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Nested Stochastic Modeling for Insurance Companies

1. EXECUTIVE SUMMARY

Stochasticmodeling is commonly used by financial reporting actuaries whenever financial reporting procedures, such

as reserving and capital requirement calculation, are performed under various economic scenarios, which are stochas-

tically determined. Nested stochastic modeling is required whenever modeling components under each economic sce-

nario are themselves determined by stochastic scenarios in the future. An example might be the stochastic reserving of

equity-linked insurance for which a dynamic hedging strategy is employed and the Greeks are stochastically determined.

As the insurance industry is moving toward more detailed and sophisticated financial reporting standards and practices,

it is expected that the computational burden and technical difficulty will rise with the increasing use of nested stochastic

modeling.

Despite the importance of such a topic, literature on applications of nested stochastic modeling in the context of

financial reporting has been relatively scarce. The purpose of this study is multifold:

(1) We intend to provide a resource to help financial reporting actuaries better understand a variety of nested

stochastic techniques available both in the industry and in the academic literature.

(2) With a wide array of competing techniques, we aim to review and perform a comparative analysis of their

accuracy and efficiency. Some of these techniques either have never been introduced to financial reporting

applications or have not been tested in a fair comparison with other techniques.

It is our hope that the findings of this study can contribute to the expansion of a toolkit available to financial reporting

actuaries in the insurance industry. As the old saying goes, “Rome was not built in a day”; there are many issues and

circumstances that this report does not address. Further investigations are needed for practitioners who intend to apply

these techniques for their company-specific models.

The testing of various techniques under consideration in this report will be carried out with two examples:

• Case I: Risk-neutral valuation of guaranteed minimum accumulation benefit

We take aminimalist approach for this example to capture only the essential structure of a nested simulation.

The example is simple enough so that all closed-form solutions can be obtained and used as benchmarks against

which the results from other techniques can be tested. The primary focus of this test case is on the accuracy

and validity of all techniques under investigation.

• Case II: AG-43 CTE calculation for guaranteed lifetime withdrawal benefit

The second example is intended to resemble an actual financial reporting model. While it is still unrealistic

to implement a full-fledged model in a single research project, we do include most necessary elements of a

financial reportingmodel on a single cell. We expect that the experimentationwith this casewill shed some light

on common implementation issues of these techniques in more realistic circumstances. Due to the significant

increase of structural complexity from Case I, we expect Case II to provide a more realistic contrast on the

modeling efficiency of various techniques.

We shall review a variety of existing techniques from academic literature and practitioners’ publications and propose

a few new techniques, all of which are are suitable for financial reporting applications. Note, however, only techniques
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that are structurally designed for nested simulations are selected for testing. Other techniques, such as importance

sampling, which can be used in any non-nested model, are not included in the study, to avoid any potential mixing

effect. Nor did we apply any specialized computational tricks or techniques such as parallel computing, or reply on

any fast computing hardware such as GPUs, etc. All time consumptions in this report are estimated from experiments

performed on a personal laptop, and the results should be interpreted only on relative, not absolute, terms.

Techniques Tested

Method Brief description

A. Closed-form solutions Valuations are largely based on closed-form formulas

that produce exact values or approximation

B. Crude Monte Carlo Straightforward simulations based on product design

and projection of cash flows

C. Optimal budget allocation Static allocation of resources between two levels of

simulations according to certain criteria

D. Sequential allocation Dynamic allocation of resources

E. Preprocessed inner loops Preprocess inner loop results under representative

scenarios and infer results under desired scenarios

from those under similar representative scenarios.

F. Least-Squares Monte Carlo Approximate inner-loop items by curve fitting,

(LSMC) typically with polynomial approximations

G. Least-Squares Monte Carlo Replace inner-loop items by exponential sum

with basis selection approximations with automatic bases selection.

H. Numerical partial differential Replace inner-loop items by employing

equation (PDE) methods numerical PDE algorithms

Summary of Observations

As each technique has its own advantages and limitations, we do not attempt to identify one technique as universally

superior. Rather we intend to showcase the variety of alternative techniques for different models to encourage readers

to find the best techniques for their own unique modeling situations. We highlight a few observations from numerical

experiments in this research study in the following table.
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Method Pros Cons

A. Closed-form solution Very accurate and efficient; Limited to certain stochastic models;

Provides benchmarks approximation against which all Requires expertise to develop solutions.

other techniques can be tested.

B. Crude Monte Carlo Easy to implement; Can be extremely time and resource consuming.

Requires minimal analysis.

C. Optimal budget allocation Easy to implement formula-based allocation; Existing allocation strategies depend on specific

No more modeling beyond crude MC. risk measures;

Can be difficult to generalize.

D. Sequential allocation Dynamically allocate budget; Can be slow due to conditional statements

Ideal use of resources. in computational algorithms.

E. Preprocessed inner loops Easy to understand and implement; Difficult to determine boundary points to cover

Modest accuracy in low dimensions. all points for interpolations;

Difficult to select grid points in high dimensions.

F. Least squares Monte Carlo Modest accuracy with small number of inner-loops; Little guidance on basis functions;

(LSMC) Can be used for extrapolation. Difficult to select cross-terms in high dimensions.

G. LSMC with basis selection Can be more efficient than F due to automatic More analysis involved;

selection of basis functions. Limited literature on high dimensions.

H. PDE methods Can be highly accurate and efficient; Requires expertise for stochastic analysis;

Possible reduction of dimensions to improve efficiency. Special algorithms for high-dimension PDEs.
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anonymous actarial software company that generously donated sample spreadsheets illustrating the AG-43 stochastic

reserving method, which formed the basis of the second test case in this research study.

While this report is intended to provide sufficient information for replication and further investigationby practitioners,

there may have been details unintentionally left out. Many techniques in this report can be extended to more general

cases appearing in practice. Should you have questions regarding the content of this report, please feel free to contact

us by email at rfeng@illinois.edu.

3. INTRODUCTION

Stochastic modeling is used wherever modeling parameters or assumptions vary randomly from one period to the

next. While stochastic modeling may be used on any actuarial assumption, its most common use in life insurance busi-

ness is for interest-sensitive products where financial results are heavily dependent on the economic scenario. Nested

stochasticmodeling is theoretically requiredwherever one stochastically calculated parameter is dependent on the value

of another stochastically calculated parameter. An example would be a stochastic calculation of required capital where

managing a hedging program relies on computations from another stochastic model. As the industry continues to move

towards increasingly complex modeling of stochastic components, the computational burden grows exponentially. In-

surance companies are seeking ways to avoid or reduce nested simulations.

However, literature on nested stochastic modeling techniques is scarce. Among the limited number of research stud-

ies on nested stochastics, most existing techniques are developed in the context of portfolio risk management in the

financial industry. To the best knowledge of these researchers, no technique has been specifically developed to address

the unique challenges of the financial reporting area.1 While consulting firms, software vendors and major insurance

companies play leading roles in the industry to adopt and commercialize new techniques, their research findings are

proprietary and often are not freely accessible to the general actuarial community. The intent of this research study is

to fill this persistent gap between the literature and industry practice by addressing the following two questions:

(1) What methods are currently available for nested stochastic modeling?

(2) What techniques can be used to improve accuracy and accelerate the run time for nested stochastic modeling?

We answer these questions by performing an objective and quantitative assessment of various competing modeling

techniques. We also intend tomake the report self-contained and provide sufficient technical details so that experiments

and conclusions in this study can be replicable, verified and further developed by practicing actuaries.

The following eight techniques are either selected from the literature or suggested by project oversight group mem-

bers and respondents to the accompanying survey:

A. Analytical solutions

B. Crude Monte Carlo

C. Optimal budget allocation

D. Sequential allocation

E. Preprocessed inner loops

1For example, nearly all examples of nested simulations in the literature consider only two periods, one of which involves an outer layer of projections

with one time step and an inner layer of projections with one time step. However, in the practice of financial reporting, there are always projections of

multiple periods, each of which requires further projections into the future. It should be kept in mind that straightforward and repeated applications of

existing two-period techniques can be sufficient for the moment, but this approach does not take any potential advantage of a multiple period structure.

We intend to address this issue in further research.
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F. Least-Squares Monte Carlo (LSMC)

G. LSMC with basis selection

H. Partial differential equation (PDE) method

The inclusion of these techniques is largely based on three criteria:

(1) The technique should address the structure of nested stochastic modeling;

(2) There should be supporting statistical analysis regarding the analytical properties of the statistics used, such as

consistency and convergence;

(3) Themethodology should have the potential of general applicability to themore complexmodeling that an actual

financial reporting system requires.

There are, however, a few exceptions. The method of analytical solutions may have limited applicability for criterion (3).

However, aswe shall demonstrate in themore realistic case, it is sometimespossible to develop analytical approximations

that can significantly improve modeling efficiency. The method of preprocessed inner loops may not meet criterion (2),

as it does not appear to have been formalized in the statistics literature. However, we include it for comparison due to

its known applications in the insurance industry.

The two test cases under consideration are given as follows:

(1) Test case I: We model the dynamics of variable annuity separate accounts by a geometric Brownian motion (in-

dependent lognormalmodel). Consider the insurer’s liability from a guaranteedminimum accumulation benefit

(GMAB) in five years, which is in essence an European put option on its separate accounts. We are interested

in calculating a risk capital based on the present value of one-year Value-at-Risk (VaR) of the GMAB liability as

well as the probability function of the GMAB liability.

(2) Test case II: We perform an AG-43 stochastic scenario amount calculation for a single cell of guaranteed lifetime

withdrawal benefit (GLWB). To fully employ a nested stochastics structure, we consider the AG-43 calculation

for a product line with a delta-hedging strategy. The calculation of the stochastic scenario amount represents

outer loops, whereas the delta calculations are carried out from inner loops. To demonstrate the flexibility of

testing methods in this report, we include fairly complex product designs such as combinations of roll-up and

ratchet options, and we also consider the impact of dynamic policyholder behaviors.

In the remainder of this report, we shall provide a brief description for each technique, including background informa-

tion and its comparative advantages and disadvantages. However, we try to avoid getting into technical details that may

be distracting to readers. Further details can be found in the Appendices and the references at the end of this report.

4. TERMINOLOGY AND CATEGORIES

Several sets of terminology appear in the current literature regarding nested stochasticmodeling. To avoid confusion,

we summarize common terms and define their meanings in this report.

When the simulation is nested, there are typically two levels of sampling procedures, as shown in Figure 1.

• Outer loop/step/stage: The simulation in the first stage of projection. For example, in test case I, an outer loop

refers to the sampling of separate account values in one year. We shall call sample paths of equity returns in

the outer loops scenarios, as outer loops typically represent different economic conditions and scenarios of risk

factors under a real-world measure. We often denote the set of n scenarios by !1, · · · ,!n

.
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FIGURE 1. An illustration of nested simulations

• Inner loop/step/stage: The simulation in the second stage of projection, for each scenario in the outer loop. For

example, in test case I, the inner loop refers to the sampling of GMABpayments in five years. We shall call sample

paths of cash flows in the inner loops paths, as inner loops typically represent paths of pricing or valuation under

a risk-neutral measure conditional on the drawn risk factors from the outer loops. For each scenario in the outer

loop, say, !
k

, we denote the subsequentm inner loop paths by ⇣
k1, · · · , ⇣km, respectively.

• Time step: Most financial reporting exercises involve recursive evaluation of surplus/earnings over accounting

periods. The time step refers to the length of each period for recursive calculation. In test case I, the separate

account is modeled by a geometric Brownian motion, which is simulated by repeated multiplications of inde-

pendent lognormal factors. In this case, the time step is the period for which each lognormal factor is generated.

Note that one may use different time steps for outer loops and inner loops.

For consistency, we shall denote the number of scenarios by n and the number of paths bym
k

for the k-th scenario

wherek = 1, 2, · · · , n. In the case of a crudeMonte Carlo simulationwith a uniform sampling scheme, we shall suppress

the subscript, i.e.,m1 = m2 = · · · = m
n

= m.

While all methods aim to speed up nested stochastic modeling, we can summarize their distinctive natures in three

categories:

(1) Optimal allocation of resources between outer and inner loops.

There is no structural change to the procedure of nested stochastic modeling. Optimal allocations of a fixed

computation budget between outer and inner loops are developed to minimize statistical errors of the ultimate

estimator of nested simulation. The optimal budget allocation (method C) and sequential allocation (method

D) are in this category
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(2) Replace inner loops by closed-form or numerical approximations.

Since the inner-loop calculation is conditioned on each outer-loop scenario, computational efforts resulting

from inner-loop calculations grow exponentially for an improvement of accuracy on outer-loop calculations.

The intent of this approach is to avoid Monte Carlo simulations in the inner loops by closed-form or numerical

approximations, which typically reply on analytical properties of the underlying stochastic models. Analytical

solutions (method A) can be considered the most ideal case in this category. The numerical PDE approach

(method H) is widely applicable in most stochastic models.

(3) Reduce inner loops by curve-fitting techniques.

The purpose of inner-loop calculation is to create a mapping between items calculated by inner loops and

those calculated by outer loops. It is often implicitly assumed that the item calculated by inner loops, say, an

insurer’s liability, is a continuous function of items calculated from outer loops, say, risk factors such as equity

returns.

If we reduce the number of inner-loop simulations for efficiency, only a smaller collection of ordered pairs

between equity returns and liability values can be obtained. Many curve-fitting techniques are introduced to

connect the ordered pairs in order to produce a continuous mapping between arbitrary equity returns and their

corresponding liability values. Preprocessed inner-loops (method E) employ multivariate interpolation tech-

niques, whereas Least-Squares Monte Carlo (method F) is based on smoothing techniques such as polynomial

fitting, and its modified version (method G) is based on exponential fitting.

5. STUDY FINDINGS ON CASE I

5.1. Closed-form solution. Case I is intended for the calculation of an insurer’s economic capital using a one-year mark-

to-market approach of a five-year guaranteed minimum accumulation benefit (GMAB) written on a separate account.

Assume that the evolution of the separate account value is driven by a geometric Brownian motion, {F
t

, t � 0}, under

the real-world measure P ,

dF
t

= µF
t

dt+ �0Ft

dB
t

, F0 > 0,

where {B
t

, t � 0} is a standard Brownian motion. Suppose that the risk-free interest rate is r per time unit. In the

Black-Scholes model, the separate account value is determined by

dF
t

= rF
t

dt+ �1Ft

dB̃
t

,

where {B̃
t

, t � 0} is also a standard Brownianmotion under the risk-neutral measureQ. Herewe use different volatility

coefficient �1 than the original coefficient �0, because the risk-neutral valuation and real-world valuation are typically

done at different time points in the nested stochastic model, and we intend to allow different assumptions of volatilities

at these two time points.
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Risk-neutral valuation

The GMAB offers the greater of a minimum maturity benefit, denoted byG, and the then-current separate account

value at the maturity T = 5. In other words, the cost of such a benefit from the insurer’s perspective is given by

max{G� F
T

, 0}.

For notational brevity, we treat the five-year survival probability as 1. Observe that the GMAB is indeed a European put

option. Then the insurer’s liability t years from now (t = 1) is given by risk-neutral pricing of the put option from the

Black-Scholes formula

L := e�r(T�t)G�(�d2(Ft

))� F
t

�(�d1(Ft

)),(5.1)

where � is the cumulative distribution function of a standard normal random variable,

d1(F ) :=
ln(F/G) + (r + �2

1/2)(T � t)

�1

p
T � t

,

d2(F ) := d1(F )� �1

p
T � t.

Because of the strong Markov property of the underlying process, the one-year projection of the insurer’s liability L is

essentially represented as a function of the then-current separate account value F
t

. It is well known that the delta of a

put option is negative. Hence, L is a strictly decreasing function of F
t

. In Section 5.8, we shall illustrate the functional

relationship between L and F
t

in Figure 6.

Real-world valuation:

Now we consider the economic capital for the guaranteed benefit as the 90th percentile of the present value of the

one-year net liability,

E := VaR
p

(e�rtL), p = 0.9,

where VaR is the Value-at-Risk defined by

VaR
p

:= inf{V : P(L > V )  1� p}, p 2 (0, 1).

Observe that in this case, S
t

is log-normally distributed and L is a strictly decreasing function of F
t

. Therefore, we have

a closed-form solution to the economic capital

E = Ge�rT�(�d2(fp))� f
p

e�rt�(�d1(fp)),(5.2)

where the number f
p

is given by

f
p

:= F0 exp
⇢✓

µ� �2
0

2

◆

t+ �0

p
t��1(1� p)

�

,

and ��1 is the inverse normal distribution function.

Nested stochastics:

In summary, the inner loops are evaluated under the risk-neutral measure as a conditional expectation

L = EQ

h

e�r(T�t)(G� F
T

)+
�

�

�

F
t

i

,
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and the outer loops are evaluated under the real-world measure

E = e�rtl
p

:= e�rtVaR
p

(L).

Advantages

• This is ultimately the most efficient and the most accurate approach, as no simulation is involved and hence

there is statistical sampling error in final results.

• We often rely on convergence test to confirm accuracy for Monte Carlo simulations (increasing the number of

sample points to see if there is any pattern of a converging sequence of results). However, this method fails

to demonstrate any potential problem of inaccuracy if the underlying statistics are biased. Analytical solutions

often provide benchmarks against which other simulations can be tested for accuracy. Analytical solutions do

often exist in special cases of a general model.

