Ultimate Ruin Probability with Correlation

Emmanuel Thompson*

Rohana S. Ambagaspitiya†

August 2, 2012

Abstract

In the Sparre-Andersen model, claim sizes and claim occurrence times are assumed to be independent. The independence assumption was used for simplicity in the literature. In this paper, we introduce correlation and consider two classes of bivariate distributions to model claim sizes and claim occurrence times. We derive exact expressions for the ultimate ruin probability and establish the effect of correlation on ruin probability using the Wiener-Hopf factorization.

*Emmanuel Thompson, is a PhD Candidate in Statistics with concentration in Actuarial Science in the Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada, thompsoe@ucalgary.ca.

†Rohana S. Ambagaspitiya, PhD, FSA, is an Associate Professor of Actuarial Science in the Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada, ambagasp@ucalgary.ca.
1 Introduction

Risk theory refers to a body of techniques used to model and measure risk associated with a portfolio of insurance contracts. It therefore provides an avenue of assessing the solvency of an insurance undertaking. In practice, an insurer commences business with an initial capital u, collects premium c and payout claims X_i. This results in a net balance called surplus for any fixed time $t > 0$. If the surplus at any time falls below zero, we say the insurer concerned is in a state of insolvency and therefore ruin has occurred. In the literature, two risk models have been studied extensively. These models are the Classical Compound Poisson (CCP) risk model and the Continuous Time Renewal process also known as the Sparre Andersen (S-A) risk model.

The risk surplus process $S(t)$ underlying the CCP risk model is given as in:

$$S(t) = u + ct - \sum_{i=1}^{N(t)} X_i$$

(1)

where $u \geq 0$ is the initial capital, $N(t)$ the time homogeneous Poisson process with intensity λ, and the X_i’s are independent identically distributed non-negative random variables representing claim sizes.

The risk surplus process $S(t)$ within the framework of S-A risk model is defined as:

$$S(t) = u + \sum_{i=1}^{n} (cT_i - X_i) + c(t - \sum_{i=1}^{n} T_i)$$

(2)

where T_i’s are independent identically distributed non-negative random variable representing interclaim times with T_1 indicating time until the first claim and t is such that $\sum_{i=1}^{n} T_i \leq t \leq \sum_{i=1}^{n+1} T_i$. However, u, c and X_i have the same interpretation as in the CCP risk model.
The ultimate ruin probability $\psi(u)$ given an initial capital of $u \geq 0$ is defined as:

$$\psi(u) = P[T < \infty]$$

where $T = \min\{t > 0 : S(t) < 0\} | U_0 = u$ and it represents time of ruin. Ruin probabilities and related quantities have been studied by prominent researchers. Gerber and Shiu (1997b), Dickson (1992, 1993), Dufresne and Gerber (1998), Dickson and Hipp (1998) are among few references.

In the S-A model, T and X are assumed to be independent, however for some real world situations, this assumption is very restrictive. Albrecher and Boxma (2004) and Albrecher and Teugels (2006) obtained approximation for the ruin probability when T and X are related. In the case of Ambagaspitiya (2009), exact expression for the ruin probability was obtained. In this paper, we relax the independence assumption by considering two classes of bivariate distribution for (T_i, X_i). We selected Moran and Downton’s bivariate exponential distribution due to its simplicity in terms of its moment generating function. We derive the explicit expressions for the ultimate ruin probability and establish the effect of correlation on ruin probability.

2 Wiener-Hopf Factorization Method

The Wiener-Hopf factorization method is used to obtain transforms of quantities related to a random walk. Andersen (1957) used it to obtain infinite time ruin probabilities in the S-A model. Basics of this method is well presented in Prabhu (1980) and Asmussen (2000).

The S-A model can be reduced to the study of random walk. Let

$$S_n = \sum_{i=1}^{n} (X_i - cT_i)$$
= \sum_{i=1}^{n} Y_i

Note that $S_0 = 0$, $S_n = \{S_1, ..., S_n\}$ for $n \geq 1$ and $E[Y] < 0$. If we define another random variable M_n as $M_n = max(S_0, S_1, ..., S_n)$, then the maximal aggregate loss L of $S(t)$ becomes

$$L = \lim_{n \to \infty} M_n$$

(4)

We find the characteristic function (CF) of L from the CF of Y_i as follows:(see Ambagaspitiya (2009)):

1. factorize $1 - z\phi_{Y_i}(\omega)$ into two factors $D(z, \omega)$ and $\tilde{D}(z, \omega)$ with the following properties:
 a. $D(z, \omega)$ should be analytical and bounded away from zero for $i\omega > 0$,
 b. $\tilde{D}(z, \omega)$ should be analytical and bounded away from zero for $i\omega < 0$,
 c. $\lim_{i\omega \to \infty} D(z, \omega) = 1$.

