2017 Actuarial Research Conference

John McGarry
Session C5: Valuation of Unit-Linked Insurance
Saturday, July 29th, 2017
SOCIETY OF ACTUARIES
Antitrust Notice for Meetings

Active participation in the Society of Actuaries is an important aspect of membership. However, any Society activity that arguably could be perceived as a restraint of trade exposes the SOA and its members to antitrust risk. Accordingly, meeting participants should refrain from any discussion which may provide the basis for an inference that they agreed to take any action relating to prices, services, production, allocation of markets or any other matter having a market effect. These discussions should be avoided both at official SOA meetings and informal gatherings and activities. In addition, meeting participants should be sensitive to other matters that may raise particular antitrust concern: membership restrictions, codes of ethics or other forms of self-regulation, product standardization or certification. The following are guidelines that should be followed at all SOA meetings, informal gatherings and activities:

- **DON'T** discuss your own, your firm’s, or others’ prices or fees for service, or anything that might affect prices or fees, such as costs, discounts, terms of sale, or profit margins.
- **DON'T** stay at a meeting where any such price talk occurs.
- **DON'T** make public announcements or statements about your own or your firm’s prices or fees, or those of competitors, at any SOA meeting or activity.
- **DON'T** talk about what other entities or their members or employees plan to do in particular geographic or product markets or with particular customers.
- **DON'T** speak or act on behalf of the SOA or any of its committees unless specifically authorized to do so.
- **DO** alert SOA staff or legal counsel about any concerns regarding proposed statements to be made by the association on behalf of a committee or section.
- **DO** consult with your own legal counsel or the SOA before raising any matter or making any statement that you think may involve competitively sensitive information.
- **DO** be alert to improper activities, and don’t participate if you think something is improper.

- If you have specific questions, seek guidance from your own legal counsel or from the SOA’s Executive Director or legal counsel.
Presentation Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the participants individually and, unless expressly stated to the contrary, are not the opinion or position of the Society of Actuaries, its cosponsors or its committees. The Society of Actuaries does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented. Attendees should note that the sessions are audio-recorded and may be published in various media, including print, audio and video formats without further notice.
Experience Studies: The Linear Force Distribution
SOA Experience Study Calculations

 • www.soa.org/tables-calcs-tools/experience-study-tool/

• Basic Exposure and Rate calculations:
 • Individual records, Grouped data.

• Current Practice by Product/Study:
 • Life Mortality, Lapse, DI/LTC Incidence/Termination

• Three study methods:
 • Traditional Exposure, or Actuarial, Method,
 • Daily Exposure, or Exact, Method, and
 • Distributed Exposure Method.

• Linear Force Model used to test different methods.
Calendar-Year Mortality Studies

• At the start and end of a calendar-year study, ages and study years intersect to give partial ages. E.g. for a 2 year study 2013-2014, where t is the fractional year from age anniversary to year end.

• Where fractional exposure is calculated, by calendar year or quarter, to analyze trends or distributions, partial ages occur throughout the study period.
Calendar-Year Mortality Studies

• For partial ages, the study methods assume deaths are proportional to time spent in the year, giving an implicit distribution of deaths.

• The difference between the implicit and actual distributions may distort the rates calculated in the study.

• For small rates or roughly uniform deaths, these distortions will not be material.

• The rates for older ages and early durations may have significant distortions.
Increase in the Force of Mortality

• As mortality is continuous, the distribution of deaths is determined by the increase in the force of mortality over the year.

• The increase in force for a given age is derived from the rates for the prior and following ages.

• The relative increase in force, i.e. the increase in force divided by the average force, or “gradient”, Δ_x, gives the distribution independent of size of the rates across the age range.