Disadvantages

• The more realistic and flexible the model, the less likely that there exist analytical formulas for either the outer-

loop valuations or the inner-loop valuations.

• It often requires advanced mathematical techniques to develop closed-form solutions, which are usually rep-

resented in terms of special functions. Although it is not a disadvantage per se, many practitioners are not

comfortable using these unfamiliar techniques.

5.2. Crude Monte Carlo. In a crude Monte Carlo simulation, we carry out calculations in two steps. For the outer

loops, we project n sample paths of the separate account up to time t under the real-world measure. We shall label

the sample paths by {F
t

(!1), Ft

(!2), · · · , Ft

(!
n

)}. Under each real-world scenario, say, the path of F
t

(!
k

), we fur-

ther project m sample paths of the separate account values up to time T under the risk-neutral measure, denoted by

{F
T

(⇣
k1), FT

(⇣
k2), · · · , FT

(⇣
km

)}. Under each real-world scenario, say, !
k

, we look for the true value of the insurer’s

liabilityL(!
k

) resulting from the cash flows generated by separate account values {F
T

(⇣
k1), FT

(⇣
k2), · · · , FT

(⇣
km

)}.

Thus, we estimate the risk-neutral value of the liability by a sample mean

L̂
k

:=
1
m

m

X

j=1

Ẑ
kj

, Z
kj

:= e�r(T�t) max{G� F
T

(⇣
kj

), 0}, k = 1, 2, ..., n.(5.3)

Estimating the probability distribution:

We want to estimate the probability distribution function ↵ = P(L < V ) via simulation for a given V . Since the

inner-loop simulation generates independent and identically distributed (i.i.d) paths, we use the unbiased estimator

↵̂ :=
1
n

n

X

k=1

(L̂
k

< V ).(5.4)

Estimating the VaR:

Toestimate theVaR,we sort the randomsample{L̂1, · · · , L̂n

} from the smallest to the largest, denotedby{L̂(1), · · · , L̂(n)},

and we use its order statistic to estimate the VaR, which is a percentile. Therefore, an estimator is given by

Ê := e�rtL̂(dnpe),(5.5)

where dxe is the least integer greater than x.

Advantages

• It is easy to implement, which requires only minimal training on stochastic models.
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• It is very flexible in modeling and accommodates all product designs in the market.

Disadvantages

• Many practitioners call it brute force Monte Carlo, which colorfully describes the computational burden of this

procedure. It is well known that in a non-nested setting the sampling error of Monte Carlo simulation in general

decreases at the rate of 1/
p
n with n being the sample size. In other words, the sample size has to increase a

hundredfold in order for the estimate to improve one significant digit. Since sampling errors arise from various

sources, it may be harder to control for nested simulations. For example, if most of the sampling errors are

caused by inner loops, increasing the number of outer-loop scenarios by 100-fold does not necessarily improve

the accuracy of the outer-loop statistics to the next significant digit. On the other hand, if most of sampling

errors come from outer loops, increasing the sample size of inner loops by 100-fold while holding the number

of outer-loop scenarios constant does not improve the accuracy of estimates either.

5.3. Optimal budget allocation. As the computation cost often imposes a binding constraint on the size of nested sim-

ulation, the work of Gordy and Juneja [9] presents a strategy to allocate a fixed budget between inner loops and outer

loops in order to minimize mean-squared errors of crude Monte Carlo estimators.

Let �1 be the computation cost of each inner loop, �0 be the cost of each outer loop and � be the total computation

budget. The goal of optimal allocation is to find the optimalm and n such that the mean-squared error E[(L̂(dMpe) �

VaR
p

(L))2] is minimized, given the budget constraint

n(m�1 + �0) = �.(5.6)

Note that in financial reporting applications the cost of each outer loop depends on the size of the time step for the

projection of various risk factors, whereas the cost of each inner loop relies on the size of the time step for cash flow

projections, typically under risk-neutral measures. For example, if the projection in an inner loop is on a quarterly basis

for a total of 10 years with a total of two risk factors, we consider the computation cost of 4 ⇥ 10 ⇥ 2 = 80. If the

projection in an outer loop is on a quarterly basis for one year for a total two risk factors, we consider the computation

cost of 4⇥ 1⇥ 2 = 8.

Note that for each given scenario!
k

, the sample average L̂(!
k

) is an estimator of the true value of the liabilityL(!
k

).

As the sample average is a random variable by itself, the difference L̂(!
k

) � L(!
k

) is also a random variable, called

a “pricing error,” which is scenario-dependent. An essential element in determining the allocation is the conditional

variance of the pricing error,⇥(l), given the true value L(!
k

) = l.

When �0 is relatively small in comparison with �1 and � is very large, the optimal n⇤ andm⇤ can be determined by

m⇤ ⇡
✓

2✓2
p

�

p(1� p)�1

◆1/3

(5.7)

and

n⇤ ⇡
✓

p(1� p)
2✓2

p

�2
1

◆1/3

�2/3,(5.8)

where ✓
p

:= �⇥0(l
p

).

Let us consider an example. Suppose that the computation cost of each inner loop is �0 = 80, and the computation

cost of each outer loop is �1 = 8. We are interested in estimating the 90% VaR of a desired quantity from the nested

stochasticmodel, i.e.,p = 0.9. The computing facilities allowus to run a total computation budget of 100, 000. Wewould
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first run a small sample of estimates and determine a rough estimate of l
p

, which is the quantity we try to estimate, as

well as the outer-loop scenario!
k

fromwhich the VaR is obtained. Then we run additional inner-loop calculations under

this particular scenario !
k

. The sample variance is used to estimate⇥(l
p

). Again consider a similar scenario !
k+1 and

find its corresponding estimate of the desired quantity. Then the derivative ✓
p

is estimated by a difference quotient

based on the two scenarios !
k

and !
k+1. Now suppose that some calculations show that ✓̂

p

= 19. Then according

to formulas (5.7) and (5.8), we obtain the approximate optimal number of scenarios n = 5.796 and the approximate

optimal number of paths m = 215.643. A detailed example of how all components are determined can be found in

Section 5.8.

One should keep in mind that solutions to optimization problems rely on the analytical properties of risk measures

under consideration. Gordy and Juneja (2008) provided optimal allocations of m and n for estimating the probability

function, VaR and conditional tail expectation.

Advantages

• Rather than blindly assigning numbers of inner loops andouter loops in crudeMonte Carlo, thismethodprovides

a strategic allocation of resources.

Disadvantages

• It is generally difficult to obtain the exact distribution of pricing error. It is reasonable to make a normality

assumption due to the Central Limit Theorem. However, it might not be easy to obtain the variance of the

pricing error.

• The approximate optimal allocation in (5.7) and (5.8) requires the exact value of l
p

, which is precisely the un-

known quantity to be estimated by nested simulation. A practical solution is to replace the unknowns with

estimates as suggested in the example above.

5.4. Sequential allocation of inner loops. The aforementioned two methods are both based on a uniform distribution

of computation budget for each outer-loop scenario. In other words, each estimator from inner loops employs the same

number of random paths. For the purpose of risk management, we are often interested in extreme events where large

losses occur. Therefore, it is inner-loop paths generated from adverse scenarios that actually count in the estimation of

desired risk measures. It would be computationally more efficient to dedicate more resources to the most severe cases

rather than those with little chance of inclusion in risk measure calculations. Broadie, Du and Moallemi [2] proposed a

nested simulation scheme to allocate additional computational effort to scenarios with greater marginal changes to risk

measures.

Here we provide a brief description of the strategy. Some technical details can be found in Appendix A. Let L(!1)

and L(!
k

) denote an insurer’s liabilities under two outer-loop scenarios !1 and !
k

, and L̂1 and L̂
k

represent their

respective estimators. Take the estimation of the probability function in (5.4) as an example. Whether or not a sample

L̂
k

affects the estimator ↵̂ relies on its relative position to the threshold V . As shown in Figure 2, the estimators L̂1

and L̂
k

are random variables centered around the true values L(!1) and L(!
k

). However, it is much less likely for L̂1

to reach the threshold V than it is for L̂
k

. Recall that an increased sample size typically reduces the variance of the

estimator. Therefore, it makes sense to allocate more computational resources to L̂
k

than to L̂1, as a more accurate

estimate of L̂
k

may affect the estimator ↵̂, and wasting efforts on that of L̂1 may not have any impact on ↵̂.
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FIGURE 2. Nonuniform sampling of inner loops

The next natural question is how to develop an objective rule of allocating the resources among all scenarios. The

sequential algorithm developed by Broadie, Du and Moallemi [2] makes a decision on the allocation of inner paths one

at a time. Suppose that the total computation budget is again given by (5.6). In this algorithm, we letm
k

, L̂
k

,�
k

be the

current sample size of inner loops, the estimate of liability and the conditional standard deviation of any new sample,

for the k-th outer-loop scenario. Here is a summary of their algorithm in three steps:

(1) Allocate m0 inner loop paths to each outer-loop scenario. (The unused budget � � n(m0�1 + �0) will be

allocated in the remaining steps.)

(2) Search for

k⇤ 2 argmin
k=1,2··· ,n

(

m
k

· |L̂k

� V |
�
k

)

.(5.9)

Allocate resources to generate one additional sample to the scenario !
k

⇤ . Updatem
k

⇤ and L̂
k

⇤ .

(3) If the total used budget n�0 +
P

n

k=1 mk

�1 < �, then repeat Step (2).

(4) Compute the risk measures based on (L̂1, · · · , L̂n

).

Here is a heuristic argument for choosing k⇤ according to the criterion (5.9). Recall from (5.3) that

L̂
k

=
1
m

k

m

k

X

j=1

Ẑ
kj

.

Keep in mind that we cannot observe the true values L(!1), · · · , L(!k

) in reality. But we can make our estimator

L̂1, · · · , L̂k

more accurate by including more inner-loop simulations. The Central Limit Theorem tells us that L̂
k

con-

verges toL(!
k

) as the sample sizem
k

goes to infinity, i.e., the probability density function of L̂
k

will becomemore and

more concentrated aroundL(!
k

) asm
k

increases. However, we want to conserve resources for scenarios that improve

the accuracy in an efficient way. Assume that we have already observed that L̂
k

� c, and if we were to generate an

additional inner sample for the outer-loop scenario !
k

, the new estimator is given by

L̂0
k

=
1

m
k

+ 1

m

k

+1
X

j=1

Ẑ
kj

.
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The key observation is that this additional inner sample to outer loop k will affect only the estimate ↵̂ defined in (5.4)

if it is possibly true that L̂0
k

< V , i.e., L̂0
k

has an increased probability to be on the opposite side of L̂
i

with respect to

V . The increased chance of “sign change” is illustrated in Figure 2. Note that even though L̂0
k

has the same mean as

L̂
k

, it has a greater probability mass to the left of V than L̂
k

. In contrast, the more concentrated density function of

L̂0
1 makes it less likely that L(!1) > V. Therefore, it is not worthwhile to make even more accurate estimate of L(!1).

To myopically maximize the impact of the single additional sample, the goal is to choose the scenario !
i

that maximizes

the probability of such a sign change, i.e.,

P(L̂0
k

< V |L̂
k

> V ).

Broadie, Du and Moallemi [2] applied the one-sided Chebyshev inequality to show that the probability is maximized

under the scenario k⇤ identified in (5.9). A simple illustration of a Chebyshev inequality is shown in Appendix A.2. The

quantity m
k

|L̂
k

� V |/�
k

itself also provides some insight about the strategy. The minimization procedure for the

quantity favors scenarios whose estimators L̂
k

are close the threshold V . Among estimators that are all close to the

threshold, the minimization procedure favors those with relatively bigger variance �
k

and those with fewer pathsm
k

.

Observe that the procedure requires knowledge of the conditional standard deviation �
k

for each scenario !
k

. In

Case I, we can calculate the exact value of�
k

by
q

Var(Ẑ
kj

),which is given in Appendix A.1. However, this valuemay not

be known in more complex cases in practice. Nevertheless, �
k

can be estimated from the sample variance of inner-loop

paths.

Advantages

• An efficient approach to allocate computational resources to scenarios where the accuracy of inner-loop calcu-

lation has the most impact on the overall risk measures.

Disadvantages

• The procedure can be quite time-consuming, as the method requires distributing one inner-loop sample at a

time. In comparison with crudeMonte Carlo simulation, additional resources are spent on the search algorithm

to determine the optimal outer loop to which the next inner loop is to be added. Nonetheless, some remedial

measures have been proposed in subsequent publications by Broadie and coauthors. Further research should

be pursued if one intends to speed up the procedure.

5.5. Preprocessed inner loops. This technique is commonly practiced in the insurance industry. The essence of this

method is to preprocess inner-loop calculations (typically risk-neutral valuation of liabilities) with a small set of outer-

loop scenarios and then use interpolation to compute other values for desired scenarios outside the preprocessed set.

This approach is also introduced and referred to as a factor-based approach in Hardy [10, p. 189].

Preprocessed inner loops

For example, suppose there are two quantifiable risk factorsX(1) andX(2) to be considered in the outer-loop sim-

ulation. There are many ways in which we can create a set of partition points (x(1)
1 , x

(1)
2 , · · · , x(1)

n

). For instance,

{x(1)
k

= VaR(k�1)/(n�1)(X
(1)), k = 1, · · · , n} using percentiles, or an equidistant partition {x(1)

k

= a+ (b� a)(k �

1)/(n � 1), k = 1, · · · , n} ifX(1) falls roughly in a bounded domain (a, b). Similarly, we can create a set of partition

points forX(2). These pairs are then tabulated to form a grid system as shown in Table 1. At each grid point, an inner-

loop calculation is carried out to determine the corresponding liability (or other quantities of interest under risk-neutral
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measure), which is denoted by L̂
ij

corresponding to the i-th scenario of the risk factor X(1) and j-th scenario of the

risk factorX(2).

equity

x
(2)
1 x

(2)
2 · · · x

(2)
n

in
te
re
st
ra
te

x
(1)
1 L̂11 L̂12 · · · L̂1n

x
(1)
2 L̂21 L̂22 · · · L̂2n

...
...

...
...

...

x
(1)
n

0 L̂
n1 L̂

n2 · · · L̂
n

0
n

TABLE 1. Preprocessed grid

Note that the sizes of partitions n, n0 are determined by an insurer’s preference of granularity, which is often a com-

promise between accuracy and efficiency. As the main purpose of such an exercise is to reduce run time, the size of the

grid is not expected to be very large.

Interpolation for outer loops

In the outer-loop simulation, a wide range of outer-loop scenarios are generated to reflect the insurer’s anticipation

of market conditions. When an outer loop requires the liability evaluated with various levels of risk factors, (x(1), x(2)),

which are typically not on the grid {(x(1)
i

, x
(2)
j

), i = 1, · · · , n, j = 1, · · · , n0}, approximations are made by inter-

polating liability values at neighboring points on the table. While there are many multivariate interpolation meth-

ods available, the most common one appears to be the bilinear interpolation. Suppose x
(1)
i

< x(1) < x
(1)
i+1 and

x
(2)
j

< x(2) < x
(2)
j+1. Then a first linear interpolation is done in one direction:

L̂(x(1), x
(2)
j

) =
x
(1)
2 � x(1)

x
(1)
2 � x

(1)
1

L̂
ij

+
x(1) � x

(1)
1

x
(1)
2 � x

(1)
1

L̂(i+1)j ,

L̂(x(1), x
(2)
j+1) =

x
(1)
2 � x(1)

x
(1)
2 � x

(1)
1

L̂
i(j+1) +

x(1) � x
(1)
1

x
(1)
2 � x

(1)
1

L̂(i+1)(j+1).

Then the desired estimate follows from a second linear interpolation:

L̂(x(1), x(2)) =
x
(2)
2 � x(2)

x
(2)
2 � x

(2)
1

L̂(x(1), x
(2)
j

) +
x(2) � x

(2)
1

x
(2)
2 � x

(2)
1

L̂(x(1), x
(2)
j+1).(5.10)

There aremany other more sophisticated interpolation techniques, such as stochastic kriging. See Liu and Staum [12]

for details.

Advantages

• The inner-loop calculation can be reduced tremendously due to the few numbers of inner-loop calculations. It

is very easy to implement.

• Most computing software packages provide built-in interpolation functions. It is relatively easy to implement

an interpolation procedure.

Disadvantages
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• This approach suffers a common phenomenon called “the curse of dimensionality”. Its accuracy deteriorates as

one introduces more risk drivers. We shall demonstrate with Case II in Section 6.5 that it is reasonably accurate

when we use only two variables, whereas its results are no longer credible after moving to four variables.

• There has been no literature on convergence properties of preprocessed inner loops by linear interpolation,

although there are related studies of interpolation techniques such as stochastic kriging for nested simulation.

• Since items required by outer loops are stochastically determined, one has to prepare a large enough grid so

that required items can be interpolated from the table of preprocessed inner loops. When risk drivers reside on

a very large domain, choosing appropriate boundaries can be tricky, especially in high dimensions.

• In the insurance industry, it was generally believed that the preprocessed grid does not consider path depen-

dency, given that the outer loops typically consist of non-overlapping scenarios. This can underestimate the

delta for a step-up benefit. However, it is in fact possible to add additional dimensions to the preprocessed grid

to handle path dependency issues. Case II in this report provides an example of handling path-dependency with

a step-up benefit.

