Choquet integrals because CDRM is a
subclass of DRM.

We conclude the section by presenting the following key result of the paper. This gener-
alizes the CVaR-based portfolio model of Rockafellar and Uryasev [30] to the more general
class of CDRM-based portfolio model:

Theorem 4.3. Let p,(x) be a CDRM with a corresponding distortion function g. Minimizing
pg(T) with respect to & € D is equivalent to minimizing M,(z, ¢) over all (z,¢) € D x RIS,
in the sense that

i = in M, 24
min py () B g(z. C) (24)

where moreover
(", ¢*") € argmin My(z, ) <= =* € argnin p,(x), {* € argmin M, (x*, ¢) (25)
(z,§)e DxR xzeD ¢eR
Proof. Since CDRM is a subclass of DRM, all results of DRM and of Choquet integrals
can be applied. In particular, one of the properties of Choquet integral states that if a
random variable X, has a finite number of values and converges to X, i.e., X, X , then
pg(Xn) w p(X) provided that p,(X) exists,. This property implies that it is sufficient to
prove the statement for the discrete random variables, and then carry over the result to the
general continuous case.
Consider a discrete portfolio loss random variable I = (ly,--- ,[,,) induced by the choice
of portfolio @ € R" and the random vector y € R™; i.e. ; = [(x,y;). It follows from Theorem

4.2 that . "
pe(T) = aily =Y widy, ().
=1 =1

10



Consider now the discrete analog of (23); i.e.

Mg(.’B, C) = ZwiFai(xv COéi)
=1

where F,,(x,(,,) and a;, ¢ = 1,--- ;m are defined by (6) and (18), respectively. Since

Fo.(x,(y,),i=1,---,m are all joint convex functions of « and ¢,, and M,(z, ) is a convex
combination of Fy,(x,(,,) for ¢ = 1,--- ,m, then M,(x, () is a joint convex function of x
and (.

For a given portfolio &, we want to find ¢* that minimizes My(x, ¢). Since M,(z,() is a
convex function of ¢, we can simply set the gradient of M,(x, {) with respect to ¢ equal to

zero. This leads to

i=1,--

_ OMy(=Q)
0 = 24&0
0 = %wj{cai+l+m;pi(li_gai)+]v Zzl,
0 = wj[l - l%m Zjlpil(li—Cai)]’

N { Cao € [liy liy1)

(5, unconstrainted if w; = 0.

Substituting these extremal conditions into M,(x, (), we have

m 1 m
. _ Ve (L. — * )t
Crgl%gl;ln Mg(w7C) - Zzlwl Cai + 1— Qo ]lej(l] Caz)
m i . 1 m .
— Zwi it T a ij(lj =G
=1 L Jj=t
= Zwi Cai T 1_%22%)1@)—
=1 j=t
= Qv o 2P0l
=1 L J=t
= sz¢az(m)
=1
= py(@).

The minimum value of M, (z, ¢) is precisely p,(x) and such result holds for any portfolio

ax. Therefore the equivalences in Theorem 4.3 hold.

According to Theorem 4.3, we can replace p,(x) with M (x,¢) in portfolio selection
problems. Since M (x, ) is a joint convex function w.r.t (z, ), therefore a portfolio selection
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problem induces a convex programming problem if the feasible set D is convex. Since
Theorem 4.3 relates closely to the Rockafellar-Uryasev CVaR optimization approach, we can
cast portfolio selection problems with CDRM objective/constraint(s) similar to those with
CVaR objective/constraint(s).

5. Case Study: Optimal Investments with CDRMs

Recall that the key result derived in the last section allows us to reformulate a CDRM-
based portfolio optimization model as a linear programming. This facilitates us in obtaining
the optimal portfolios over a much wider class of risk measure and hence this generalizes the
Rockafellar-Uryasev CVaR portfolio model. To demonstrate the flexibility and the applica-
bility of our portfolio optimization model, we provide some empirical studies. Subsection 5.1
first addresses the efficiency of %—portfolio strategy, a portfolio strategy that is commonly
used in practice. Subsection 5.2 then compares and contrasts the optimal portfolios arising
from various specification of CDRMs. All programming problems are solved with AMPL
using the Gurobi 4.5.1 solver.