• Industry table: VBT 2015 M NS ANB
Gradients

Ultimate, Ages 50-115

Annual Rate vs. Force Gradient

Rate

50%

40%

30%

20%

10%

0%

50 55 60 65 70 75 80 85 90 95 100 105 110 115

Age

Gradient

14%

12%

10%

8%

6%

4%

2%

0%
Gradients

Select, Issue Age 50

- Annual Rate
- Force Gradient

Year

Rate

Gradient
Gradients

![Graph showing gradients for Select, Issue Age 70](image)
Linear Force Distribution

• The force at an exact age $x + t$ is interpolated assuming the force changes linearly from:
 • The force at exact age x (Boundary):
 • there is continuity from age to age, but the sum of the force over age x is not consistent with the rate for age x.
 • The average force at age $x + \frac{1}{2}$ (Centered):
 • the sum of the force is consistent with the rate, but there are discontinuities from age to age, i.e. the force at exact age x is not well defined.
 • The average force at age $x + T$ (Exact):
 • where time T is such that sum of the force is consistent with the rate, and there is continuity from age to age.

• Sample ages from VBT 2015 M NS ANB
Annualized Rates (Centered)
Annualized Rates (Centered)
Annualized Rates (Exact)
Main Study Methods

• For partial ages,
 • Traditional - Balducci:
 • the rate decreases over the year,
 • Daily – Constant Force:
 • the force is constant over the year, and
 • Distributed – Uniform Distribution of Deaths:
 • the rate increases over the year.

• These distributions can be estimated by the centered linear force distribution.

• 10% mortality rate example.

• Sample ages from VBT 2015 M NS ANB.
Standard Distributions

![Graph showing standard distributions over months with three lines representing Balducci, Constant Force, and Uniform distributions.](chart.png)
Centered Linear Force Distribution

- Balducci: $\Delta_x \approx -q_x$; Constant Force: $\Delta_x = 0$; Uniform: $\Delta_x \approx +q_x$
Method and Actual Distributions

Ultimate, Age 70, $q = 1.15\%, \Delta = 11.2\%$

- $\Delta = -1.15\%$
- $\Delta = 0.00\%$
- $\Delta = 1.15\%$
- $\Delta = 11.23\%$

Rate

Month

1.08\%
1.10\%
1.12\%
1.14\%
1.16\%
1.18\%
1.20\%
1.22\%

1 2 3 4 5 6 7 8 9 10 11 12
Method and Actual Distributions

Ultimate, Age 90, q = 13.7%, Δ = 12.2%

- Δ = -13.69%
- Δ = 0.00%
- Δ = 13.69%
- Δ = 12.20%

Rate

15.0%
14.5%
14.0%
13.5%
13.0%
12.5%

Month
1 2 3 4 5 6 7 8 9 10 11 12
Method and Actual Distributions

Select, \((x,y) = ([70],1)\), \(q = 0.25\%\), \(\Delta = 61.2\%\)
Errors for Partial Ages

• For sample ages, lives are projected using the linear force distribution, with the exposure and rates calculated for partial ages. The rates for partial ages are compared to annual rate for the full year of age.

• If the age anniversaries are uniformly distributed over the year, the rates for partial ages that arise in a study can be estimated using half-year ages.

• Sample ages from VBT 2015 M NS ANB
Errors for Half-Year Ages

Ultimate, $x = 70$, $q = 1.147\%$, $\Delta = 11.2\%$

- Traditional
- Daily
- Distributed
- Annual Rate

Rate

Half Year

1

2

Full Year

Age

70
Errors for Half-Year Ages

Ultimate, $x = 90$, $q = 13.69\%$, $\Delta = 12.2\%$

- **Traditional**
- **Daily**
- **Distributed**
- **Annual Rate**

<table>
<thead>
<tr>
<th>Half Year</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.2%</td>
</tr>
<tr>
<td></td>
<td>12.7%</td>
</tr>
<tr>
<td></td>
<td>13.2%</td>
</tr>
<tr>
<td></td>
<td>13.7%</td>
</tr>
<tr>
<td>2</td>
<td>13.7%</td>
</tr>
<tr>
<td></td>
<td>14.2%</td>
</tr>
<tr>
<td></td>
<td>14.7%</td>
</tr>
<tr>
<td></td>
<td>15.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>12.2%</td>
</tr>
<tr>
<td></td>
<td>12.7%</td>
</tr>
<tr>
<td></td>
<td>13.2%</td>
</tr>
<tr>
<td></td>
<td>13.7%</td>
</tr>
</tbody>
</table>

Full Year

- **Tnd**
- **Dly**
- **Dst**

24
Errors for Half-Year Ages

Select, \([x,y) = ([70],1)\), \(q = 0.25\%\), \(\Delta = 61\%\)