5.6. Least-SquaresMonteCarlo (LSMC). The regression-basednested simulation techniquewas first proposed in Longstaff

and Schwartz [13] for the pricing of American options. The work of Broadie, Du and Moallemi [2] laid out a theoretical

analysis of LSMC for applications to risk measures.

The idea of LSMC is to replace the inner-loop calculation by an analytical approximation. Curve-fitting techniques

should be considered in this category. Suppose an insurer’s liability L depends on a number of risk factors/drivers

F = (F1, F2, · · · , Fd

), such as equity return and interest rates. In other words, there exits an unknown function g such

that for any scenario !:

L(!) = g(F1(!), F2(!), · · · , Fd

(!)).

Note that in practice L may be obtained from a discrete-time model under each scenario, and hence the function g is

usually not known explicitly. Because the graph of g can be viewed as a curve on the Rd space, there are many curve

fitting techniques that can be used to approximate the unknown g by a mixture of known functions, often called basis

functions. In the LSMC, we consider a set of real-valued basis functions �1(·), ...,�s

(·), which can be written as a row

vector

�(·) = (�1(·), ...,�s

(·)) 2 Rs.

Some typical examples of basis functions are polynomials. For examples, in a model with two risk factors, one might use

�1(x1, x2) = x1,�2(x1, x2) = x2,�3(x1, x2) = x1x2. Then the liability function L is to be approximated by a linear

combination of these basis functions, for some vector � = (�1, · · · ,�s

)> to be determined,

L(!) = g(F(!)) ⇡ �(F(!))� =
s

X

l=1

�
l

�
l

(F(!)),

where > denotes the transpose of a vector. Ideally, basis functions should be easy to evaluate and capture main fea-

tures of the functional relationship g. It is common that practitioners use lower term polynomials when the functional

relationship is entirely data driven.

The unknown vector � is typically determined by minimizing mean-squared error

�⇤ 2 argmin
�2Rs

E[(L� �(F)�)2].(5.11)
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As it is not possible to directly compute � without the exact distribution of L, which is unknown in the context of LSMC,

we often consider the statistical analog of the optimization problem (5.11),

�̂ 2 argmin
�2Rs

1
n

n

X

k=1

(L̂
k

� �(F(!
k

))�)2,(5.12)

which is a standard ordinary least-squares problem. Recall thatwewrite L̂
k

= L̂(!
k

) for short. Ifwe letY = (L̂1, · · · , L̂n

)

and X = (�(F(!1))
>, · · · ,�(F(!

n

))>)>, then

�̂ = (X>X)�1X>Y.

Once the vector �̂ is determined, then inner-loop calculations in the nested simulationwill be replaced by evaluations

of the analytical function �(F(!))�. For example, in the estimation of the probability function, we may use

↵̂ :=
1
n

n

X

k=1

(�(F(!
k

))� < V ).

Advantages

• Themethod is known to be efficient to reduce computational time. In the nested setting of a crudeMonte Carlo

with n outer loops and m inner loops, the total number computation units is n(�0 + m�1) where �0 is the

computation cost of an outer loop and �1 is that of an inner loop. LSMC finds an approximation of inner-loop

calculation in a procedure separate from outer-loop simulation. If we use m inner loops to find the approx-

imation and n outer loops to generate an empirical distribution of approximated inner-loop values, then the

computation cost would be n�0 +m�1 plus the cost of least-squares estimation, which is typically significantly

less than that of crude Monte Carlo.

• The method has a formal mathematical basis of convergence.2 In the fitting scenario, although the fitting is

subject to a degree of sampling error from the randomness of the fitting scenarios, its convergence has been

formally proved in Stentoft (2004). As we add more scenarios and basis functions, the estimators converge to

the actual functional relationship.

• After inner loops are replaced by polynomial approximations, the computation requirement is often reduced to

the extent that it is affordable to use a very large number of outer-loop scenarios, significantly reducing errors

from the outer-loop stage.

Disadvantages

• The asymptotic and convergence analysis in the literature has been done only on riskmeasures such as the prob-

ability of large loss or expected excess loss. There has not been rigorous analysis with regard to the convergence

of mean-squared error for common risk measures in practice such as VaR and conditional tail expectation.

• Error analysis requires asymptotics, which can be difficult to use.

• The choices of basis functions such as polynomials, particularly those used in practitioners’ publications, appear

to be arbitrary. Why would the polynomials x, x2, x3 be any better than x3, x4, x5 for approximations? Here is

an excerpt from the Barrie Hibbert report, Koursaris [11]:

2In particular, Theorem1 in Stentoft [15] provides themathematical foundation for using the LSMCmethod to price options involvingmultiple stochastic

factors or with path-dependent payoff functions, such as Asian options.
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A drawback of the polynomial regression technique is the large number of potential terms

in the basis function. For even moderate numbers of risk drivers this can quickly increase

into the thousands and may be greater than the number of fitting scenarios. In this case,

a method is needed to select a subset of the polynomial terms that describes the liability

function well without over fitting to the random liability valuations. The Akaike Information

Criterion is a robust statistical test for this use.

5.7. LSMC with basis selection. While there are other ways of selecting basis functions, we propose a new method

based on a technique from the applied harmonic analysis literature. The essence of the methodology is to approximate

the unknown liability function by a mixture of complex-valued exponential functions. The original idea was developed in

Beylkin and Monzon [1] for approximating complex-valued functions and was adapted in Feng and Jing [6] for actuarial

applications. The technique has been extended to multivariate cases, but we shall illustrate the procedure in a single-

variable case in this report. Technical details on how the algorithm works can be found in the Appendix Section A.3.

Given 2N +1 values of a function f(x) on a uniform grid in [0, 1] and a target level of error ✏ > 0, the goal is to find

the minimal numberM of complex weights w
m

and complex nodes �
m

such that
�

�

�

�

�

f

✓

k

2N

◆

�
M

X

m=1

w
m

�k

m

�

�

�

�

�

 ✏, for all 0  k  2N.(5.13)

Then we use the same set of complex weights and complex nodes to construct a linear combination of exponential

functions as a smooth approximation

f(x) ⇡
M

X

m=1

w
m

etmx, for all x 2 [0, 1], t
m

= 2N ln �
m

.(5.14)

Inner-loop approximation

In the case of capital calculation, we consider the insurer’s liability as an unknown function of a certain risk driver,

say, equity values. We shall consider the domain of the risk factor to be finite, say, [a, b] with �1 < a < b < 1. We

re-scale the domain of the liability function to be

f(x) = g

✓

x� a

b� a

◆

.

Then we create an equidistant partition of the range [a, b]:

{x
k

= a+ (b� a)k/(2N), k = 0, · · · , 2N}.

On each of the partition points, we run an inner-loop calculation to determine the corresponding liability values, which

are denoted by (L̂0, L̂1, · · · , L̂2N ). The rest of the calculation is to use the mapping between x
k

and L̂
k

to find a

smooth function relation between the risk driver and the liability (the item calculated by inner loops).

Consider the (N + 1)⇥ (N + 1) Hankel matrix H defined as follows:

H =

2

6

6

6

6

6

6

6

6

6

4

L̂0 L̂1 · · · L̂
N�1 L̂

N

L̂1 L̂2 · · · L̂
N

L̂
N+1

...
...

L̂
N�1 L̂

N

· · · L̂2N�2 L̂2N�1

L̂
N

L̂
N+1 · · · L̂2N�1 L̂2N

3

7

7

7

7

7

7

7

7

7

5

.
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For the practical purpose of this application, we shall consider only the case where the Hankel matrix is real-valued. Then

we can solve for the eigenvalue problem

Hu = �u,(5.15)

where � is a real eigenvalue and u = (u0, · · · , uN

) is the corresponding eigenvector. To find the approximation, we

rank all the eigenvalues of H in a decreasing order:

�0 � �1 � · · · � �
N

.(5.16)

If we choose an eigenvalue �
M

(0  M  N) smaller than the level of error tolerance ✏, then the rest of the algorithm

will enable us to find a set of complex nodes {�1, �2, · · · , �M} and a set of complex coefficients {w1, · · · , wM

} such

that the error of approximation is controlled for all 0  k  2N ,
�

�

�

�

�

L̂
k

�
M

X

m=1

w
m

�k

m

�

�

�

�

�

 �
M

.

We shall carry out the computation in the following steps:

(1) (Identify eigenvalue and eigenvector) Construct an (N + 1) ⇥ (N + 1) Hankel matrix H with elements L̂
k

where k = 0, 1, · · · , 2N . Find all eigenvalues of the eigenvalue problem (5.15), which are ranked from the

largest to the smallest as in (5.16). Choose the largest �
M

smaller than the level of error tolerance. Find the

corresponding eigenvector u = (u0, u1, · · · , uN

).

(2) (Determine complex nodes) Construct the eigen-polynomial Pu(z) =
P

N

k=0 uk

zk and find all of its roots. Find

theM roots with smallest absolute values {�1, �2, · · · , �M}.

(3) (Determine complexweights) Use themethod of least squares to determine all the unknowns {⇢1, ⇢2, · · · , ⇢M}

in the equation L
k

=
P

M

n=1 ⇢n�
k

n

, for 0  k  2N . In other words, if we set Y = (L̂0, L̂1, · · · , L̂2N )> and

construct the Vandermonde matrix

X =

2

6

6

6

6

6

6

4

1 1 1 . . . 1

�1 �2 �3 . . . �
M

...
...

...
. . .

...

�2N
1 �2N

2 �2N
3 . . . �2N

M

3

7

7

7

7

7

7

5

,

then the vector ⇢̂ can be found by

⇢̂ = (X>X)�1X>Y.

Note, however, if the level of error tolerance is set to be very low, then there could be too many terms included in

the approximation. If one plots the sizes of �’s ranked from the largest to the smallest connected with line segments, it

is typical that the line segments decline sharply for the first few and tend to flatten afterwards. A “rule of thumb” is to

include only the first few �’s right before the line segments flattern.

The end product of the above-mentioned algorithm will produce the desired approximation (5.14),

g(x) ⇡
M

X

m=1

⇢̂
m

etmx, x 2 (0,1),

where t
m

= (2N/b) ln �
m

. This concludes the step of inner-loop approximation.
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Advantages

• Similar to the LSMC method, the inner-loop approximation and the outer-loop simulation are done in a non-

nested setting. It is much more efficient than the nested setting with the crude Monte Carlo method.

• Themethod provides an automated procedure to find an optimal set of basis functions. The analytical approach

of determining basis function can bemuchmore efficient than the regression-based variable selectionmethods,

such as the selection based on the AIC mentioned in the Barrie-Hibbert report, as it does not require repeated

calculation of coefficients.

• It allows users to approximate the desired liability function up to a pre-described level of error tolerance. Ac-

cording to the theory of Hilbert space, the approximation up to an arbitrary level of error can be achieved by

orthogonal polynomials as well. However, in practice, this can be difficult to materialize with only a predeter-

mined set of candidate polynomials. In contrast, the LSMC based on the Hankel matrix approximation provides

an objective approach to determine optimal exponential functions. Unlike the LSMC approach, the error anal-

ysis does not require asymptotics, which can be difficult to explain. The error bound can be easily obtained

and controlled, as it is calculated in the intermediate step. Users can have a rough estimate of the error level

without any additional analysis or computation.

Disadvantages

• The method does not appear to work well for unbounded functional relationships between response variables

and dependent variables.

To the best of the researchers’ knowledge, this is the first time that the Hankel matrix approximation has been used

for nested simulations. Further studies are necessary to better understand applications of this approach.

5.8. Numerical results. Here we list all aforementioned techniques for nested stochastic modeling to be compared for

Case I. Method H is not included here because analytical solutions are already available. If necessary, a numerical PDE

method can be easily developed for this case.

A. Analytical solutions

B. Crude Monte Carlo

C. Optimal budget allocation

D. Sequential allocation

E. Preprocessed inner loops

F. Least-Squares Monte Carlo (LSMC)

(a) inner-loop fitting based on outer scenarios

(b) inner-loop fitting based on equidistant grid

G. LSMC with basis selection

All techniques are tested under the following valuation assumptions:

• Risk-free interest rate r = 0.05 per annum

• Expected rate of return under the real-world measure µ = 0.09 per annum

• Volatility coefficient under the real-world measure in the outer-loop simulation �0 = 0.2 per annum
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• Volatility coefficient under the risk-neutral measure in the inner-loop simulation �1 = 0.3 per annum

• Length of projection for risk-neutral valuation (inner-loop simulation) T = 5

• Length of projection for capital calculation (outer-loop simulation) t = 1

• Initial fund value for separate accounts F0 = 100

• Total investment guaranteeG = 110.

Since an exact closed-form formula for the Value-at-Risk is available in Section 5.1, its results are used here as benchmarks

against which the accuracy and efficiency of all other techniques are tested.

In the following example, estimates of two risk measures are determined simultaneously for all cases.

• Distribution of the one-year liability (loss function)

↵ = ↵(V ) := P(L > V )

,

• Value-at-Risk of the one-year liability

VaR
↵

:= inf{V : P(L > V )  1� ↵}, ↵ 2 (0, 1).

When the closed form is available as in the Section 5.1, VaR
↵

is a right-inverse function of ↵(V ). Although it may

appear repetitive to consider both quantities, they are in fact estimated by different statistics in Monte Carlo simulation

techniques. For example, the loss function is often estimated by (5.4), and the VaR of the present value of one-year

liability is often estimated by (5.5) or some variations. These statistics have different statistical propertieswhenmeasured

by mean-squared error (MSE) to be introduced below. Hence above-mentioned techniques may behave differently for

these two risk metrics.

Measurements of accuracy to be used here are (1) mean-squared errors and (2) bias. For example, in the case of ↵̂

defined in (5.4) with a sample size ofN , the MSE is given by

MSE(↵̂) =
1
N

N

X

i=1

(↵̂
i

� ↵)2.

The sample sizeN for the statistic ↵̂ is the number of times ↵̂ is estimated, not to be confused with n in (5.4), which is

the number of outer-loop scenarios to generate each estimate ↵̂. The bias is defined as

Bias(↵̂) =
1
N

N

X

i=1

↵̂
i

� ↵.

Warning:

We have chosen the risk measures carefully in this section so that all aforementioned techniques have been an-

alyzed analytically in the literature, with the exception of preprocessed inner loops. However, one needs to exercise

caution when applying these techniques to other risk measures, such as conditional tail expectation, particularly opti-

mal allocation methods. Keep in mind that each optimal allocation formula is based on the minimization of asymptotic

mean-squared errors of a specific risk measure. In the case of the probability distribution and the case of Value-at-Risk,

they lead to the same optimal numbers of inner loops and outer loops, as shown in Gordy and Juneja [9]. However, the

results would not necessarily be the same for other risk measures, such as conditional tail expectation. A blind use of

the same allocation would lead to a suboptimal solution or possibly even worse than a crude Monte Carlo simulation.
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Method Outer loop Inner loop Mean Bias MSE Time (secs)

A - - 0.9500 - - 0.00000

B 100 100 0.9262 �0.02433 0.00132 0.01014

C 150 67 0.9233 �0.02667 0.00072 0.01565

E 100; 1000 100 0.9438 �0.00627 0.00026 0.01248

F(a) 100; 1000 100 0.9548 0.00482 0.00010 0.01092

F(b) 100; 1000 100 0.9441 �0.00595 0.00013 0.00624

G 101; 1000 100 0.9535 0.00345 8.955⇥ 10�5 0.00990

TABLE 2. (Budget⇡ 104) Probability of large loss for 20 repetitions.

Method Outer loop Inner loop Mean Bias MSE Time (secs)

A - - 25.4792 - - 0.00000

B 100 100 26.5808 1.10164 3.85057 0.01014

C 150 67 26.6173 1.13813 1.49494 0.01564

E 100; 1000 100 25.8917 0.41259 1.31196 0.01248

F(a) 100; 1000 100 25.1624 �0.31685 0.46592 0.01092

F(b) 100; 1000 100 25.8458 0.36666 0.59492 0.00624

G 101; 1000 100 25.3459 �0.13327 0.25677 0.00993

TABLE 3. (Budget⇡ 104) Value-at-Risk (VaR) for 20 repetitions.

Testing accuracy and efficiency

In this numerical example, we use the following benchmarks for testing. The analytical method in Section 5.1 shows

that the probability that the present value of the one-year liability is greater than V = 25.4792 is given by

↵(V ) = 0.95.

Conversely, the 95% Value-at-Risk of the present value of the one-year liability is given by

VaR0.95 = 25.4792.

The average computation time for each estimate of risk measure is reported in seconds. We run a total of 20 repeti-

tions of statistics from each technique, and then estimate their MSEs and biases from the 20 estimates.

Implementation

In Tables 2 – 5, we compare the accuracy and efficiency of all techniques given different computation budgets. Here

are the details regarding the implementation of each technique. We use the budget of� = 106 for illustration purposes.