We begin our empirical analysis by first defining our “universe” of stocks, which consists
of 20 stocks from S&P 500 (see Table 1). Moreover, 2 stocks from each of the 10 sectors
defined in Global Industry Classification Standard (GICS) are chosen so that this universe of
stocks can be a proxy of the real market. Weekly closing prices (adjusted for dividends and
splits) from 02/01/2001 to 31/05/2011 (a total of 543 weeks, hence 542 weekly returns) for
these stocks were obtained from finance.yahoo.com.® Since we have confined our portfolio
to be constructed from these stocks, Figure 1 shows the time series for the sum of these 20
stock prices. Clearly there had been market declines from 2001 to 2003 as the aftershock
from 9 — 11 terrorist attack in 2001. We also observe that market declines from 2007 to 2009
resulted from the so-called “sub-prime mortgage financial crisis”. Moreover, the portfolio
increases gradually from mid-2003 to 2005, from mid-2005 to 2007, and after 2009. We
replace scenario generation by historical data of stock returns and assume equal probability
for each scenario.

5.1. Effictency of %—Portfolz’o Strategy

In this subsection we examine the performance of a simple yet common investment port-
folio, the equally weighted portfolio, also known as the %—portfolio. In an %—portfolio, initial
wealth is invested equally, in monetary amount, in all available stocks. Benartzi and Thaler
[7] observed that many participants in defined contribution plans used this simple strategy.
Windcliff and Boyle [38] explored this simple investment strategy in classical Markowitz
framework and gave merits to this diversification rule when parameter estimation risks and
parameter estimation errors are considered. DeMiguel et al. [13] preformed extensive em-
pirical study across 14 portfolio selection models and found that none of them consistently
outperforms the %—portfolio in terms of the Sharpe Ratio.

6Last access on 25/07/2011.
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GICS Sector Company Ticker Symbol
Consumer Discretionary Ford Motor F
McDonald’s Corp. MCD
Consumer Staples Coca Cola Co. KO
Wal-Mart Stores WMT
Energy Marathon Oil Corp. MRO
Exxon Mobil Corp. XOM
Financials American Intl Group Inc | AIG
Citigroup Inc. C
Health Care CIGNA Corp. CI
Humana Inc. HUM
Industrials General Dynamics GD
General Electric GE
Information Technology Microsoft Corp. MSFT
National Semiconductor | NSM
Materials FMC Corporation FMC
International Paper IP
Telecommunication Services | AT&T Inc T
Verizon Communications | VZ
Utilities American Electric Power | AEP
Entergy Corp. ETR

Table 1: Companies Selected for Investment Portfolio Construction Case Study

For our selected universe of assets, we derive the efficient frontiers at beginning of years
2003, 2005, 2007, and 2009 (defined as return vs 95%-CVaR) using the linear programming
discussed in Section 2. The results are plotted in Figure 2. To compare and contrast the
efficiency of the %—portfolios, the panel also depicts the corresponding risk-reward trade off for
the constructed %—portfolio (shown as solid diamonds). It is clear from these comparisons that
the %—portfolio is far from being efficient. In fact, three out of four times the %-portfolio lies
below the minimum-risk portfolio. Moreover, the %—portfolio lies significantly farther from
the efficient frontier in periods of market declines (beginning of years 2003 and 2009) than in
periods of market increases (beginning of years 2005 and 2007). One possible explanation is
that, assets are more correlated when the market performs poorly hence the benefit of risk
diversification for %—portfolio becomes the disadvantage of risk aggregation.