![Bar chart showing errors for half-year ages]
Error Formula

Error From the Annual Rate given Centered Linear Force

= Time at Mid Point from Mid Year
 * (Gradient * Rate + Flag * Rate Squared)

= \(T(\Delta_x q_x + Fq_x^2) \)

where, for half years, \(H = 1,2, \)

- Time \(T = (H - 1.5)/2, \)
- Method Flag F = Traditional 1: \(T(\Delta_x q_x + q_x^2), \)
 Daily 0: \(T(\Delta_x q_x), \)
 Distributed -1: \(T(\Delta_x q_x - q_x^2). \)
Sample Age Error Estimates

• Ultimate, $x = 70$, $q = 1.15\%$, $\Delta = 11.2\%$

<table>
<thead>
<tr>
<th>Half Year</th>
<th>Time</th>
<th>Traditional</th>
<th>Daily</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.25</td>
<td>-0.035%</td>
<td>-0.032%</td>
<td>-0.029%</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.035%</td>
<td>0.032%</td>
<td>0.029%</td>
</tr>
</tbody>
</table>

• Ultimate, $x = 90$, $q = 13.7\%$, $\Delta = 12.2\%$

<table>
<thead>
<tr>
<th>Half Year</th>
<th>Time</th>
<th>Traditional</th>
<th>Daily</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.25</td>
<td>-0.89%</td>
<td>-0.42%</td>
<td>0.05%</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.89%</td>
<td>0.42%</td>
<td>-0.05%</td>
</tr>
</tbody>
</table>

• Select, $([x],y) = ([70],1)$, $q = 0.25\%$, $\Delta = 61\%$

<table>
<thead>
<tr>
<th>Half Year</th>
<th>Time</th>
<th>Traditional</th>
<th>Daily</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.25</td>
<td>-0.0384%</td>
<td>-0.0383%</td>
<td>-0.0381%</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.0384%</td>
<td>0.0383%</td>
<td>0.0381%</td>
</tr>
</tbody>
</table>
Errors at Start and End of Study

- Errors given uniform anniversaries.
 - Partial Age at Start of Study
 - \(e_{x,\text{Start}} = \frac{1}{4}(\Delta x q_x + F q_x^2) = +\varepsilon_x \).
 - Partial Age at End of Study
 - \(e_{x,\text{End}} = -\frac{1}{4}(\Delta x q_x + F q_x^2) = -\varepsilon_x \).

- VBT 2015 M NS ANB
Errors at Start of Study

Ultimate, Ages 50-115, Start of Study

- Traditional
- Daily
- Distributed
- Rate

% Error vs. Age
Traditional Errors at Start and End
Errors at Start of Study
Traditional Errors at Start and End

![Graph showing % Error and Rate over years for Select, Issue Age 70, Traditional. The graph plots % Error against Year on the y-axis and Year on the x-axis.](image)
Study Errors – Single Cohort

• A full year of age spans across two calendar years. The rates for the partial ages in each calendar year will contain errors that are equal in size (given uniform anniversaries) and opposite in sign.

• For the ages at the start and end of a calendar year study, only one partial age will fall into the study period.

• These “method” errors occur for a single cohort of lives born in the same year, that contribute to the same ages at the same time in the study. For example, in a three year study, 2012-2014, the lives born in 1942 will contribute ages 70 to 73.
Study Errors – Single Cohort

• Study Period, 2012-14, Lives Born 1942.
• Exact age range, errors and errors by study year.
• Traditional Method.

<table>
<thead>
<tr>
<th>Age</th>
<th>Exact Age</th>
<th>Error</th>
<th>Study Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>70</td>
<td>70+t,71</td>
<td>$+\varepsilon_{70}$</td>
<td>$-\varepsilon_{70}$</td>
</tr>
<tr>
<td>71</td>
<td>71,72</td>
<td>0</td>
<td>$-\varepsilon_{71}$</td>
</tr>
<tr>
<td>72</td>
<td>72,73</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>73,74+t</td>
<td>$-\varepsilon_{73}$</td>
<td></td>
</tr>
</tbody>
</table>
Study Errors – Seven Cohorts

• Study Period, 2012-14, Lives Born 1939-45.
• Cohorts equal in size, homogeneous population.