A. Analytical solutions

The computation of the VaR is based on (5.2). There is no simulation required for its evaluation.
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Method Outer Loop Inner Loop Mean Bias MSE Time

A - - 0.95000 - - 0.00000

B 1000 1000 0.94665 �0.00335 8.155⇥ 10�5 0.12012

C 3224 311 0.94541 �0.00459 2.8866⇥ 10�5 0.30428

D 1000 - 0.95105 0.00105 5.225⇥ 10�5 31.9342

E 1000; 10000 1000 0.94879 �0.00121 1.2134⇥ 10�5 0.16926

F(a) 1000; 10000 1000 0.94989 �0.00011 5.2608⇥ 10�6 0.14071

F(b) 1000; 10000 1000 0.94323 �0.00677 5.1034⇥ 10�5 0.13182

G 201; 10000 5000 0.94993 �0.00007 2.9645⇥ 10�6 0.10975

TABLE 4. (Budget⇡ 106) Probability of large loss for 20 repetitions.

Method Outer Loop Inner Loop Mean Bias MSE Time

A - - 25.4792 - - 0.00000

B 1000 1000 25.6343 0.15503 0.38696 0.12012

C 3224 311 25.7571 0.27783 0.09828 0.30428

D 1000 - 25.4532 �0.02626 0.33254 31.9342

E 1000; 10000 1000 25.5582 0.07895 0.05499 0.16926

F(a) 1000; 10000 1000 25.4813 0.00179 0.02439 0.14071

F(b) 1000; 10000 1000 25.9106 0.43137 0.21108 0.13182

G 201; 10000 5000 25.5083 0.02906 0.02567 0.10975

TABLE 5. (Budget⇡ 106) Value at Risk (VaR) for 20 repetitions.

B. Crude Monte Carlo

We manually allocate the budget to n = 1, 000 outer loops and m = 1, 000 inner loops. The probability

and the VaR of the one-year liability are computed with the statistics in (5.4) and (5.5).

C. Optimal budget allocation

The budget is allocated and fixed according to asymptotically optimal numbers in (5.8) and (5.7). The number

✓
p

is determined in Appendix Section A.1. Although in this case lengths of projection are different for inner and

outer loops, calculations involve only terminal values F
t

and F
T

. Hence we set �0 = �1 = 1. The estimators

of the risk measures are given in (5.4) and (5.5). Keep in mind that the optimal allocation was developed based

on the minimization of mean-squared errors. As shown in Table 4 and 5, the bias of the resulting statistics may

not necessarily be smaller than crude Monte Carlo.

D. Sequential allocation

The algorithm is given an initial allocation of n = 1, 000 outer loops, and m0 = 800 inner loops. Then it

dynamically updates the number of inner-loop paths for each outer-loop scenario in order to myopically maxi-

mize the chance of a sign change of the inner loop estimator. As shown in Figures 3 and 4, the total number of

inner loops for each scenario varies drastically, with an average m̄ = 1, 000. In Figure 3, we plot the number
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of inner-loop paths for each scenario against the corresponding equity value. The distribution of budget for

inner-loop calculations is shown against estimated liability values in outer-loop scenarios in Figure 4. It is clear

in Figure 3 that there are more inner simulations employed aroundF
t

= 77.1846 (represented by the blue ver-

tical line), which corresponds to the 95% VaR of the one-year liability. Represented on a different scale, Figure

4 shows that there are more inner simulations employed around the VaR of the liability distribution given by

VaR0.95 = 25.4792 (represented by the blue vertical line). This observation is consistent with the principle of

the “sequential allocation” method, which is to allocate more inner loops (resources) to the scenarios that may

have the most impact on the estimation of risk measures. The observation is in essence a real data realization

of the idea shown in Figure 2.

E. Preprocessed inner loops

We use an equidistant grid on [a = 40, b = 250]3 with n0 = 200 nodes. Because a predetermined grid is

used, one can think of these equity values as fixed “outer-loop scenarios.” Generatem = 5, 000 sample points

of future cash flows on each node to determine liability values in (5.3). Thus we produce n0 ordered pairs of

equity values and liability values. In the outer-loop simulation stage, another set of n = 10, 000 scenarios is

generated to form an empirical distribution of equity values. In the case of probability ↵, we map each equity

value to a liability value using the linear interpolation outlined in Section 5.5. Note that since there is only a

single risk driver, the one-dimensional analogue of (5.10) is used. Once all liability estimates are collected for n

scenarios, the probability ↵ is estimated by the statistic (5.4). Similarly, the Value-at-Risk is estimated by apply-

ing the statistic (5.5) to interpolated liability values.

F(a). LSMC with fitting based on outer scenarios

For the inner loop approximation, we randomly generate n0 = 200 outer loop scenarios of F
t

, denoted by

F̂1, · · · , F̂n0 . Note that these values are not equidistant, in contrast with the method described below. Then

we approximate the functional relationship between equity value and liability value by a linear combination

of polynomial basis functions �1(x) = x,�2(x) = x2,�3(x) = x3. In other words, we use a least-squares

estimator to determine � such that

L̂
k

⇡ �0 + �1F̂k

+ �2F̂
2
k

+ �3F̂
3
k

, k = 1, · · · , n0.(5.17)

In the outer-loop simulation stage, we take a larger sample n = 10, 000 of time-t-scenarios and approximate

the liability under each scenario by the fitted polynomial function. Then apply statistics (5.4) and (5.5) to the

approximated liability values.

F(b). LSMC with fitting based on an equidistant grid

In a second trial, we use an equidistant grid on the range of equity values [a = 40, b = 250] with n0 = 200

nodes (time t-scenarios). Generatem = 5, 000 sample points of future cash flows on each node to determine

liability values in (5.3). Thus we produce n0 ordered pairs of equity values {F̂
k

= a + k(b � a)/n0, k =

0, 1, · · · , n0} and liability values {L̂k

, k = 1, · · · , n0}. The rest of the calculation is identical to that described

in F(a).

3We choose this range, because P(40  F1  250) = 0.999987982608598.
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G. LSMC with basis selection

We follow the steps outlined in Section 5.7 and use the same grid as in the procedure for F(b). Instead of

polynomials, we are effectively using a mixture of exponential functions

L̂
k

⇡ ⇢1�
2nx

k

1 + ⇢2�
2nx

k

2 + · · ·+ ⇢
M

�
2nx

k

M

, k = 1, · · · , n0,(5.18)

where{�1, �2, · · · , �M} are determinedby the eigen-polynomial described in Section5.7 and fork = 1, 2, · · · , 2n,

x
k

=
F̂
k

� a

b� a
.

However, in this case the number of exponentials,M , is selected so that the maximum error of the approxima-

tion is controlled by the eigenvalue �
M

. Figure 5 shows magnitudes of 10 largest eigenvalues obtained from

(5.15). It is clear that there is a sharp decline in magnitude from the largest eigenvalue to the second largest

eigvenvalue. As pointed out earlier, Figure 5 indicates that there is very little gain from using more than one

node in the exponential approximation.

Observations

We compare all techniques in two cases of a budget with various sizes: a small budget of roughly 104 and a large

budget of roughly 106, relatively speaking given the simplicity of the nested model itself.

In the case of a small budget (⇡ 104) in Tables 2 and 3, it is expected that all other methods outperform the crude

Monte Carlo by multiple times in terms of both bias and MSEs. Optimal allocation strategies offer modest improvement

on MSEs, although the bias reduction appears to be rather limited. Note that a lower MSE means that one tends to
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receive a more accurate estimate given a fixed number of simulations. The LSMC methods, including methods F(a), F(b)

and G, tend to perform the best among all competing techniques.

In the case of a large budget (⇡ 106) in Tables 4 and 5, most of the aforementioned techniques perform better than

crudeMonte Carlo, although the extent of improvement is less than that in the case of a small budget. Note thatmethod

G (LSMC method with basis selection) achieves the same level of accuracy as method F (LSMC method with only pre-

determined polynomials). However, keep in mind that method G produces a rather simple approximate function with

only one term of exponential, whereas method F uses a function with three terms of power functions.

5.9. Error analysis of inner-loop approximation. As described at the beginning of Section 5, methods E, F and G are in

the category of techniques that replace actual inner-loop evaluations by closed-form approximations. Any estimation

error of inner loop quantity can carry over and contribute to estimation errors of statistics (5.4) and (5.5). Here we

estimate magnitudes of errors introduced by each of these techniques in the earlier numerical examples.

B. Crude Monte Carlo
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FIGURE 6. Comparison of crude MC versus exact
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FIGURE 7. Estimation error for crude MC

C. Optimal budget allocation
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FIGURE 8. Monte Carlo with optimal allocation
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FIGURE 9. Estimation error for optimal allocation

D. Sequential allocation
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FIGURE 10. Sequential allocation
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FIGURE 11. Estimation error for sequential allocation

E. Preprocessed inner loops
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FIGURE 12. Preprocessed inner loops (E)
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FIGURE 13. Estimation error for preprocessed inner loops (E)

F(a). Least-Squares Monte Carlo with fitting based on outer scenarios
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FIGURE 14. LSMC based on outer scenarios (F(a))
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FIGURE 15. Estimation Error for LSMC (F(a))

F(b). Least-Squares Monte Carlo with fitting based on equidistant grid
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FIGURE 16. LSMC based on equidistant grid (F(b))
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FIGURE 17. Estimation error for LSMC based on equidistant grid (F(b))

G. Least-Squares Monte Carlo with basis selection
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FIGURE 18. LSMC with basis selection (G)

We want to point out that in this example method G can achieve roughly the same level of accuracy as method F(a)

with only one exponential term, as shown in Figure 20. The thick green line represents estimation errors resulting from

fitting the three term polynomials (x, x2, x3) to the data set generated from inner loops. The thin blue line measures
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FIGURE 19. LSMC with basis selection (G)

estimation errors resulted fromfitting a single exponential function to the same data set, where the exponent andweight

are determined by the Hankel matrix approximation. Although the accuracy is not improved, there is a significant savings

on the use of basis functions.

From the previous examples, we observe that the Least-Squares Monte Carlo method in general performs well with a

small budget and less so with a large budget. If we fix the polynomial function, then estimation errors in the inner-loop

evaluation would no longer decline given a sufficient large budget. The Least-Squares Monte Carlo with basis selection

can in general avoid this problem, as more and more accurate approximations can be found with an increased budget.

In the following, we shall further compare the performance of the LSMC with a fixed polynomial function and the LSMC

with exponential basis functions.

In the fitting stage, we choose a fixed equidistant grid [40, 250] with 300 grid points, each of which corresponds to

a particular equity value. Then we simulate m = 1, 000, 000 inner loops for each node and use the estimated liability

values to fit function forms in (5.17) and (5.18). In test case I, there exists a closed-form formula for the function relation

between F
t

and L in (5.1). Hence we can actually plot the curve corresponding to this exact function relation. Similarly,

we can plot the curves derived from the polynomial function in (5.17) by LSMC and the mixture of exponential functions

in (5.18) by LSMC with basis selection.

Figure 21 shows that the estimation errors of LSMCwith basis selection (exponential approximation) are on the order

of 0.1, whereas those of LSMC (polynomial approximation) are on the order of 1 for equity values.

For Figure 22, we increase the number of inner loops for each scenario by 10-fold, i.e., m = 10, 000, 000, which

leads very accurate estimates of liability values. It is clear that the polynomial approximation no longer improves, as it

has reached the best possible outcome of the fixed function form. On the other hand, the basis selection method based
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FIGURE 20. Comparison of estimation errors for methods F(a) and G
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FIGURE 21. Estimation errors for polynomial versus exponential approximations withm = 1, 000, 000

on Hankel matrix approximation continues to improve with the more accurate inner-loop evaluation. The estimation

error is on the order of 0.01 for the latter in Figure 22, while that remains the same for the polynomial approximation.
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FIGURE 22. Estimation errors for polynomial versus exponential approximations withm = 10, 000, 000

6. STUDY FINDINGS ON CASE II

6.1. Overview of nested structure. In the second case, we shall perform an AG-43 stochastic scenario amount calcula-

tion for a line of business with a “clearly defined hedging strategy.” A detailed account of AG-43 standards can be found

in Gorski and Brown [3]. To make the report self-contained, we briefly outline the general procedure of the AG-43 re-

servingmethod before identifying the structure of the nested simulation. A full AG-43 calculation requires both standard

scenario amount (SSA) and stochastic scenario amount (CTE) calculations. Keep in mind that the purpose of this study to

test out various nested simulation techniques. We shall not consider the SSA calculation in this study, as it is a projection

based on a single scenario and does not involve any stochastic component. The stochastic scenario amount under the

AG-43 is calculated in three key steps. The projection begins with starting assets consisting of hedging portfolio, general

account assets and separate account assets.

(1) (Projection of scenarios) Use either AAA’s prepackaged scenarios or internal scenario generators to project cash

flows of a line of business (on both the liability and asset sides).

(2) (Pathwise accounting procedure) Calculate the accumulated surplus/deficiency at the end of each projection

period and determine the greatest present value of accumulated deficiencies (GPVAD) for each scenario. The

scenario amount is determined by the sum of starting assets and the GPVAD.

(3) (Application of risk measures) Collect scenario amounts for all scenarios and apply the 70% conditional tail

expectation risk measure to the sample of scenario amounts to determine the stochastic scenario amount.

Hedging programs are implemented and should be included in cash flows if the reporting company has a “clearly

defined hedging strategy” (CDHS). A precise definition of the CDHS can be found in Gorski and Brown [3]. The stochastic
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scenario amount is determined by

CTE (best efforts)⇥ E + CTE (excluding CDHS)⇥ (1� E).

The CTE (best efforts) is calculated from the above-mentioned steps where cash flows reflect the implementation of the

hedging program, whereas the CTE (excluding CDHS) is calculated from the same steps except that all existing assets are

assumed to be held to maturity and no further actions of hedging are taken. The “effectiveness factor”E is determined

based on the sophistication of its hedging projections and must be capped at 70%. As we shall see below, nested sim-

ulations appear only in the AG-43 procedure with the consideration of a hedging program, where most computational

burden rises from the calculation of the CTE (best efforts). Therefore, we shall focus on the efficiency of computation

with CTE (best efforts).

In this test case, we perform CTE calculations for variable annuity contracts with a guaranteed lifetime withdrawal

benefit (GLWB) rider. All policyholders in the cohort under consideration are 61 years old at the time of issue, and the

projection is performed at the end of four years after issue. All policyholders invest their purchase payments (premiums)

into a single fund, which will be linked to an equity index, such as the S&P 500. Each policyholder is provided with a

nominal account to keep track of their investments and equity returns as well as a guarantee base to be used as the

basis of calculating free withdrawal amounts. Starting from the valuation date, policyholders take withdrawals up to the

maximum allowable amount, 4% of its guarantee base per year. Withdrawals are taken out of policyholders’ nominal

accounts and do not reduce the guarantee base. Upon the death of a policyholder, his/her beneficiary will receive

the remaining balance of the policyholder’s nominal account. The GLWB rider also offers a combination of a roll-up

option, under which the guarantee base accrues interest, and step-up (ratchet) options, under which the guarantee base

would be always matched to the account value, should the latter exceeds the former. For simplicity, we shall consider

a flat deterministic yield curve for interest rate. A numerical example of the dynamics of a policyholder’s account and

guarantee base will be provided in Section 6.3. From an insurer’s standpoint, the investments from the cohort are

aggregated and considered as a single fund under stochastic scenarios. In the following discussion, we shall refer to the

aggregated investment as separate account, used in contrast with an insurer’s own general account.

The computation of the CTE (best efforts) will be carried out in a nested setting as follows.

(1) Outer loop (AG-43 reserving: CTE (best efforts) )

We use a geometric Brownian motion (independent lognormal model) to project equity returns over the

next 30 or 50 years. Under each scenario of equity returns, we determine cash flows from separate accounts

(withdrawal payments, interest on surplus, rider charges, management fees) and the cash flows from the hedg-

ing portfolio (buy and sell of index futures and bonds). The change in surplus is determined by the following

recursive relation over each period:

(6.1)

Change in surplus = Fee income+ Surrender charge� GLWB withdrawals� Expenses

+ Investment income on cash flows� Change in asset values

+ Investment income on surplus.

Asset values are determined by starting assets, which are assumed to be long-term bonds, and the value of a

hedging portfolio. An inner-loop calculation is invoked every time a dynamic hedging portfolio is rebalanced.
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In the example, we also consider dynamic lapse rates, which varywith the account value and guarantee base.

The stochastically determined lapse rates are included to capture policyholder behaviors where persistence is

high when the guarantee is much higher than account value.

(2) Inner loop (Hedging program)

For simplicity, the hedging program under consideration is based on a delta neutral strategy, which only

utilizes index futures and bonds. In the ensuing numerical example, we consider both biweekly and quarterly

hedging, with the former aimed at illustrating accuracy of hedging and the latter aimed at reducing compu-

tational efforts. The initial net value of the hedging portfolio is assumed to be zero. Keep in mind that the

risk-neutral value of the GLWB rider at any given point in time depends on four factors: account value, guaran-

tee base, time to maturity and (dynamic) survivorship. At each point in time, we project the future evolution of

account value, guarantee base conditional on the then-current account value and guarantee base. We record

two components of benefit payments to policyholders:

(a) Quarterly withdrawals: This amount is always assumed to be 4% of the then-current guarantee base.

(b) Return of account values upon death and return of cash values upon surrender.

The delta,�, of the GLWB rider, which determines how many units of index futures to hold in the hedging

portfolio, is calculated as follows: (1) Evaluate the risk-neutral value of the GLWB rider with the then-current

account value and the then-current guarantee base. (2) Shock the then-current account value by 1% and eval-

uate the risk-neutral value of the GLWB rider. (3) Determine the delta by the difference quotient of risk-neutral

values.