5.2. Comparisons among Different CDRMs

In this subsection, we consider the optimal portfolios under various CDRM. The initial
portfolio consists of $100 cash and the portfolio is rebalanced weekly according to the optimal
CDRM optimal portfolios. For each chosen CDRM (and subject to various constraints), we
determine the optimal portfolios on 442 overlapping 100-week periods. We impose a budget
constraint 2?21 x; = 1, no-short selling constraints & > 0, upper-limit constraints < 0.2

13



Market Portfolio Value from 2001 to 2011
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Figure 1: Time Series Plot of Market Portfolio

so that no more than 20% of the total portfolio value should be invested in one single stock,
and a return constraint R(x) > p where  is the expected return of the i-portfolio.

The linear programming implementation of CDRM-based portfolio model in Theorem 4.3
enables to easily obtain the optimal portfolios over a wider class of risk measures. In partic-
ular, we examine the following four members of CDRMs:

1. the CVaR measure (4) with o € {0.9,0.95,0.99}.

2. the Wang Transform (WT) measure (11) with g € {0.75,0.85,0.95}.

3. the Proportional Hazard (PH) transform measure (12) with v € {0.1, 0.5,0.9}.
4. the lookback (LB) distortion measure (13) with § € {0.1, 0.5,0.9}.

We implement the linear programming of CVaR portfolio model using the approach of Rock-
afellar and Uryasev [30]. For the latter three portfolio models, we use the results in Theorem
4.3 to determine the optimal portfolios. In these cases, we need to determine the weight vec-
tors @ and w which are plotted in Figure 3 to Figure 5. Summary statistics for the expected

returns and realized returns of the optimal portfolios under each CDRM risk measure are
listed in Table 2.

e It is of interest to note that the PH portfolio optimization is almost equivalent to
optimizing over two extreme CVaR-based portfolios: one with a = 0.99 and the other
with o = 0. PH,. Recall that minimizing CVaR with high value of « implies that you
are someone who is very risk averse and hence is interested in risk minimization. In
contrast, minimizing CVaR with as low « as 0 implies an investor is risk seeker and
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is only interested in maximizing expected return. Consequently seeking an optimal
PH-based portfolio attempts to balance between two extreme portfolios.

Consistent with the classical tradeoff theory on risk and reward, a more risk averse
investor seeks an optimal portfolio with lower risk (as measured by the respective
CDRM) but at the expense of lower expected return. Hence the expected return of
the optimal portfolio decreases with a for CVaR, decreases with  for WT, increases
with « for PH, and increases with ¢ for LB. The reported Sharpe ratios (assuming zero
risk-free interest rate) in Table 2 are also consistent with these observations.

Figure 6 produces the out-of-sample realized returns (on the constructed optimal port-
folios) over 442 overlapping 100-week periods. It is also of interest to note that while an
optimal portfolio with a higher risk is compensated with a higher expected return, the
portfolio does not necessary lead to higher realized out-of-sample return, as confirmed
in some of these graphs.

To conclude our analysis, we perform a final comparison among the best performing