2. Compute $\phi_L(\omega) = \lim_{z \to 1} \frac{1-z}{D(z, \omega)D(z, 0)}$.

The survival probability ($\delta(u)$) and L are related by

$$\delta^*(s) = \frac{1}{s}M_L(-s)$$

(5)

Therefore, the ultimate ruin probability ($\psi(u)$) becomes

$$\psi(u) = 1 - \delta(u)$$

Note that $\delta(u)$ is obtained by taking the inverse Laplace transform of $\delta^*(s)$. The complement of $\delta(u)$ gives us the explicit expression $\psi(u)$.

3 The Ultimate Ruin Probability

T is Exponential and X is Gamma with Shape 2

Let X_1, X_2 form the Moran and Downton’s bivariate exponential with corre-
lation coefficient $\rho \geq 0$, then, the associated joint moment generating function (mgf) is given as

$$M_{X_1,X_2}(t_1, t_2) = E[e^{X_1 t_1 + X_2 t_2}]$$

$$= \frac{1}{(1-t_1)(1-t_2) - \rho t_1 t_2}$$

i.e. X_1 and X_2 each are exponential with mean 1. Let us introduce the following two random variables T, X.

$$T = \frac{X_1}{\beta_1}$$

$$X = \frac{X_2 + Z}{\beta_2},$$

where Z is exponential with mean 1 which is independent of X_1 and X_2. This yields a bivariate distribution with exponential and gamma marginals.

The mgf of it can be derived as follows:

$$M_{T,X}(t_1, t_2) = E\left[e^{\frac{X_1 t_1 + X_2 t_2 + Z t_2}{\beta_2}}\right]$$

$$= M_{X_1,X_2}(\frac{t_1}{\beta_1}, \frac{t_2}{\beta_2}) M_Z(\frac{t_2}{\beta_2})$$

$$= \frac{1}{\left[(1-t_1)\left(1-t_2\right) - \rho \frac{t_1 t_2}{\beta_1 \beta_2}\right] \left(1 - \frac{t_2}{\beta_2}\right)}$$

Assume T represents the inter arrival time between claims and X is the claim size. Then we obtain the mgf of $Y = X - cT$ as follows:

$$M_{Y}(s) = E[e^{s Y}]$$

$$= E[e^{X s - c s T}]$$

$$= M_{T,X}(-c s, s)$$

$$= \frac{1}{\left[(1+s \frac{c}{\beta_1})\left(1-\frac{s}{\beta_2}\right) + \rho \frac{cs^2}{\beta_1 \beta_2}\right] \left(1 - \frac{s}{\beta_2}\right)}$$

(6)

We let the denomenator of (6) be $g(s)$ as follows:

$$g(s) = \left[(1+s \frac{c}{\beta_1})\left(1-\frac{s}{\beta_2}\right) + \rho \frac{cs^2}{\beta_1 \beta_2}\right] \left(1 - \frac{s}{\beta_2}\right)$$
\[g(s) = \left[-\frac{c}{\beta_1 \beta_2}(1-\rho)s^2 + \left(\frac{c}{\beta_1} - \frac{1}{\beta_2} \right) s + 1 \right] \left(1 - \frac{s}{\beta_2} \right) \] (7)

Then, we can re-write \(g(s) \) as

\[g(s) = \frac{c(1-\rho)}{\beta_1 \beta_2^2} \left(s + s_1 \right) \left(s - s_2 \right) \left(s - s_3 \right) \] (8)

where \(s_1 > 0 \) is the negative root, \(s_2 = \beta_2 \) and \(s_3 \) is the largest root.