<table>
<thead>
<tr>
<th>Age</th>
<th>1939</th>
<th>1940</th>
<th>1941</th>
<th>1942</th>
<th>1943</th>
<th>1944</th>
<th>1945</th>
<th>Error</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ε₆₇</td>
<td></td>
<td>+ε₆₇</td>
<td>½</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td>+ε₆₈</td>
<td></td>
<td>0</td>
<td></td>
<td>+⅓ε₆₈</td>
<td></td>
<td>1½</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>+ε₆₉</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>+⅕ε₆₉</td>
<td></td>
<td>2½</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>+ε₇₀</td>
<td>0</td>
<td>0</td>
<td>−ε₇₀</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td>+ε₇₁</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>+ε₇₂</td>
<td>0</td>
<td>0</td>
<td>−ε₇₂</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td>+ε₇₃</td>
<td>0</td>
<td>0</td>
<td>−ε₇₃</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−ε₇₄</td>
<td></td>
<td>2½</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>0</td>
<td>−ε₇₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−⅓ε₇₅</td>
<td>1½</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−ε₇₆</td>
<td>½</td>
</tr>
</tbody>
</table>
Study Errors – Seven Cohorts

- **Study Period, 2012-14, Policies Issued in 2008-14.**
- **Cohorts equal in size, homogeneous population.**

<table>
<thead>
<tr>
<th>Year</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>Error</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>$+\varepsilon_1$</td>
<td>0</td>
<td>0</td>
<td>$-\varepsilon_1$</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>$+\varepsilon_2$</td>
<td>0</td>
<td>0</td>
<td>$-\varepsilon_2$</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>$+\varepsilon_3$</td>
<td>0</td>
<td>0</td>
<td>$-\varepsilon_3$</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>$+\varepsilon_4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-\varepsilon_4$</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-\varepsilon_5$</td>
<td>$-\frac{1}{5}\varepsilon_5$</td>
<td>2$\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>$-\varepsilon_6$</td>
<td>0</td>
<td>$-\frac{1}{3}\varepsilon_6$</td>
<td>1$\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$-\varepsilon_7$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-\varepsilon_7$</td>
<td>$\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study Errors – Full Exposure Ages

• In an N year study, each full-exposure age has $N + 1$ cohorts, $n = 0, N$.

• Study Error

 • $e_x = (E_{x,0} e_{x,0} + E_{x,N} e_{x,N})/E_x$

• Equal Cohorts

 • $e_x = 0$

• Increasing Cohorts, $i\%$ per year, $Ni\%$ across age.

 • $\alpha_x = E_{x,SY}/(E_{x,SY} + E_{x,SY+1})$ - exposure distribution

 • $e_x = e_{x,N} \alpha_x Ni/(N + \frac{1}{2}(N + 1)Ni + \alpha_x Ni)$

• Simplifying, $\alpha_x \approx \frac{1}{2}$, $e_{x,N} \approx -\varepsilon_x$

 • $e_x = -\frac{1}{2} \varepsilon_x i/(1 + (\frac{1}{2}N + 1)i) < -\frac{1}{2} \varepsilon_x i$
Study Errors – Increasing Cohorts

- Ultimate rates, VBT 2015 M NS ANB

<table>
<thead>
<tr>
<th>x</th>
<th>50</th>
<th>70</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_x</td>
<td>0.192%</td>
<td>1.147%</td>
<td>13.690%</td>
</tr>
<tr>
<td>Δ_x</td>
<td>6.0%</td>
<td>11.2%</td>
<td>12.2%</td>
</tr>
<tr>
<td>ε_x</td>
<td>0.003%</td>
<td>0.04%</td>
<td>0.89%</td>
</tr>
<tr>
<td>ε/q</td>
<td>2%</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>$q_{x,0}$</td>
<td>0.195%</td>
<td>1.18%</td>
<td>14.58%</td>
</tr>
<tr>
<td>$q_{x,N}$</td>
<td>0.189%</td>
<td>1.11%</td>
<td>12.80%</td>
</tr>
<tr>
<td>α_x</td>
<td>50.05%</td>
<td>50.24%</td>
<td>53.79%</td>
</tr>
</tbody>
</table>
Study Errors – Increasing Cohorts