portfolios in the aforementioned four members of CDRMs to the %—portfolio, and the return
maximization portfolio. Note that we can also view the return maximization problem as
a CDRM minimization problem by minimizing C'VaR, of the negative returns. The re-
sulting time series are plotted in Figure 7 the summary statistics for %—portfolio and profit
maximization portfolio is given in Table 3.
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Figure 6: Time Series Plots for Various CDRM Optimal Portfolios
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Expected ‘ Realized | Expected ‘ Realized | Expected ‘ Realized
CVaR a =0.90 a=0.95 a=0.99
Mean 0.0025 0.0015 0.0023 0.0012 0.0021 0.0014
Std. Dev. 0.0021 0.0189 0.0023 0.0205 0.0026 0.0224
Skewness 0.3975 | -0.9370 0.1961 | -0.5674 -0.1758 | -0.2081
Kurtosis 0.5856 6.0820 0.1382 4.9651 0.2113 4.4711
Sharpe 1.1710 0.0783 0.9738 0.0572 0.7853 0.0622
WT B8 =0.75 8 =0.85 8 =0.95
Mean 0.0031 0.0016 0.0026 0.0014 0.0023 0.0014
Std. Dev. 0.0022 0.0192 0.0021 0.0191 0.0023 0.0211
Skewness -0.0019 | -1.0024 0.3737 | -0.7753 0.1095 | -0.3052
Kurtosis -0.2304 7.0607 0.3865 5.8864 0.3137 5.4681
Sharpe 1.4267 0.0856 1.2493 0.0748 0.9964 0.0663
PH v=0.1 ~v=0.5 ~=0.9
Mean 0.0021 0.0013 0.0030 0.0015 0.0061 0.0028
Std. Dev. 0.0026 0.0222 0.0023 0.0209 0.0035 0.0262
Skewness -0.1909 | -0.2616 -0.1962 | -0.8342 1.5106 | -0.9574
Kurtosis 0.3613 5.1429 -0.1318 8.5093 3.9670 6.7800
Sharpe 0.8243 0.0584 1.2824 0.0709 1.7294 0.1057
LB 6=0.1 0=0.5 0=0.9
Mean 0.0021 0.0013 0.0023 0.0014 0.0026 0.0014
Std. Dev. 0.0026 0.0223 0.0024 0.0213 0.0021 0.0189
Skewness -0.1683 | -0.2288 0.0358 | -0.3401 0.4153 | -0.8040
Kurtosis 0.2944 4.6000 0.2819 5.1539 0.4736 6.0423
Sharpe 0.7970 0.0600 0.9559 0.0644 1.2609 0.0764

Table 2: Summary statistics for the returns of optimal portfolios w.r.t various CDRMs

%—Portfolio Max Return Portfolio
Expected | Realized | Expected | Realized
Mean | 0.00168 | 0.00208 | 0.00639 0.00279
Std. Dev. | 0.00279 | 0.03038 | 0.00352 0.02947
Skewness | -0.33372 | 0.25175 | 1.52513 | -0.73268
Kurtosis | 0.64192 | 13.73943 | 4.02045 4.95543
Sharpe Ratio | 0.60129 | 0.06854 | 1.81415 0.09480

Table 3: Summary Statistics for %—Portfolio and Return Maximization Portfolio

We see that for our selection of stocks, the return maximization produces the best portfo-
lio in terms of its terminal wealth and the mean portfolio returns. However, this should not
be a practical recommendation for portfolio manager because it might bear unacceptably
high risks. For instance, the standard deviation of the expected returns for return maximiza-
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Figure 7: Summary Time Series Plots

tion portfolios is the highest among all portfolios we have discussed in this section. Investors
should consider their own risk appetites and choose an appropriate risk measure in every
investment decision. It is also of interest to note that the performance of PH with v = 0.9 is
very similar to the return maximization strategy. This should not be surprising since with
such a high value of 7, the PH-based portfolio model is similar to return maximization.

6. Concluding Remarks

This paper extended the well-known linear optimization framework for CVaR (see Rock-
afellar and Uryasev [30]) to a general class of risk measure known as the CDRM. We first
generalized the finite generation theorem for CDRM in Bertsimas and Brown [8] and shown
that any CDRM can be defined as a convex combination of ordered portfolio losses and
equivalently a convex combination of CVaRs. We make use of the latter to develop a CDRM-
based portfolio optimization framework. We solved CDRM-based portfolio optimization via
linear programming, which could handle problems with large number of variables and/or
constraints. A case study was conducted on constructing a portfolio consisting of 20 S&P
500 stocks. Our empirical analysis suggested the importance of active risk management
since naive portfolio construction, such as the %—portfolio strategy, can be very inefficient.
We also compared and contrasted optimizations over four different members of CDRM. Our
numerical shows that different CDRMs reflected different risk appetites and hence different
optimization focuses. Choosing risk measures wisely enables risk managers to achieve higher
Sharpe ratios, or risk adjusted returns on their investment.
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