In the corresponding outer loop, the hedging portfolio always consists of � shares of index futures and a

certain number of bonds. Over each period, we shall short-sell or buy just enough one-month bonds in order

to finance� shares of the futures.

(3) Final result

In each outer-loop calculation, we observe the evolution of the present value of the accumulated deficiency

over the projection period of 50 years. Record the largest value over time for each outer loop, which is the

scenario amount. The CTE(best efforts) is determined by the average of 30% of the largest scenario amounts.

6.2. Conceptual comparison of Monte Carlo and PDE methods. Before we dive into the technical details of the GLWB

modeling, it is helpful to compare the general methodology of Monte Carlo simulations with the PDE method to be

introduced in this section.

In general, theMonte Carlomethod of risk-neutral and real-world valuation can be summarized in the following three

steps:

Step 1: Use either prepackaged scenarios or internally built stochasticmodels (called economic scenario generators) for

all risk factors driving the insurer’s asset and liability portfolio. These stochastic models have to be calibrated

to meet regulatory standards. Generate a variety of sample paths of the stochastic models over a projection

period.

Step 2: Under each scenario of account values, follow certain accounting standards to determine the accumulated

profit/deficiency for the entire projection length.
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Step 3: Repeat Step 2 for each scenario many times to generate an empirical distribution of accumulated surplus/de-

ficiency or other performance metrics. Apply order statistics to estimate certain risk metrics, such as quan-

tile/conditional tail expectation, which form the basis of reserve or capital requirements.

FIGURE 23. Two computational methods

The logical flow of the Monte Carlo method is shown in the left column of Figure 23. The current market practice

and regulatory standards such as the variable annuity reserving method (VA-CARVM) are largely developed with the

implementation of Monte Carlo methods at the heart of their designs. As the Monte Carlo method is the tool for im-

plementation by default, designs of accounting rules make it difficult to use other alternative deterministic methods.

Therefore, alternative deterministic methods are largely viewed as approximations or “technical tricks.”

Nevertheless, many deterministic methods can provide cost-efficient solutions, even under the framework designed

forMonte Carlo simulations. For example, discrete-time calculations used in financial reporting are often based on path-

wise -defined recursive relations. We can integrate this information with the underlying stochastic models to determine

a stochastic representation of an insurer’s accumulated profit/deficiency.

As shown in the right column of Figure 23, we could utilize this stochastic representation to find an alternative deter-

ministic method to compute the corresponding risk measures. This goal can be achieved through a technique, known as

the Feynmann-Kac formula in the physics and appliedmathematics literature. The resulting partial differential equations

(PDEs) can be solved by either analytical methods or numerical methods. This approach is outlined in the right column

of Figure 23. There are several advantages of the Feynmann-Kac approach over the Monte Carlo simulations approach:

(1) Stochastic representations of insurers’ liabilities provide intuitive interpretations of all contributing factors. For

example, in (6.8), one can easily identify the accumulated values of benefit outgo and fee income.

(2) Simulation methods can be very time consuming, due to the repeated sampling of stochastic scenarios. In

particular, various risk metrics used in practice measure only rare events, and hence their estimators can have



42 NESTED STOCHASTIC MODELING

large variances. Analytical or numerical solutions to PDEs are deterministic algorithms, which can bemuchmore

efficient.

(3) Monte Carlo simulation allows us only to find a solution at a single point of initial economic conditions, whereas

numerical PDE methods require marching through solutions at multiple time points and multiple grid points

of economic conditions. These intermediate solutions can be used to produce very efficient algorithms for

sensitivity testing of risk measures for insurers’ liabilities or sensitivity measures for risk-neutral values as such

as the Greeks.

Applications of numerical PDE methods have been studied in Feng [4]and Feng and Huang [5]. This study is an exten-

sion of their work to a general setting of the GLWB.

6.3. ModelingGLWB liabilities: practice versusmathematical formulation. The guaranteed lifetimewithdrawal benefit

(GLWB) guarantees a policyholder the ability to withdraw up to a maximum percentage of the guarantee base for the

whole life, regardless of the balance in his/her nominal account.

Policy Investment Account Annual Account Benefit

year return value before withdrawal value after base

withdrawal withdrawal

0 - - - 10,000.00 10,000.00

1 5% 10,500.00 500.00 10,000.00 10,000.00

2 10% 11,000.00 500.00 10,500.00 10,500.00

3 5% 11,025.00 525.00 10,500.00 10,500.00

4 10% 11,550.00 525.00 11,025.00 11,025.00

5 -20% 8,820.00 551.25 8,268.75 11,025.00

6 -10% 7,441.88 551.25 6,890.63 11,025.00

7 -10% 6,201.56 551.25 5,650.31 11,025.00

8 5% 5,932.83 551.25 5,381.58 11,025.00

9 10% 5,919.74 551.25 5,368.49 11,025.00

10 20% 6,442.18 551.25 5,890.93 11,025.00

11 -5% 5,596.39 551.25 5,045.14 11,025.00

12 -15% 4,288.37 551.25 3,737.12 11,025.00

13 -10% 3,363.40 551.25 2,812.15 11,025.00

14 10% 3,093.37 551.25 2,542.12 11,025.00

15 -15% 2,160.80 551.25 1,609.55 11,025.00

16 5% 1,690.03 551.25 1,138.78 11,025.00

17 -10% 1,024.90 551.25 473.65 11,025.00

18 -5% 449.97 551.25 0.00 11,025.00

19 - 0.00 551.25 0.00 11,025.00

20 - 0.00 551.25 0.00 11,025.00
TABLE 6. GLWB with a step-up option
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Let us consider a numerical example of the payoffs from a GLWB rider in Table 6. The second column gives a particular

sequence (a sample path) of yearly rates of return from the underlying equity index over the 20-year period. The return

rates are chosen for the convenience of illustration in Table 6. The example assumes an initial investment of $10, 000, and

the guarantee base is set to the same amount at the start. Assume that the policyholder elects the option to withdraw

5% of the guarantee base every year. At the end of each policy year, a rate of investment return is recorded and applied

to the policyholder’s account from the previous year. For example, the equity index increases by 5% in the first year,

and so does the account value. Then 5% of the guarantee base from the previous year, 5% ⇥ $10, 000 = $500, is

withdrawn from the account. The same recursive relation for each year goes on for the life time of the policyholder.

Note that the policyholder’s account receives a boost of financial return in the second year resulting in an account value

after withdrawal $10, 500, which is higher than the benefit base from the previous period $10, 000. Then the “step-up”

option takes effect, and the benefit base is automatically reset to the account value. In other words, the step-up option

allows the policyholder to lock in the maximum account value to date with the guarantee base. Note that when the

policyholder dies, the remaining balance of his/her account would be paid to a designated beneficiary. For example, if

the person dies at the end of the sixth year, then the beneficiary is entitled to $6890.63. If the person dies at the end of

the 20-th year, then there is no remaining balance to be paid. Note, however, the return of remaining balance is not a

benefit payment from the GLWB rider, but rather part of the policyholder’s own investment:

To formulate this problem, we introduce the following notation.

• F
t

, themarket value of a policyholder’s subaccount at t � 0. F0 is considered to be the initial purchase payment

(premium) invested at the start of the contract. For simplicity, we consider the single-premium variable annuity

where no additional purchase payment is made into the account.

• G
t

, the guarantee base at time t � 0. The guarantee base may also accrue compound interest at the so-called

roll-up rate.

• ⇢, the annualized roll-up rate for the guarantee base.

• Y
t

, the in-the-moneyness ratio. While there are many ways to define the moneyness, we use the ratio Y
t

=

F
t

/G
t

2 [0, 1].

• S
t

, the market value of the underlying equity index or fund at t. If more than one fund is involved, this is

considered to be the portfolio value of all funds.

• B
t

, the market value of risk-free bonds at time t.

• p, the percentage of the investment account invested in equities. For example, a “conservative” allocation

portfolio with 40% stocks and 60% bonds would have p = 40%.

• m, the annualized rate at which account-value-based fees are deducted from the separate account. As the

fees are used to compensate for costs of covering mortality risks and expenses, they are often referred as the

mortality and expenses (M&E) fees. Except for purchase-payments-based withdrawal charges, all contract fees

and expenses are typically calculated and accrued on daily basis.

• m
w

, the annualized rate of the guarantee-based-rider-charge, allocated to fund the GLWB rider.

• r, the continuously compounding annual risk-free interest rate.

• �, annualized volatility per annum of the underlying equity index.
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•
t

p
x

, the survival probability after t years of a policyholder of age x at issue. However, as we shall consider

dynamic policyholder behavior later, it would be more appropriate to view
t

p
x

as the proportion of in-force

policies in the initial population.

• µd

t

, the instantaneous death rate at time t.

• µl

t

, the instantaneous lapse rate at time t.

• h, the free partial withdrawal rate per annum.

• c
t

, the account-value-based surrender charge rate at time t.

• V
t

, the risk-neutral value of the GLWB.

One should keep in mind that all annualized rates, such as ⇢, r,m, are all nominal rates with compounding frequency

according to their uses. For example, if the fees are taken on a daily basis, then m is the corresponding annual nomi-

nal fee rate compounded daily. Regardless of different frequencies in examples, all rates should be equivalent to their

corresponding annual effective rates.

6.3.1. Outer loop: surplus calculation. Before we introduce the continuous-time model, let us consider how the model

is formulated with a typical discrete-time model. Note that in practice a discrete-time model can be implemented with

a spreadsheet or computer algorithm. To make a connection between the discrete-time model (recursive calculation)

and the continuous-time model, we shall divide each year into n periods. For example, if the projection is done on a

quarterly basis, then we are assuming n = 4.

Section 1: Fund values before decrements

Discrete-time model (recursive calculation)

Under the GLWB, the amount of systematic withdrawals per period is typically determined by a pre-specified per-

centage of a guarantee base. It is typical that the starting value of the guarantee base matches with the initial premium

G0 = F0, and the evolution of the guarantee base over each period is based on either of the following models.

(1) Roll-up option

Under the roll-up option, the guarantee base accrues interest throughout the term of the GLWB rider. Then

the guarantee base at the end of k + 1 periods is determined by a recursive relation from that of the k�th

period:

G(k+1)/n = G
k/n

⇣

1 +
⇢

n

⌘

, for k = 0, 1, · · · .

Note that this recursive relation implies that

G
k/n = G0

⇣

1 +
⇢

n

⌘

k

.

(2) Step-up option

It is also known as the ratchet option. The guarantee base can increase with the policyholder’s investment

account at the end of each period. However, the guarantee base would never decrease, even if the investment

account loses value:

G(k+1)/n = max
�

G
k/n, F(k+1)/n

 

, for k = 0, 1, · · · .

Observe that this recursive relation leads to the representation

G
k/n = max

j=0,1,··· ,k

�

F
j/n

 

.
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(3) A combination

This option offers guaranteed compound growth on the guarantee base and also allows the guarantee base

to “lock in” gains from the policyholder’s designated investment:

G(k+1)/n = max
n

G
k/n

⇣

1 +
⇢

n

⌘

, F(k+1)/n

o

, for k = 0, 1, · · · .

Observe that this option also has a representation

G
k/n =

⇣

1 +
⇢

n

⌘

k

max
j=0,1,··· ,k

⇢

⇣

1 +
⇢

n

⌘�j

F
j/n

�

,(6.2)

which can be proved by mathematical induction. For example, in the induction step,

G(k+1)/n = max
⇢

⇣

1 +
⇢

n

⌘

k+1
max

j=0,1,··· ,k

⇢

⇣

1 +
⇢

n

⌘�j

F
j/n

�

, F(k+1)/n

�

=
⇣

1 +
⇢

n

⌘

k+1
max

⇢

max
j=0,1,··· ,k

⇢

⇣

1 +
⇢

n

⌘�j

F
j/n

�

,
⇣

1 +
⇢

n

⌘�(k+1)
F(k+1)/n

�

,

which agrees with (6.2) with k replaced with k + 1.

There are also other combinations in the market. For example, a common practice is to offer the greater of

a step-up option and a roll-up option:

G
k/n = max

⇢

G0

⇣

1 +
⇢

n

⌘

k

, max
j=0,1,··· ,k

{F
j/n}

�

.

Although we do not use this combination in the following numerical example, it also be accommodated by all

techniques discussed in this report.

Keep in mind, however, that the guarantee base is a nominal account that serves only as a base for determining with-

drawal amounts. The actual withdrawals, which are typically a fixed percentage, denoted by h, of the then-current

guarantee base, are taken out of the policyholder’s own investment account (not the guarantee base). There are two

common types of fees that appear in various versions of the product:

(1) Account-value-based fees

Traditional product designs utilize this type of fee structure, under which M&E fees are a pre-specified fixed

percentage of the policyholder’s account value in each period. We shall denote the annualized rate of account-

value-based fees bym.

(2) Guarantee-based fees

It has become increasingly common that rider charges, allocated to fund the GLWB, are taken as a pre-

specified fixed percentage of the guarantee base in each period. The rationale is to provide a better alignment

of fee incomes and (guarantee-based) withdrawal benefits. We shall denote the annualized rate of guarantee

based fees bym
w

. (Note: in this case, the rider charge ratem
w

is not part of the M&E fee ratem.)

In a recursive calculation, we would observe that the incremental change per period for the account value is given by

(6.3)

F(k+1)/n � F
k/n = p

S(k+1)/n � S
k/n

S
k/n

F
k/n + (1� p)

B(k+1)/n �B
k/n

B
k/n

F
k/n � m

w

+ h

n
G

k/n � m

n
F
k/n.

Immediately after the policyholder’s account hits zero, the recursive relation is no longer valid as there is no money left

to invest. Therefore, we would write for k = 0, 1, · · ·

F(k+1)/n = max
⇢

p
S(k+1)/n

S
k/n

+ (1� p)
B(k+1)/n

B
k/n

�

F
k/n � m

w

+ h

n
G

k/n � m

n
F
k/n, 0

�

.
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Continuous-time model

Although the above formulation works for all model assumptions of equity indices, we shall consider a specific model

for the equity index to facilitate continued discussion of continuous-time models. For simplicity, we assume that the

equity index is driven by a geometric Brownian motion, also known as the independent lognormal model in the industry.

Under the risk-neutral measure,

dS
t

= rS
t

dt+ �S
t

dB
t

.

The money market account accrues interest,B(t) = B(0)ert, or equivalently

dB
t

= rB
t

dt.

Keep in mind, however, that the rest of the analysis can be extended to more general models.

If we write the time increment�t = 1/n and t = k/n in (6.3), then

F
t+�t

� F
t

= p
S
t+�t

� S
t

S
t

F
t

+ (1� p)
B

t+�t

�B
t

B
t

F
t

� (m
w

+ h)G
t

�t�mF
t

�t.

When we shrink the time period�t to zero, the continuous-time version of the recursive relation in (6.3) becomes the

stochastic differential equation

dF
t

= p
F
t

S
t

dS
t

+ (1� p)
F
t

B
t

dB
t

� (m
w

+ h)G
t

dt�mF
t

dt

= [(r �m)F
t

� (m
w

+ h)G
t

]dt+ p�F
t

dB
t

.(6.4)

As the projection period shrinks to zero, we note that the growth of guarantee base in (6.2) is turning into a continuous-

time stochastic process

G
t

= e⇢t sup
0st

�

e�⇢tF
t

 

.

One can prove that the stochastic process can be represented as a solution to the stochastic differential equation

dG
t

= G
t

dL
t

+ ⇢G
t

dt,

where L
t

increases only when the in-the-moneyness ratio Y
t

= 1. Note that ⇢ in this stochastic differential equation

is the corresponding continously compounding (nominal) rate. Without getting into too much technical detail, we can

interpret the stochastic equation as follows. The instantaneous change of the guarantee base consists of two compo-

nents: (1) the instantaneous rise of the guarantee base to match the account value if the in-the-moneyness tends to

exceed one; and (2) the instantaneous growth due to the roll-up interest rate.

Using Itô’s formula, one can also show that the in-the-moneyness ratio Y
t

= F
t

/G
t

also satisfies the stochastic

differential equation

dY
t

= [(r �m� ⇢)Y
t

� (m
w

+ h)]dt+ p�Y
t

dB
t

� dL
t

.

The interpretation of the dynamics of in-the-moneyness ratio process is also clear: (1) The dt term represents the in-

stantaneous change in the in-the-moneyness ratio due to changes in account value and changes in guarantee base. Note

that the account F
t

grows at the rate r � m per dollar per time unit, and the guarantee base G
t

grows at the roll-up

rate ⇢ per dollar per time unit. The net effect on the in-the-moneyness ratio Y
t

= F
t

/G
t

is the growth of r � m � ⇢

per dollar per time unit. In addition, as shown in (6.4), fees and withdrawals are taken out of the account F
t

by the rate

(m
w

+ h)G
t

per time unit at time t. Therefore, the in-the-money ratio decreases by the fixed rate m
w

+ h per time

unit at time t. (2) The dL
t

term is the outcome of the continuous-time “step-up” feature by which the guarantee base is
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at least as big as the account value, and hence in-the-moneyness ratio cannot exceed upper limit 1. The process L
t

acts

as a regulator to take away the extra amount so that Y
t

stays at 1 whenever it has the tendency to move above 1.