Now we consider the roots of \(g(s) - z \) when \(0 < z < 1 \). The behaviour of the roots as \(z \to 0 \) are:

\[\lim_{z \to 0} s_1(z) \to s_1 \]
\[\lim_{z \to 0} s_2(z) \to s_2 = \beta_2 \]
\[\lim_{z \to 0} s_3(z) \to s_3 \]

By the shape of the graph of \(g(s) \), relationships for the roots of \(g(s) - z \) are:

\[s_1(z) < s_1 \]
\[s_2(z) < \beta_2 \]
\[s_3(z) > s_3 \]

Also, we obtain the following limiting relationships:

\[\lim_{z \to 1} s_1(z) \to 0 \]
\[\lim_{z \to 1} s_2(z) \to s_2(1) < \beta_2 \]
\[\lim_{z \to 1} s_3(z) \to s_3(1) > s_3 \]

Therefore, we can write \(g(s) - z \) as:

\[g(s) - z = \frac{c(1-\rho)}{\beta_1 \beta_2^2} \left(s + s_1(z) \right) \left(s - s_2(z) \right) \left(s - s_3(z) \right) \] (9)

Then

\[\frac{g(s) - z}{g(s)} = \frac{(s + s_1(z))(s - s_2(z))(s - s_3(z))}{(s + s_1)(s - s_2)(s - s_3)} \]
We then write the factors of $1 - \phi_Y(\omega)$ as follows:

$$1 - \phi_Y(\omega) = \frac{(i\omega + s_1(z))(i\omega - s_2(z))(i\omega - s_3(z))}{(i\omega + s_1)(i\omega - s_2)(i\omega - s_3)}$$

where

$$D(z, \omega) = \frac{(i\omega - s_2(z))(i\omega - s_3(z))}{(i\omega - s_2)(i\omega - s_3)}$$

and

$$\tilde{D}(z, \omega) = \frac{(i\omega + s_1(z))}{(i\omega + s_1)}$$

By replacing $\omega_1 + i\omega_2$ in $D(z, \omega)$ and $\tilde{D}(z, \omega)$, the following results:

$$D(z, \omega) = \prod_{j=2}^{3} \left[1 - \frac{s_j - s_j(z)}{s_j - i\omega_1 + \omega_2} \right]$$

and

$$\tilde{D}(z, \omega) = \left[1 - \frac{s_1 - s_1(z)}{s_1 + i\omega_1 - \omega_2} \right]$$

At this point, it is obvious that

1. $\tilde{D}(z, \omega)$ is a bounded function, bounded away from zero for $\omega_2 < 0$.
2. $D(z, \omega)$ is a bounded function, bounded away from zero for $\omega_2 > 0$.
3. $\lim_{\omega_2 \to \infty} D(z, \omega) = 1$.

Therefore $\tilde{D}(z, \omega)$ and $D(z, \omega)$ are the required factors. Quite importantly in arriving at the ultimate ruin probability, they are conditions precedent. Substituting $s = 0$ in (7) and (8). Since $g(0) = 1$ we have

$$\frac{c(1 - \rho)}{\beta_1 \beta_2^2} s_1 s_2 s_3 = 1 \quad (10)$$

and

$$\frac{c(1 - \rho)}{\beta_1 \beta_2^3} s_1(z) s_2(z) s_3(z) = 1 - z \quad (11)$$
\[
1 - \frac{z}{s_1(z)} = \frac{s_2(z)s_3(z)}{s_1s_2s_3}
\]

Therefore
\[
\phi_L(\omega) = \lim_{z \to 1} \frac{1 - \frac{\omega}{D(1, \omega)}}{D(1, \omega)} \frac{1 - \frac{\omega}{D(z, 0)}}{D(z, 0)} = \frac{(i\omega - s_2)(i\omega - s_3)}{(i\omega - s_2(1))(i\omega - s_3(1))} \frac{s_1s_2s_3}{s_1s_2s_3}\]

Now
\[
\delta^*(s) = \frac{1}{s} \frac{(s + s_2)(s + s_3)}{(s + s_2(1))(s + s_3(1))} \frac{s_2(1)s_3(1)}{s_2s_3}
\]
we break \(\delta^*(s)\) into partial fractions as follows:
\[
\delta^*(s) = \frac{A}{s} + \frac{B}{s + s_2(1)} + \frac{C}{s + s_3(1)}
\]