- Ultimate rates, VBT 2015 M NS ANB

<table>
<thead>
<tr>
<th>Increase</th>
<th>% Study Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>Study</td>
</tr>
<tr>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>5%</td>
<td>15%</td>
</tr>
<tr>
<td>10%</td>
<td>30%</td>
</tr>
<tr>
<td>50%</td>
<td>150%</td>
</tr>
<tr>
<td>100%</td>
<td>300%</td>
</tr>
</tbody>
</table>
Study Errors – Increasing Cohorts

- Select rates, VBT 2015 M NS ANB

<table>
<thead>
<tr>
<th>[x], y</th>
<th>[50],1</th>
<th>[70],1</th>
<th>[90],1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q[x],1</td>
<td>0.052%</td>
<td>0.250%</td>
<td>2.069%</td>
</tr>
<tr>
<td>Δ[x],1</td>
<td>41.9%</td>
<td>61.2%</td>
<td>125.0%</td>
</tr>
<tr>
<td>ε[x],1</td>
<td>0.005%</td>
<td>0.04%</td>
<td>0.66%</td>
</tr>
<tr>
<td>ε/q</td>
<td>10%</td>
<td>15%</td>
<td>32%</td>
</tr>
<tr>
<td>q[x],1,0</td>
<td>0.057%</td>
<td>0.29%</td>
<td>2.73%</td>
</tr>
<tr>
<td>q[x],1,N</td>
<td>0.047%</td>
<td>0.21%</td>
<td>1.41%</td>
</tr>
<tr>
<td>α[x],1</td>
<td>50.02%</td>
<td>50.04%</td>
<td>50.03%</td>
</tr>
</tbody>
</table>
Study Errors – Increasing Cohorts

- Select rates, VBT 2015 M NS ANB

<table>
<thead>
<tr>
<th>Increase</th>
<th>% Study Error</th>
<th>% Study Error</th>
<th>% Study Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>[50],1</td>
<td>[70],1</td>
<td>[90],1</td>
</tr>
<tr>
<td>0%</td>
<td>0%</td>
<td>0.000%</td>
<td>0.000%</td>
</tr>
<tr>
<td>1%</td>
<td>3%</td>
<td>-0.051%</td>
<td>-0.075%</td>
</tr>
<tr>
<td>5%</td>
<td>15%</td>
<td>-0.233%</td>
<td>-0.348%</td>
</tr>
<tr>
<td>10%</td>
<td>30%</td>
<td>-0.420%</td>
<td>-0.637%</td>
</tr>
<tr>
<td>50%</td>
<td>150%</td>
<td>-1.165%</td>
<td>-1.905%</td>
</tr>
<tr>
<td>100%</td>
<td>300%</td>
<td>-1.498%</td>
<td>-2.544%</td>
</tr>
</tbody>
</table>
Eliminating Errors

• Adjust Study Period (not fractional exposure)
 • “Rate Year” Study Period – individual lives only contribute full ages, excluding partial ages at start and end.

• Adjust Age Range (cohorts roughly equal)
 • Only ages with full exposure, excluding ages with exposure less than study period.

• Adjust Study Rates
 • Estimate the annual rate using the partial age rate and an estimate of the study error.
 - \(q_x^E = q_x - e_x \).

• Adjust Exposure (Daily Exposure Method)
 • “Weighted” Exposure Method - Identify the gradients in the study, and directly weight the daily exposure to reflect the gradients.
Weighted Daily Exposure

• Calculate exposure for force, E_x^F and estimate the gradients, Δ_x.

• Calculate weights for partial ages, $x + t$ to $x + t + f$:
 - $fw_{x+t} = 1 + T\Delta_x$.
 - $fE^W_{x+t} = fw_{x+t} \cdot fE^F_{x+t}$.

• Where
 - $\Sigma^P_1 (fE^W_{x+t}) = E^F_x$.

• Calculate average force of mortality,
 - $\bar{\mu}_x \approx d_x / E^W_x$.

• Calculate the annual rate,
 - $q_x = 1 - e^{-\bar{\mu}_x}$.
Questions?