Section 2: Fund values after decrements

Discrete-time model (recursive calculation)

As we consider only the withdrawals to inforce policies, there are two sources of decrements to be considered:

•
t

qd
x

, the probability that a policyholder at age x dies within t periods.

•
s

ql
t

, the probability that a policy still in force at time t lapses within s periods.

•
s

qb
t

, the probability that a policy still in force at time t lapses within s periods without the consideration of

dynamic policyholder behavior

•
t

p
x

, the probability that the policy from a policyholder at age x is still in force after t periods.

The values of
t

qd
x

are typically provided in a life table for integer values x and t. We may use fractional year assumptions

to infer their values at non-integer values.

We consider
t

qb to be base lapse rates, which are estimates of lapse rates in the absence of dynamic policyholder

behavior. As the in-the-moneyness ratio increases and is close to 1, we expect policyholders to feel confident of their

own investment andmore likely to surrender their contracts. As the in-the-moneyness ratio decreases, policyholders are

more likely to rely on guarantee benefits from the GLWB rider and hold on to their policies. Therefore, the dynamic lapse

rate at time t is the product of the base lapse rate and the dynamic factor, which is a function f of the in-the-moneyness

ratio Y
t

,

�t

ql
t

= �t

qb
t

f(Y
t

).(6.5)

Note that survival probabilities are usually calculated from the recursive relation

(k+1)/npx =
k/npx(1� 1/nq

d

x+k/n)(1� 1/nq
l

k/n), k = 1, 2, · · · .(6.6)

Readers should be reminded that the survivorship model {
t

p
x

, t � 0} is path dependent on equity returns through the

in-the-moneyness ratio process {Y
t

, t � 0}.

Continuous-time model

In the continuous-time model, we consider the instantaneous rate of mortality

µd

x+t

=
@(

t

qd
x

)/@t

t

p
x

.

We can infer the instantaneous death rates {µd

s

, s � 0} from a life table with fractional age assumptions. For example,

the constant force of mortality assumption implies that

µd

s

= � ln(1� qd
x

), for all integer x and 0  s  1.

In other words, for integer x and t � 0,

t

qd
x

= 1� e�
R

t

0 µ

d

x+s

ds.
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Similarly, we can define the instantaneous lapse rates {µl

s

, s � 0} and the instantaneous base lapse rates {µb

s

, s � 0}:

µl

t

=
@(

s

ql
t

)
@s

�

�

�

�

s=0

, µb

t

=
@(

s

qb
t

)
@s

�

�

�

�

s=0

.

Observe that (6.5) can be rewritten as

�t

ql
t

�t
=

�t

qb
t

�t
f(Y

t

),

which implies by taking the limit�t ! 0 that

µl

t

= µb

t

f(Y
t

).

To see the analogue of (6.6) in the continuous time model, we set t = x + k/n and �t = 1/n in (6.6) and then let

�t ! 0. It follows that

d
t

p
x

= �
t

p
x

(µl

t

+ µd

x+t

)dt.

Section 3: Income statement

The last section discussed computing the accumulated surplus/deficiency under each projection of account values.

Let us use the following notation to capture the cash flows in each period:

• R
t

, the accumulated surplus at time t

• c
t

, the surrender charge at time t

• E
t

, the expense per time unit at time t, which may include percentage of AV unit maintenance/overhead ex-

pense and per policy unit maintenance

Discrete time model (recursive calculation)

Before consideration of hedging, the incremental changes in surplus are determined by the recursive relation (6.1),

which can be translated as follows:

R
t+�t

�R
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= (1 + r�t)
h

t

p
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(mF
t
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G
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)�tI(F
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> 0)(6.7)
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i

+ rR
t

�t,

where I is the indicator function for which I(A) = 1 ifA is true and I(A) = 0 otherwise.

Continuous-time model

Taking�t to zero, we obtain immediately a pathwise-defined ordinary differential equation,

dR
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dt,

together with the initial conditionR0 = 0, which yields the solution
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6.3.2. Inner loop: Risk-neutral valuation of GLWB liability. Let us now consider the risk-neutral value of a GLWB rider.

Recall that the GLWB guarantees systematic withdrawals until the policyholder’s death regardless of whether or not

his/her investment account is depleted. There are four components of cash flows from the insurer’s point of view:

(1) Withdrawal benefits

Observe that the GLWB rider incurs cost when the policyholder continues to withdraw after the account is

depleted. Hence, the present value of all GLWB benefit payments is given by

1
X

k=n⌧

e�r(k+1)/n
k/npx

h

n
G

k/n,

where the first time when the account is exhausted, called the ruin time, is given by

⌧ := min
⇢

k

n
> 0 : F

k/n = 0

�

.

In the discrete-time case, there is the possibility that the last withdrawal payment before the account is depleted

comes partly from the the policyholder’s account and partly from the insurer’s general account. We ignore

the small payment from the insurer here, because this payment appears in the continuous-time model to be

introduced next.

(2) Fee incomes

On the revenue side, the GLWB is funded by the collection of rider charges, which include account-value-

based fees and guarantee-based fees. The present value of total rider charges is given by

n⌧

X

k=0

e�r(k+1)/n
k/npx

⇣

F
k/n

m

n
+G

k/n
m

w

n

⌘

.

(3) Surrender charges

If a policyholder voluntarily surrenders a contract, then the remaining balance of the investment account is

subject to a surrender charge, which is determined by the surrender charge rate:

n⌧

X

k=0

e�r(k+1)/n
k/npx 1/nq

l

x+k/n c(k+1)/nF(k+1)/n.

(4) Expenses

The present value of all expenses is given by

n⌧

X

k=0

e�r(k+1)/n
k/npx

E(k+1)/n

n
.

Note, however, although notwritten explicitly, the survival rate
k/npx in all four components is path dependent as shown

in (6.6).

Recall the definition of a Riemann integral from calculus. If we divide each time unit into n subintervals and set the

points x0 = 0, x1 = 1/n, x2 = 2/n, · · · , then the integral is defined to be
Z 1

0

f(t)dt = lim
1/n!0

1
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.

It follows immediately that as the projection period shrinks to zero, i.e., n ! 1, the withdrawal benefits can be written

as

lim
n!1
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The fee incomes can be written as

lim
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Similarly, the surrender charges can be written as
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and the expenses can be written as

lim
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Total product liability hedging

If we consider all cash flows from an insurer’s perspective, then the risk-neutral value of the insurer’s total product

liability in the continuous time model is given by

V0 = E
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In this formulation, we included only the cash flows in and out of the insurer’s general account (not a separate account).

This is not to be confused with the entire product from a policyholder’s perspective, which could also be calculated using

a very similar approach.

From now on, we shall ignore the expenses for simplicity. Note, however, that the expenses term can be easily

incorporated in the following calculations. It is known from no-arbitrage option pricing theory that the risk-neutral value

of total liability to the insurer at time t is given by the conditional expectation of future cash flows,

V
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where {F
t

, t � 0} is the natural filtration of the Brownian motion driving the dynamics of the equity index process.

We shall refer to the risk-neutral value of net total product liability as total liability for short. It follows from the strong

Markov property of the underlying process (F
t

, G
t

,
t

p
x

) that there exists a smooth function v(t, x, y, z) that

V
t

= v(t, F
t

, G
t

,
t

p
x

).(6.9)

GLWB rider hedging

In practice, we may not consider cash flows that are not directly generated from the GLWB rider to be part of a

hedging program, such as M&E fees or expenses and surrender charges. Similar to the earlier model of total liability

hedging, the risk-neutral value of the GLWB net liability at time t is given by the conditional expectation
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Note this formula is actually a special case of (6.8) withm = 0 and c
t

= 0 for all t.
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For brevity, we shall consider only the more general model of total liabilities in the following derivations. However,

the PDE method can be easily adapted for the GLWB rider hedging.

6.3.3. Inner loop: Delta-hedging program. We now discuss how to construct a hedging portfolio in order to hedge

against the GLWB liability. Tomake a clear presentation, we consider the hedging program in the continuous-timemodel.

Since the hedging is done in theory at every instant of time and the underlying equity process has constant volatility and

a constant risk-free interest rate, it is sufficient to conduct delta hedging alone to eliminate equity risk. Recall that delta

measures the sensitivity of the GLWB liability to changes in equity index values assuming all other variables remain the

same. We have shown that the GLWB liability is given by V
t

= v(t, F
t

, G
t

,
t

p
x

), and hence the delta should be defined

as4

�
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x

(t, F
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, G
t

,
t

p
x

).(6.10)

In practice, the derivative is often approximated by the difference quotient
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��F,G
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)
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.(6.11)

For example, an approximation of the delta can be obtained from the percentage change of the GLWB liability when the

current account value F
t

is shocked by 1%. Since we cannot trade policyholders’ accounts, we can buy and sell equity

index futures instead. In practice, hedging (rebalancing) is performed at discrete-time intervals generally ranging from

daily to quarterly, in accordance with market circumstances and company philosophy.

Dynamics of mixed surplus and hedging portfolio

The idea is to keep track of deltas needed to create a hedging portfolio, and the cost of changes in delta is entirely

financed by the accumulated surplus. In other words, the insurer’s entire portfolio consists of two components at any

point of time: the hedging instruments on the asset side and the accumulation of surplus from the liability side. We

denote the value of the entire portfolio by H
t

and the value of accumulated surplus/deficiency by R
t

. For a better

presentation of the results, we write h
t

= (F
t

/S
t

)v
x

(t, F
t

, G
t

,
t

p
x

) for the number of units of equity index futures at

time t. Then it is clear that

H
t

= h
t

S
t

+R
t

.

Although this formulation is not usually stated explicitly in practice, we will show next that it is indeed consistent with

the recursive relation (6.1), which is used in practitioners’ discrete-time models.

First, let us observe how the hedging instruments are financed with the surplus:

h
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S
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,(6.12)

where CF stands for cash flows (fee incomes, surrender charges and benefits):

CF(�t) =
t

p
x

(mF
t

+m
w

G
t

)�tI(F
t

> 0) +
t

p
x �t

ql
x+t

c
t

F
t

I(F
t

> 0)

�
t

p
x

hG
t

�tI(F
t

 0).

4In academic literature, �
t

is often interpreted as the number of shares/units invested in the underlying asset. Therefore, it is common to see a

definition such as
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However, as pointed out by a POG member, here we use a definition more commonly used by practitioners.



52 NESTED STOCHASTIC MODELING

The left-hand side of (6.12) is the value of the surplus and hedging assets before rebalancing, and the right-hand side of

(6.12) is the value of the portfolio immediately after rebalancing.

We shall use the notation�X
t

= X
t+�t

�X
t

forX = R, h. Observe that (6.12) can be rewritten as

�R
t��t

= CF(�t)��h
t��S

t

+ rR
t��t

�t,

which is precisely the recursive relation (6.1) where ��h
t��S

t

represents the additional cost of buying/selling extra

deltas (or changes in asset values). In contrast with the recursive relation in (6.7), the change in surplus now includes

the changes due to the hedging portfolio.

We have shown in Appendix (Section A.5) that the mixed portfolio provides a perfect hedge of the GLWB portfolio

H
t

= V
t

� ertV0.(6.13)

In other words, the value of the mixed portfolio at any point of time differs from the GLWB value only by a risk-free asset

that is worth V0 at time 0, regardless of the fluctuation of the GLWB liability due to changes in equity index.

6.4. Computational techniques. While all techniques described in this report can be adapted for the second case, we

intend to focus on the implementation of a few representative techniques:

A. Closed-form solution/approximation

B. Crude Monte Carlo

E. Preprocessed inner loops

F. Least-Squares Monte Carlo

H. Numerical partial differential equation (PDE) method

6.4.1. Numerical PDE method. As shown in Appendix Section A.4, the function v can be determined by

v(t, x, y, z) = zyu(t, x/y),(6.14)

where the function u satisfies a relatively simple PDE
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where u
ss

, u
s

, u
t

are second derivative with respect to s and first derivatives with respect to s, t respectively. The PDE

is subject to the boundary conditions

u(t, 1) = u
s

(t, 1),(6.16a)

u(t, 0) = ha
x+t

,(6.16b)

lim
t!1

u(t, s) = 0,(6.16c)

where the annuity symbol refers to

a
x+t
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e�(r�⇢)s
s

p
x+t

ds.

The numerical algorithm for solving this PDE is given in Appendix B.

It follows from the reduction of dimensions in (6.14) that v
x

(t, x, y, z) = zu
s

(t, x/y). Hence, we obtain an alterna-

tive approach to approximate the delta:
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6.4.2. Closed-form solution. Many people dismiss this approach as impractical for complex products in general, such

as variable annuity guaranteed benefits. Analytical solutions are in fact available in more cases than one might think.

There have been many recent developments in academia on development analytical methods and approximations on

risk-neutral valuations and risk measures of various guaranteed benefits. See, for example, PDE methods for GMAB,

GMDB and GMWB in Feng and Volkmer [7], Milevsky and Salisbury [14], Ulm [16], etc. However, they do often rely on

advanced computer techniques, which are not usually user friendly.

Here we provide an example of risk-neutral valuation of the GLWB liability and its delta calculation. The closed-form

solutions presented here were based on simplifying assumptions of constant force of mortality and constant lapse rate.

Techniques are available to allow for approximations under more realistic assumptions. In Section 6.5, we intend only

to use closed-form solutions in this special case as benchmarks for testing Monte Carlo and numerical PDE methods.

It is clear from (6.9) and (6.10) that we need to find efficient methods to evaluate both v and v
x

, which by reduction

of dimensions in turn relies on the functions u and u
s

. The derivation of analytical solutions to both u and u
s

is provided

in Appendix Section A.6.

6.4.3. Least-Squares Monte Carlo. We intend to estimate the functional relationship between the deltas of GLWB lia-

bility and four determining factors: time t, account value F
t

, guarantee base G
t

and survivorship
t

p
x

. Following the

discussion in Section 5.6, we approximate the functional relationship by a linear combination of basis functions.
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where �
l

’s are basis functions: Ideally basis functions should incorporate features of the time-space surface v
x

which

determines the deltas. However, without any insight about the curve, we follow the standard practice as shown in

Koursaris[11] to choose lower term polynomials.

The first and most naive approach of least-squares estimates is to regress the four variables (t, F
t

, G
t

,
t

p
x

) against

the response variable�
t

. Keep in mind, however, that we do not know exact values of v
x

, which should be estimated

from inner-loop calculations according to the formula (6.11). The second approach, which requires understanding the

structural property of the four-variable function, is to make use of the fact that v is determined by a function u of only

two variables in (6.14). Therefore, deltas can be determined by the function u in the following way:
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Then we can approximate the functional relationship

u
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X
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l
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where �⇤
l

’s are basis functions and �⇤
l

’s are to be determined by the least-squares method. Again exact values of u
s

are

not known in advance but can be estimated from the formula (6.17). Note that we have already shown the stochastic

representation of u(t, s) in Appendix Section A.7, which can be used for inner-loop simulations.

6.4.4. Preprocessed inner loops. Since there are four determining factors in this model, we have to construct a four-

dimensional grid for preprocessed scenarios. For each point on the grid, we run an inner-loop calculation to determine

risk-neutral valuation of GLWB liability and use difference quotient to approximate delta. The interpolation formula is

the four-dimensional extension of the two-dimensional formula (5.10).
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6.5. Numerical comparison of Monte Carlo and PDEmethods: inner loop. We shall carry out the comparative analysis

in two steps: (1) the accuracy of Monte Carlo simulations and other methods are tested on inner loops (delta calcu-

lation), which gives us an understanding of the compromise on accuracy from each method. (2) The efficiency (time

consumption) of competing methods is then tested on a full scale with the Test Case II.

All computations are done on an iMac with 2.7 GHz Intel Core i5 and 8 GB 1600 MHz DDR3. Readers are reminded

that all results on time consumption should be interpreted in relative terms, as insurance companies can implement

them on much faster computing facilities and on much larger scales.

6.5.1. Accuracy test. We first consider the special case with constant force of mortality and lapse rate, under which

closed-form solutions are developed in Appendix A.6. The valuation basis is given as follows:5

• Constant force of mortality � = µd

x+t

= 0.2

• Constant lapse rate µl

t

= 0

• Risk-free rate of interest per annum r = 0.0577

• Free partial withdrawal rate per annum h = 0.04

• GLWB guarantee based rider charge per annumm
w

= 0.01

• Account-value-based M&E fee rate per annumm = (0.0036 + 0.0014)⇥ 4

• Roll-up rate on guarantee base per annum ⇢ = 0.05

Total liability Relative error Time (secs)

Monte Carlo -0.111643 0.228% 15.380

(N=100,1/n=0.01) (0.000628)

PDE -0.111380 0.008% 0.946

(�s = 0.01)

PDE -0.111389 0.00008% 53.433

(�s = 0.001)

Analytical solution -0.111389 - 0.075
TABLE 7. Risk-neutral valuation of the insurer’s total liability (� = 0.05)

For Monte Carlo simulations, we estimate the GLWB liability by its sample mean with a sample of size 20,
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where each V
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is a realization of the discrete time version of (6.8):
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5The interest and fee rates stated here are all nominal convertible quarterly and per annum. When applyingMonte Carlomethods, we always use their

equivalent nominal rates with conversion period matched to time step. Similarly, when applying PDE methods, we always use their equivalent effective

annual rates.
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Total liability Relative error Time (secs)

Monte Carlo -0.093583 2.51% 17.481

(N=100,1/n=0.01) (0.004248)

Monte Carlo -0.092076 0.86% 173.936

(N=1,000,1/n=0.01) (0.001474)

Monte Carlo -0.091403 0.12% 1782.660

(N=1000,1/n=0.001) (0.001644)

PDE -0.091271 0.02% 1.487

(�s = 0.01)

PDE -0.091289 0.0002% 53.563

(�s = 0.001)

Analytical solution -0.091290 - 0.075
TABLE 8. Risk-neutral valuation of total liability (� = 0.3)

The superscript (j) indicates the j-th repetition of simulations. This formula is presented in a general form and will

be used for numerical examples in the Test Case II. Note, however, in this simplified example, the lapsation is virtually

ignored. The closed-form solution can be modified to include a positive constant lapse rate.