A, B and C are respectively given as \(A = 1\), \(B = -\frac{(1 - s_2)}{s_2} \frac{(1 - s_3)}{s_3}\) and
\[
C = -\frac{(1 - s_3)}{s_3} \frac{(1 - s_3)}{s_3}.
\]

Therefore the survival probability \(\delta(u)\) is obtained by inverting \(\delta^*(s)\)
\[
\delta(u) = 1 - \left[\frac{(1 - s_2)}{s_2} \frac{(1 - s_3)}{s_3} e^{-s_2u} + \frac{(1 - s_3)}{s_3} \frac{(1 - s_3)}{s_3} e^{-s_3u} \right]
\]

\[(12) \]

\textit{T is Exponential and X is Gamma with Shape } m

Let us consider another form of the random variable X.
\[T = \frac{X_1}{\beta_1} \]
\[X = \frac{X_2 + Z}{\beta_2}, \]

where \(Z \) is gamma with shape \(m - 1 \) which is independent of \(X_1 \) and \(X_2 \).

With this notation \(T \) and \(X \) are correlated random variables. The mgf of it can be obtained as follows:

\[
M_{T,X}(t_1,t_2) = E\left[e^{X_1 t_1 + X_2 t_2 + Z t_2} \right]
= M_{X_1,X_2}(\frac{t_1}{\beta_1}, \frac{t_2}{\beta_2}) M_Z(\frac{t_2}{\beta_2})
= \frac{1}{\left[\left(1 - \frac{t_1}{\beta_1} \right) \left(1 - \frac{t_2}{\beta_2} \right) - \rho \frac{t_1 t_2}{\beta_1 \beta_2} \right] \left(1 - \frac{t_2}{\beta_2} \right)^{m-1}}
\]

Now, we need the moment generating function of \(Y = X - cT \)

\[
M_Y(s) = E[e^{Ys}]
= E[e^{Xs - csT}]
= M_{T,X}(-cs, s)
= \frac{1}{\left[\left(1 + \frac{cs}{\beta_1} \right) \left(1 - \frac{s}{\beta_2} \right) + \rho \frac{cs^2}{\beta_1 \beta_2} \right] \left(1 - \frac{s}{\beta_2} \right)^{m-1}}
\]

writing

\[
g(s) = \left[\left(1 + \frac{cs}{\beta_1} \right) \left(1 - \frac{s}{\beta_2} \right) + \rho \frac{cs^2}{\beta_1 \beta_2} \right] \left(1 - \frac{s}{\beta_2} \right)^{m-1}
= \left[-\frac{c}{\beta_1 \beta_2} (1 - \rho) s^2 + \left(\frac{c}{\beta_1} - \frac{1}{\beta_2} \right) s + 1 \right] \left(1 - \frac{s}{\beta_2} \right)^{m-1}
\]
Here too, writing \(g(s) \) and \(g(s) - z \) as before

\[
g(s) = (-1)^m \frac{c(1 - \rho)}{\beta_1 \beta_2^m} (s + s_1)(s - s_3)(s - s_2)^{m-1} \tag{13}
\]

and

\[
g(s) - z = (-1)^m \frac{c(1 - \rho)}{\beta_1 \beta_2^m} (s + s_1(z))(s - s_3(z))(s - s_2(z))^{m-1} \tag{14}
\]

With a little bit of complex analysis and some derivations, we obtain the ultimate ruin probability as

\[
\psi(u) = \sum_{j=1}^{m-1} B_j e^{-s_{2,j}(1)u} + C e^{-s_3(1)u} \tag{15}
\]

where

\[
-B_j = \frac{s_3(1)(s_2 - s_{2,j}(1))^{m-1}(s_3 - s_{2,j}(1)) \prod_{k=1}^{m-1} s_{2,k}(1)}{s_{2,j}(1)(s_3(1) - s_{2,j}(1)) \prod_{k=1, k \neq j}^{m-1} [s_{2,k}(1) - s_{2,j}(1)]}
\]

and

\[
-C = \frac{(s_2 - s_3(1))^{m-1}(s_3 - s_3(1)) \prod_{k=1}^{m-1} s_{2,k}(1)}{\prod_{k=1}^{m-1} (s_{2,k}(1) - s_3(1))}
\]

The Effect of Correlation on Ruin Probability

Let \(s_3 \to f_3(\rho) \) and \(s_3(1) \to f_3^*(\rho) \)

where

\[
f_3(\rho) = \frac{c}{\beta_1} - \frac{1}{\beta_2} \pm \sqrt{\left(\frac{c}{\beta_1} - \frac{1}{\beta_2} \right)^2 + \frac{4(1-\rho)c}{\beta_1 \beta_2}}
\]

but

\[
\lim_{\rho \to 0} f_3(\rho) \rightarrow \beta_2
\]

\[
\lim_{\rho \to 1} f_3(\rho) \rightarrow +\infty
\]

\[
\lim_{\rho \to 0} f_3^*(\rho) \rightarrow \lim_{\rho \to 0} f_3(\rho) \rightarrow \beta_2
\]

\[
\lim_{\rho \to 1} f_3^*(\rho) \rightarrow \lim_{\rho \to 1} f_3(\rho) \rightarrow +\infty
\]
As $\rho \to [0, 1]$, $s_3 \to [\beta_2, +\infty)$ and $s_3(1) \to (\beta_2, +\infty)$. Note that,

1. s_3 is an increasing function of ρ;

2. $s_3(1)$ is an increasing function of ρ;

3. $s_2(1) < \beta_2$ is neither an increasing nor a decreasing function of ρ;

4. $\frac{(1-s_2(1))}{s_3(1)} \frac{1-s_2(1)}{1-s_3(1)}$ is a decreasing function of ρ;

5. $\frac{(1-s_2(1))}{1-s_3(1)} \frac{1-s_3(1)}{1-s_3(1)}$ is a decreasing function of ρ.

Therefore as ρ increases $\psi(u)$ decreases.

4 Numerical Examples

4.1 Example 1

Let $c = 3$, $\beta_1 = 2$, $\beta_2 = 4$, $\rho = \frac{2}{5}$ and $m = 2$. By equating (7) to zero and solving, we get:

$s_1 = s_1(0) = 0.7093$, $s_2 = s_2(0) = \beta_2 = 4$ and $s_3 = s_3(0) = 6.2650$.

By equating (9) to zero and letting $z = 1$, we get:

$s_1(1) = 0$, $s_2(1) = 2.5309$ and $s_3(1) = 7.0247$.

Putting all the above into (12) and subtracting from 1, we arrive at:

$\psi(u) = 0.3422e^{s_2(1)u} - 0.0516e^{s_3(1)u}$.

11
4.2 Example 2

Let $c = 3$, $\beta_1 = 2$, $\beta_2 = 4$, $\rho = \frac{2}{5}$ and $m = 5$. By equating (13) to zero and solving, we get:

$s_1 = s_1(0) = 0.7093$, $s_2 = s_2(0) = \beta_2 = 4$ (4 repeated roots) and $s_3 = s_3(0) = 6.2650$.

By equating (14) to zero and letting $z = 1$, we get:

$s_1(1) = 0$, $s_{2,1}(1) = 3.7993 - 2.7569i$, $s_{2,2}(1) = 3.7993 + 2.7569i$, $s_{2,3}(1) = 6.8463 - 1.3592i$, $s_{2,4}(1) = 6.8463 + 1.3592i$ and $s_3(1) = 0.2650$.

Putting all the above into (15), we arrive at:

$$\psi(u) = 0.86139e^{-0.2649u} - 0.011022sin(1.3692u) - 0.021099cos(1.3693u)e^{-6.8468u} - 0.034101sin(2.7551u) - 0.017639cos(2.7551u)e^{-3.7085u}.$$

5 Conclusions

From the above results, we conclude that, it is possible to derive analytically the expressions for the ultimate ruin probability when T and X are correlated. Particularly in our case where both T and X are exponential and gamma (sum of exponential) respectively. Again in our case, we have succeeded in establishing the effect of correlation on ultimate ruin probability. Thus ultimate ruin probability tends to decrease as correlation increases.

References

derpendence between claim sizes and claim intervals. Insurance: Math-

ior in the presence of dependence in risk theory. Journal of Applied

ior in the presence of dependence in risk theory. Journal of Applied

contagion between the claims. In: Transactions of XVth International
Congress of Actuaries, New York 2, pp. 219-229.

entific.

Erlang(2) risk processes. Insurance Mathematics Economics 22, 251-
262.