In Table 7, we test three methods for risk-neutral valuation, namely, Monte Carlo, numerical PDE and analytical so-

lution, under a low-volatility assumption that � = 0.05. For the Monte Carlo method, sample standard deviations are

reported in brackets below their corresponding point estimates. It is clear from Table 7 that both Monte Carlo and PDE

methods are quite accurate compared with analytical solutions. Keep in mind that the analytical solution and numerical

PDE methods are much more complex than Monte Carlo. In such a case, it does not appear to be worthwhile the extra

efforts to apply complex methods. If we move to a high-volatility assumption that � = 0.3, then Table 8 shows that

results of Monte Carlo simulations converge rather slowly. We can reduce the discrepancy between results from the

PDE method and the Monte Carlo method by taking large sample size N = 1, 000 and small time step 1/n = 0.001.

If one desires high accuracy, then it would take tremendous computation efforts to reduce sampling errors from Monte

Carlo methods. This shows that it takes less computational efforts for the PDE method to achieve the convergence of

results than it does for the Monte Carlo method. Note that these projections using very small time steps are shown for

illustrative purposes. In practice, a more common time step is 1/n = 0.08 (monthly) or greater. On the other hand,

in practice it can take many more scenarios for results to converge and a much higher runtime overall. Readers should

consider their own circumstances when assessing the level of run time improvement that they can expect from the PDE

or other techniques.

In a second numerical example, we test the accuracy of results on deltas. Assume that t = 0, F0 = 0.8, G0 =

1, 0px = 1 andF0/S0 = 1. Here we present the calculation of�0 = v
x

(0, 0.8, 1, 1) = u
s

(0, 0.8), which are estimated

from (6.11) and (6.17) respectively.

In Table 9, we compare the accuracy of results from all three methods based on the approximation formula in (6.11).

The sample sizeN and time step 1/n are reported for each Monte Carlo calculation. Since the volatility is relatively low,

Monte Carlo simulation achieves rather high accuracy. Note, however, the true delta based on the analytical solution
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v
x

(0, 0.8, 1, 1) RE Total liability RE Total liability RE Time

(1% shock) (secs)

Monte Carlo -0.127337 0.22% -0.088196 0.32% -0.089215 0.32% 17.882

(100,0.02) (0.000078) (0.000078)

Monte Carlo -0.127079 0.01% -0.087851 0.07% -0.088867 0.07% 33.874

(100,0.01) (0.000071) (0.000072)

PDE -0.126957 0.08% -0.087902 0.01% -0.088918 0.01% 0.513

(�s = 0.01)

PDE -0.127064 0.00% -0.087912 0.00% -0.088928 0.00% 54.125

(�s = 0.001)

Analytical -0.127064 - -0.087912 - -0.088928 - 0.583
TABLE 9. Approximation of v

x

(0, 0.8, 1, 1) based on formula (6.11) (� = 0.05)

�s = 0.01 u
s

(0, 0.8) RE u(0, 0.79) RE u(0, 0.81) RE Time (secs)

Monte Carlo -0.127491 0.08% -0.086477 0.18% -0.089026 0.17% 41.545

(100,0.01) (0.000831) (0.000835)

PDE -0.127619 0.02% -0.086619 0.01% -0.089172 0.01% 0.514

Analytical -0.127588 - -0.086629 - -0.089181 - 0.364

�s = 0.001 u
s

(0, 0.8) RE u(0, 0.799) RE u(0, 0.801) RE Time (secs)

Monte Carlo -0.127781 0.15% -0.088033 0.28% -0.088288 0.28% 41.545

(100,0.01) (0.000839) (0.000841)

PDE -0.127588 0.00% -0.087784 0.00% -0.088039 0.00% 53.881

Analytical -0.127588 - -0.087784 - -0.088039 - 0.364
TABLE 10. Accuracy of u

s

(0, 0.8) based on formula (6.17) (� = 0.05)

(A.10) is given in Table 10. If one desires very high accuracy, then the PDE method provides viable solutions as shown in

Table 10. We can observe very similar results in Tables 11 and 12 when � = 0.3.

We should also point out that delta estimates from the formula (6.17) in Tables 11 and 12 agree with exact values

from the analytical formula for u
s

(0, 0.8) for at least five decimal places. The deviations of corresponding results in

Tables 9 and 10 from the exact results is due to the approximation of the right-hand derivative in (6.11).

For the remainder of the report, we shall always use the approximation formula (6.17) to determine �
t

with PDE

methods (�s = 0.001) and treat the results as the “best estimates” of true values for both GLWB liabilities and deltas.

6.5.2. Efficiency test. As we outlined earlier, there are two steps of computations to determine the conditional tail ex-

pectation risk measure of the greatest present value of the accumulated deficiency:

(1) Outer loops: Generate the cash flows including fee incomes, surrender charges, expenses, GLWB benefits and

change in hedging instruments under each scenario of equity returns.

(2) Inner loops: Every step of rebalancing with the hedging instruments requires the computation of deltas. Deltas

are approximated by difference quotients, which rely on risk-neutral valuation of the GLWB liability.
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v
x

(0, 0.8, 1, 1) RE Total liability RE Total liability RE Time

(1% shock) (secs)

Monte Carlo -0.120425 2.96% -0.071811 1.85% -0.072774 1.86% 16.436

(100,0.02) (0.004223) (0.004244)

Monte Carlo -0.117323 0.31% -0.068743 2.50% -0.069681 2.46% 33.323

(100,0.01) (0.003730) (0.003746)

PDE -0.116813 0.13% -0.070490 0.023% -0.071424 0.025% 1.052

(�s = 0.01)

PDE -0.116961 0.00% -0.070506 0.00% -0.071442 0.00% 58.112

(�s = 0.001)

Analytical -0.116961 - -0.070506 - -0.071442 - 0.431
TABLE 11. Approximation of v

x

(0, 0.8, 1, 1) based on formula (6.11) (� = 0.3)

�s = 0.01 u
s

(0, 0.8) RE u(0, 0.79) RE u(0, 0.81) RE Time (secs)

Monte Carlo -0.119013 1.24% -0.070797 2.13% -0.073177 2.10% 40.868

(100,0.01) (0.005168) (0.005227)

PDE -0.117563 0.0025 % -0.069307 0.023% -0.071658 0.023% 0.514

Analytical -0.117558 - -0.0693232 - -0.071675 - 0.431

�s = 0.001 u
s

(0, 0.8) RE u(0, 0.799) RE u(0, 0.801) RE Time

Monte Carlo -0.118381 0.70% -0.072321 2.75% -0.072565 2.75% 42.164

(100,0.01) (0.005178) (0.005289)

PDE -0.117558 0.00% -0.070389 0.00% -0.070624 0.00% 53.882

Analytical -0.117558 - -0.070389 - -0.070624 - 0.431
TABLE 12. Accuracy of u

s

(0, 0.8) based on formula (6.17) (� = 0.3)

In this numerical example, model parameters for the AG-43 CTE calculation and risk-neutral valuation of the GLWB

liability are provided in Table 13. The majority of product features and model parameters in this example are taken

from an actual example illustrated through a sample spreadsheet donated by an actuarial software vendor for this SOA

research study. Keep in mind that instantaneous rates (interest, withdrawal, roll-up, fee etc.) are used in the continuous-

timemodel for PDEs, while theMonte Carlo methods are based on the discrete-timemodel, which utilizes periodic rates

(annual, quarterly, monthly, daily etc.). For consistency, we shall always use equivalent rates for different frequencies.

For example, the roll-up rate is assumed to be 5% effective per annum. If we run projections on amonthly basis, n = 12,

then ⇢ in discrete-time formulas such as (6.2) should be interpreted as the nominal rate compounded monthly ⇢ =

⇢(n) = n[(1 + 5%)1/n � 1] = 4.889%. The corresponding instantaneous rate for the PDE method would be ⇢ =

ln(1 + 5%) = 4.879%. The acquisition cost is not actually used in this calculation, because the valuation date is four

years after issue and the acquisition cost has already occurred prior to the start of projection. The survivorship is assumed

to follow Table 14 with a fractional age assumption (constant force of mortality). We also include dynamic policyholder
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Parameters Assumptions

(equivalent annual rate)

Age at issue 61

Age on valuation date 65

Initial account value on valuation date 5,850,000

GLWB ratchet Yes

GLWB roll-up 5%

Annual free partial withdrawal percentage 4%

GLWB initial in-the-moneyness ratio as of 100%

valuation date (guarantee base/ account value)

Management fees 0.56%

Kick back rate (percentage of 40%

management fees distributed to insurer)

GLWB base charge 1%

Mortality and expense charge 1.40%

Number of policies at the start of projection 117.18

Acquisition cost (percentage of initial premium) 3%

Per policy unit maintenance 21.25

overhead expense

Percentage of AV unit maintenance 0.064%

overhead expense

Inflation rate applied to per policy expense 3%

Investment income earned rate on cash flows 5.76%

Investment income earned rate 5.76%

on accumulated surplus

Discount rate on accumulated surplus 3.76%

or guaranteed benefit cash flows

TABLE 13. Assumptions on GLWB product features

behavior in this model, where base lapse rates are stated in Table 15 and dynamic lapse rates are determined by

dynamic lapse rate = base lapse rate⇥ dynamic factor

and the dynamic factor function6

dynamic factor = (3� 2x)x2, x =
then-current account value
then-current guarantee base

.

6This function is suggested by one of the POG members, Mark Evans. Note, however, that none of the following analysis depends on this particular

function. One may replace this function by some other function that reflects a company’s own experience. It has also been suggested that the in-the-

moneyness ratio be defined as x = max
n

then-current account value
present value of future withdrawals , 1

o

. In such a case, the dynamic factor becomes a function of account

value only, and the PDE method in this report can be adapted to address this type of dynamic lapse rates as well.
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x q
x

x q
x

x q
x

x q
x

x q
x

65 0.018191 76 0.050813 87 0.143012 98 0.344977 109 0.543602

66 0.020259 77 0.056327 88 0.156969 99 0.363757 110 0.547664

67 0.022398 78 0.062629 89 0.172199 100 0.382606 111 0.549540

68 0.024581 79 0.069595 90 0.188517 101 0.401942 112 0.550000

69 0.026869 80 0.077114 91 0.205742 102 0.422569 113 0.550000

70 0.029363 81 0.085075 92 0.223978 103 0.445282 114 0.550000

71 0.032169 82 0.093273 93 0.243533 104 0.469115 115 1

72 0.035268 83 0.101578 94 0.264171 105 0.491923

73 0.038558 84 0.11025 95 0.285199 106 0.511560

74 0.042106 85 0.119764 96 0.305931 107 0.526441

75 0.046121 86 0.130583 97 0.325849 108 0.536732
TABLE 14. GL 34 GMDB male mortality table

Policy year Base lapse rates Surrender charge rate

1 0.8% 7.0%

2 2.0% 6.0%

3 2.0% 5.0%

4 2.0% 4.0%

5 3.0% 3.0%

6 4.0% 2.0%

7 5.0% 1.0%

8 10.0% 0.0%

9 6.0% 0.0%

� 10 2.0% 0.0%
TABLE 15. Assumptions on lapsation

The most time-consuming component of the nested simulations is the computation of deltas. Let us first compare

the delta calculation using Monte Carlo (MC) simulations and PDE methods. This is in essence a repetition of the work

in Section 6.5.1. Nonetheless, this example is more general as the force of mortality is extracted from the life table, and

dynamic lapse rates are considered. The focus of this section is to compare time consumptions.

Consider the risk-neutral valuation of GLWB liability in five years:

t = 5, F
t

= 5, 755, 800, G
t

= 7, 674, 000, S
t

= 1, 268,
t

p
x

= 0.72.

The equity index is always projected for T = 50 years at which
T

p
x

is zero for practical purposes. Monte Carlo simu-

lations are done in the same way as in Section 6.5.1 with the inclusion of surrender charges and dynamic lapse factors.

In Tables 16 and 18, we report the results on deltas for both Monte Carlo simulations with different numbers of repe-

titions, N = 100, 1, 000, 10, 000, and those from the PDE method with grid sizes �t = 0.01 and �s = 0.001. The

first column represents the values of v
x

in (6.10). Some practitioners may prefer using the approximation of delta by
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�0
t

⇡ v(t, F
t

, G
t

,
t

p
x

)�v(t, F
t

��F,G
t

,
t

p
x

), which is the difference between the third and fourth columns. Hence

we also present these results in the second column of Table 16. Note that in the second column the estimation errors

are artificially inflated because of the large size of the liability value. Sample standard deviations are quoted in brackets

under each estimate from a Monte Carlo simulation. The deltas obtained from the PDE approach are determined by

(6.17).

There are two reasons why results from Monte Carlo simulations tend to differ from those from PDE methods:

(1) Continuous-time versus discrete-timemodels: The PDEmethod is based on the assumptions of continuous cash

flows, whereas MC simulations are performed on a discrete-time basis.

(2) Sampling errors fromMCmethods: As a statistical procedure, MCmethods inevitably introduce sampling errors

that can be reduced only with very large sample sizes.

v
x

(t, F
t

, G
t

,
t

p
x

) (1)� (2) Total liability (1) Total liability (2) Time

(F
t

= 5, 755, 800) (1% shock) (secs)

Monte Carlo �0.197038 11, 340 �57, 163 �68, 503 14.536

(100, 0.01) (79,768) (80,056)

Monte Carlo �0.193887 11, 161 �42, 407 �53, 568 140.519

(1, 000, 0.01) (21,165) (21,169)

MC (Antithetic) �0.189232 10, 892 �29, 361 �40, 253 1, 688.864

(1, 000, 0.001) (13,834) (13,981)

MC (Antithetic) �0.188277 10, 721 �28, 730 39, 451 16, 388.812

(1, 000, 0.0001) (11,886) (11,952)

PDE -0.187765 10, 808 -27,688 -38,496 306.882

(�s = 0.001)
TABLE 16. Delta calculation based on formula (6.11)(t = 5 and � = 0.3)

�
s

= 0.001
t

p
x

u
s

(t, F
t

/G
t

) u(t, F
t

/G
t

��
s

) u(t, F
t

/G
t

+�
s

) Time (secs)

MC (Antithetic) -0.197212 -0.005704 -0.006099 195.80

(1,000,0.01) (0.001822) (0.001825)

MC (Antithetic) -0.191669 -0.003701 -0.004085 1,933.755

(1,000,0.001) (0.001380) (0.001388)

MC (Antithetic) -0.189705 -0.003593 -0.003972 19,284.629

(1,000,0.0001) (0.001629) (0.001631)

PDE -0.189218 -0.003426 -0.003804 306.882

(�s = 0.001)
TABLE 17. Delta calculation based on formula (6.17) (t = 5 and � = 0.3)

(Accuracy) In Tables 16 and 18, delta values at t = 5 and t = 10 are estimated from the approximation formula

(6.11). In contrast, delta values at t = 5 and t = 10 are estimated from the approximation formula (6.17) in Tables 17

and 19.
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Table 16 shows the case with a relatively high volatility � = 0.3, under which we observe a gradual convergence of

results fromMCmethods to those from the PDE method as the time step 1/n decreases. To reduce sampling errors, we

implement the method of antithetic variates, which employs the sampling strategy that, for every sample path of cash

flows based on randomly generated random variables {x1, x2, · · · , xnT

}, we produce another path determined by op-

posite values {�x1,�x2, · · · ,�x
nT

}. Note that in this case there are only 500 randomly generated sample paths even

though it is stated thatN = 1, 000. The simulation results for deltas are relatively close to the value from the PDE. We

should point out that standard deviations fromMonte Carlo simulations withN = 100 andN = 1, 000 are so high that

the confidence intervals for theGLWB liability valuewould be ratherwide. For example, the approximate 95%confidence

interval for the GLWB liability using the MC with N = 1, 000 and 1/n = 0.0001 would be [�52, 026.56,�5, 433.44]

based on asymptotic normality. Delta estimates appear to be close to that from the PDE method.

v
x

(t, F
t

, G
t

,
t

p
x

) (1)� (2) Total liability (1) Total liability (2) Time

(F
t

= 5, 755, 800) (1% shock) (secs)

MC �0.322120 18, 540 �442, 592 �461, 132 15.629

(100, 0.01) (38,443) (38,458)

MC �0.323383 18, 613 �453, 226 �471, 839 154.885

(1, 000, 0.01) (11,534) (11,522)

MC �0.322815 18, 581 �452, 679 �471, 260 1, 610.244

(10, 000, 0.01) (2,198) (2,201)

PDE -0.322656 18, 572 -451,532 -470104 308.566

(�s = 0.001)
TABLE 18. Delta calculation based on formula (6.11) (t = 5 and � = 0.1)

�s = 0.001
t

p
x

u
s

(t, F
t

/G
t

) u(t, F
t

/G
t

��s) u(t, F
t

/G
t

+�s) Time (secs)

Monte Carlo -0.324662 -0.058078 -0.058727 179.982

(1,000,0.01) (0.001098) (0.001097)

PDE -0.324676 -0.058514 -0.059164 308.566
TABLE 19. Delta calculation based on formula (6.17) (t = 5 and � = 0.1)

In the case of � = 0.1, pilot experiments show that discrete-time versus continuous-time models do not cause

a very significant difference. Hence we focus on the demonstration of the fact that sampling errors of Monte Carlo

simulations tend to decrease as sample sizes increase in Tables 18 and 19. As with the previous case, we also observe

that computations with the formula (6.17) achieves a higher level of accuracy than those with the formula (6.11).

To illustrate the consistency of results, we run another example of delta calculation at a later date:

t = 10, F
t

= 5, 755, 800, G
t

= 7, 674, 000,
t

p
x

= 0.72.

Tables 20 and 22 present the deltas determined by the formula (6.11) under assumptions of high volatility and low

volatility, whereas Tables (21) and (23) show the corresponding results from the formula (6.17). It turns out that risk

neutral valuations of total liabilities improve for t = 10 as opposed to corresponding results for t = 5.
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v
x

(t, F
t

, G
t

,
t

p
x

) (1)� (2) Total liability (1) Total liability (2) Time

(F
t

= 5, 755, 800) (1% shock) (secs)

Monte Carlo -0.171132 10,847 -337,945 -348,792 14.436

(100,0.01) (58,346) (58,510)

Monte Carlo -0.171456 9,868 -329,079 -338,947 145.323

(1,000,0.01) (21,404) (21,519)

Monte Carlo -0.167909 9665 -317,798 -327,463 1,406.892

(1,000,0.001) (23,382) (23,471)

PDE -0.167224 9626 -317,048 -326,674 308.279

(�s=0.001)
TABLE 20. Delta calculation based on formula (6.11) (t = 10 and � = 0.3)

�s = 0.001
t

p
x

u
s

(t, F
t

/G
t

) u(t, F
t

/G
t

��s) u(t, F
t

/G
t

+�s) Time (secs)

Monte Carlo -0.171769 -0.042030 -0.042373 160.307

(1,000,0.01) (0.002641) (0.002641)

Monte Carlo -0.169929 -0.041055 -0.041395 1,590.024

(1,000,0.001) (0.002659) (0.002661)

PDE -0.168798 -0.041146 -0.041483 308.279
TABLE 21. Delta calculation based on formula (6.17) (t = 10 and � = 0.3)

v
x

(t, F
t

, G
t

,
t

p
x

) (1)� (2) Total liability (1) Total liability (2) Time

(F
t

= 5, 755, 800) (1% shock) (secs)

Monte Carlo -0.221057 12,724 -587,171 -599,895 13.984

(100,0.01) (19,018) (19,002)

Monte Carlo -0.221802 12,766 -599,713 -612,479 137.291

(1,000,0.01) (6,084) (6,059)

Monte Carlo -0.221619 12,757 -599,992 -612,749 1,384.635

(10,000,0.01) (2,860) (2,853)

PDE -0.221343 12,740 -599,297 -612,037 308.566

(�s=0.001)
TABLE 22. Delta calculation at t = 10 and � = 0.1 based on formula (6.11)

(Efficiency) Based on the results from Tables 16 and 18, it is attempting to say that Monte Carlo estimates with

N = 100 are modestly accurate but highly efficient, and there does not appear to any advantage for the PDE method.

However, one should keep in mind that the delta calculation is required for every point of time for rebalancing. Here is

a rough estimate of how much time is needed to calculate the CTE risk measures with the Monte Carlo simulations with

N = 1, 000 scenarios, ignoring additional time consumption for generating outer-loop scenarios.

(Monte CarloN = 100) 14 (secs)⇥ 50 (times of rebalancing each year)⇥ 50 (years)⇥ 1000 (outer loops) = 7⇥ 107

(secs)⇡ 3.82 (months).
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�s = 0.001
t

p
x

u
s

(t, F
t

/G
t

) u(t, F
t

/G
t

��s) u(t, F
t

/G
t

+�s) Time (secs)

Monte Carlo -0.223095 -0.077975 -0.078422 160.333

(1,000,0.01) (0.000817) (0.000817)

PDE -0.222938 -0.077871 -0.078317 308.566
TABLE 23. Delta calculation based on formula (6.17) (t = 10 and � = 0.1)

(Monte CarloN = 1000) 140 (secs)⇥ 50 (times of rebalancing each year)⇥ 50 (years)⇥ 1000 (outer loops) = 7⇥ 108

(secs)⇡ 11.25 (years).

In contrast, the PDE method does not require inner-loop simulations. The CTE risk measure calculation with the PDE

method requires only about five minutes plus additional time for generating outer-loop scenarios. Although estimates

of run times appear high for this personal computer, this is not to suggest that it is impractical to use crudeMonte Carlo.

One could perhaps use faster computers with parallel computing to solve this problem. These estimates aremerely used

here to make a comparison between relative time consumptions of the two methods.

The drastic reduction of run time for the PDE method is owing to the fact that the algorithm marches through all

time-space grid points, moving backwards from the terminal time T = 50 to time 0. A by-product of such an algorithm

is that the risk-neutral values at all grid points are produced all at once, which can be viewed as a table of risk-neutral

values for all combinations of (t, F
t

, G
t

,
t

p
x

). The deltas can be easily estimated from risk-neutral values at neighboring

grid points for all periods. In essence, this approach is very similar to method E (preprocessed inner loops).

We employ a biweekly dynamic hedging portfolio in order to better illustrate the visual effect of outcomes from

hedging, i.e., n = 100. To demonstrate the effect of hedging, we use the same rate of return r = 0.0576 per annum and

assume that the expected rate of return for the equity index µ = r = 0.0577 per annum in the outer-loop calculations.

Due to the tremendous improvement on time consumption, we carry out the rest of the calculations with the PDE

method. Here we compare the dynamics of the surplus with and without the delta hedging program. In Figure 24, we

present the evolution of present values of the accumulated surplus/deficiency under 12 different scenarios. The red

line represents the surplus before implementing the hedging program, whereas the blue line corresponds to the surplus

after applying dynamic hedging on a biweekly basis. Note that the hedging instruments are not included in the values

for the blue line. It is clear from the figure that the surplus with hedging always approaches�V0 = �2.9138⇥ 104. It

is predicted by (6.13) that e�rt(H
t

� V
t

) = �V0.When t ! T , it is easy to see that V
t

! 0 as
T

p
x

! 0. Therefore,

the present value of accumulated surplus/deficiency approaches �V0. The fact that we set the parameters in such a

way that V0 = 2.9138 ⇥ 104 indicates that the risk-neutral value of GLWB benefits exceeds that of fee incomes and

surrender charges.

We compare the distributions of present values of terminal surplus with and without the hedging program in Figure

25. The histogram on the left-hand side represents the surplus at the end of T = 50 years without a hedging program,

whereas the histogram on the right-hand side shows the distribution of the terminal surplus with the effect of dynamic

hedging. In both cases, the height of each bar in the histograms shows the frequency of occurrences in each category

corresponding to the width of each bar. It is clear that the surplus is widely spread over both the negative and positive

sides without a hedging problem. The implementation of the hedging program is so effective that the terminal surplus

is nearly concentrated around the predicted cost of the GLWB value at the inception.
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FIGURE 24. Sample paths of the insurer’s surplus over time with and without a hedging program
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FIGURE 25. Histograms of the insurer’s terminal surplus with and without a hedging program

6.5.3. Additional example of GLWB rider hedging. To show that the PDE method has similar efficiency in other cases

as in the above example of total product liability hedging, here we present an additional example of delta calculations

for the GLWB rider hedging. The difference between two types of liabilities is discussed in Section 6.3.2. In this case,

we consider a common design in practice for the GLWB rider where roll-up stops when withdrawals start. Deltas are
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evaluated using twoMonte Carlo methods. The first one is based on the four dimensional formulation similar to (6.11),7

�
t

⇡ v(t, F
t

+�F,G
t

,
t

p
x

)� v(t, F
t

��F,G
t

,
t

p
x

)
2�F

,(6.18)

and the second one is based on the two dimensional formulation similar to (6.17),

�
t

⇡
t

p
x

u(t, s+�s)� u(t, s��s)
2�s

.(6.19)

For better comparison, we assume that withdrawals start at time 0 and the account value and guarantee base all

reach the same levels as in the previous example, for instance,

t = 5, F
t

= 5, 755, 800, G
t

= 7, 674, 000, S
t

= 1, 268,
t

p
x

= 0.72.

We consider the risk-free interest rate to be r = 0.02 and the rate of withdrawals per annum per dollar of the policy-

holder’s account value to be h = 0.04. The equity model remains the same as the previous example with the volatility

parameter � = 0.1. Tables 24 and 25 show the risk-neutral values of GLWB rider liability and estimates of delta values.

For each of the Monte Carlo methods, the pair in brackets show the number of repetitions and the size of time step.

The numbers in brackets underneath rider liabilities and delta values show corresponding sample standard deviations.

Observe that the convergence of results for Monte Carlo methods and those from the PDE method is consistent with

that in Tables 18 and 19.

Similarly, we also test the methods at a later time point:

t = 10, F
t

= 5, 755, 800, G
t

= 7, 674, 000, S
t

= 1, 268,
t

p
x

= 0.72.

Under the same assumption of volatility parameter � = 0.1, we show the results for rider liabilities and delta values in

Tables 26 and 27. We observe a similar pattern as in Tables 22 and 23. As pointed out in the previous section, the PDE

method does not necessarily save time if the comparison with Monte Carlo methods is done only for each estimate of

deltas. Note, however, that outer-loops invoke inner-loop delta evaluations at multiple time nodes and multiple levels

of risk factors. The PDE algorithm produces all estimates of risk-neutral values at every point on the time-space grid,

whereas Monte Carlo methods would require repetitive calculations at every single point in time and risk factor.

�
t

�0
t

Rider liability Rider liability Time

(�1% shock) (1% shock) (secs)

MC -0.169603 -976,200 -147,850 -167,374 13.458

(100,0.01) (0.003909) (5,232) (5,459)

MC -0.169102 -973,317 -147,181 -166,947 131.092

(1000,0.01) (0.001174) (1,552)) (1,642)

MC -0.169015 -972,815 -148,304 -167,760 1323.448

(1,000,0.001) (0.001115) (1,491) (1,544)

PDE -0.168755 -971,318 -148,210 -167,636 283.949

(ds=0.001)
TABLE 24. Delta calculation based on formula (6.18) (t = 5 and � = 0.1)

7Some practitioners may prefer using the approximation of delta by�0
t

⇡ v(t, F
t

+�F,G

t

,

t

p

x

)� v(t, F
t

��F,G

t

,

t

p

x

). Hence we also

present these results in Tables 24 through 27.
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�s = 0.001 �
t

�0
t

u(t, s��s) u(t, s+�s) Time (secs)

Monte Carlo -0.168650 -970,714 -0.028285 -0.028753 128.756

(1,000,0.01) (0.001235) (0.000256) (0.000254)

PDE -0.168742 -971,244 -0.028369 -0.028838 283.949
TABLE 25. Delta calculation based on formula (6.19) (t = 5 and � = 0.1)

6.6. Numerical comparison of all techniques: outer loop.

6.6.1. Least-Squares Monte Carlo. In the first approach, we set up an equidistant time-space grid (t
i

, x
j

, y
k

, z
l

) as

follows:

t
i

= (i� 1)�t, �t = 10, i = 1, · · · , 6,

x
j

= 1, 462, 500 + (j � 1)�x, �x = 1, 462, 500, j = 1, · · · , 8,

y
j

= max(x
j

, 5, 850, 000) + (j � 1)�y, �y = 1, 462, 500,

z
l

= (l � 1)�z, �z = 0.2, l = 1, · · · , 6.

We select the following basis functions:

1, t, t2, x, x2, y, y2, z, z2, tx, ty, tz, xy, xz, yz.

Note that these lower terms polynomials are selected for their simplicity, in a similar manner to the example in Koursaris

[11].

Applying a least-squares method and removing terms with negligible coefficients, we obtain the following function:

�
t

�0
t

Rider liability Rider liability Time

(�1% shock) (1% shock) (secs)

MC -0.095237 -548,167 -260,899 -271,862 12.915

(100,0.01) (0.002424) (5,416) (5,403)

MC -0.094250 -542,482 -260,101 -270,954 124.307

(1,000,0.01) (0.000899) (1,405) (1,446)

MC -0.094196 -542,175 -259,349 -270,193 1,230.840

(1,000,0.001) (0.000698) (1,618) (1,637)

PDE -0.094071 -541,457 -259,719 -270,548 283.949

(ds=0.001)
TABLE 26. Delta calculation based on formula (6.18) (t = 10 and � = 0.1)

�s = 0.001 �
t

�0
t

u(t, s��s) u(t, s+�s) Time (secs)

Monte Carlo -0.094303 -542,791 -0.047862 -0.048124 114.317

(1,000,0.01) (0.000942) (0.000235) (0.000236)

PDE -0.094055 -541,457 -0.047870 -0.048131 283.949
TABLE 27. Delta calculation based on formula (6.19) (t = 10 and � = 0.1)
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v
x

(t, x, y, z) = �2.28293723535360⇥10�5t2+5.76548315616552⇥10�8x�3.25860281780238⇥10�15x2�

6.53438204339024⇥10�8y+2.08191833331689⇥10�15y2�1.35618136701221⇥10�9tx+1.64788946873263⇥

10�9ty + 1.20219406643236⇥ 10�15xy + 5.49811600487470⇥ 10�8xz � 6.10036014233364⇥ 10�8yz.
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FIGURE 26. Curve fitting in LSMC

Wedemonstrated in Section 6.5.1 that the PDEmethod produces relatively accurate results, which are used as bench-

marks in this example. Figure 26 shows that the polynomial approximation does better in t and F
t

dimensions than it

does in G
t

and
t

p
x

dimensions. Although the polynomial does capture the general pattern of the time-space surface,

the results are generally not very accurate. It is shown in Table 28 that many results are quite far from those found using

the PDE method. Note that errors from LSMC can be affected by errors from inner-loop calculations. Comparing the

results from Monte Carlos simulations and the LSMC on a few off-grid points, we observe that errors from inner-loop

simulations are not actually big contributors to the errors from the LSMC method.

In the second approach, we shall demonstrate the effect of LSMC in two dimensions. Note that here we take advan-

tage of the reduction of dimensions shown in (6.14). We have to admit that this would be an unusual approach through

which to apply the LSMC method. Nevertheless, we can use this approach to demonstrate significant improvement

due to employing the analytical structure of the underlying stochastic model as opposed to brute force Monte Carlo

simulations. In this case, we choose the following basis functions to approximate u
s

(t, s):

1, t, t2, t3, s, s2, s3, ts, ts2, t2s

Applying themethod of least squares and ignoring terms with negligible coefficients, we obtain the following approx-

imating function:

u
s

(t, s) = �1.260962 + 0.012849t + 0.000054t2 � 0.0000016t3 + 2.334049s � 3.711706s2 + 2.393581s3 +

0.048018ts� 0.0003019t2s� 0.043594ts2.
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(t,x,y,z) PDE Monte Carlo RE LSMC RE

(6.68, 6103304, 6203304, 0.8720) -0.175280 -0.178346 1.08% -0.074610 -57%

(9.34,5304180,6304180,0.6797) -0.188576 -0.178346 0.62% -0.110181 41.57%

(15.34, 6974643, 6974643, 0.3492) -0.051869 -0.051839 0.11% -0.041223 -20.53%

(17.55, 598529, 6974643, 0.2968) -0.248494 -0.248275 0.41% -0.252185 1.50%

(19.07,5201927,6304180,0.6550) -0.073334 -0.051839 0.058% -0.087315 -19.06%

(21.93, 2745589, 6816817,0.2760) -0.062374 -0.062183 0.31% -0.111818 79.27%

(26.39, 3175785, 7102702, 0.1359) -0.014242 -0.014192 0.55% -0.037565 163.73%

(28.27, 4588345, 6384283, 0.1626) -0.008606 -0.014192 0.23% -0.020196 134.69%

(38.62, 2781940, 7102702, 0.0601) -0.001991 -0.001991 0.19% 0.055272 -2878.18%

(39.76,1198307, 7792180, 0.1189) -0.016106 -0.016106 0.28% 0.053988 -435.20%
TABLE 28. LSMC with four variables and relative errors

We use an equidistant grid of (t
i

, s
j

) given by

t
i

= (i� 1)�t, �t = 1, i = 1, · · · , 51,

s
j

= (j � 1)�s, �s = 0.1, j = 1, · · · , 11.

(t,s) PDE Monte Carlo RE LSMC RE

(0,1) -0.128920 -0.159537 23.75% -0.245038 90.06%

(1,0.9) -0.358906 -0.355374 0.98% -0.401345 11.82%

(2,0.8) -0.436890 -0.431742 1.18% -0.497740 13.93%

(3,0.7) -0.498723 -0.495406 0.67% -0.551028 10.49%

(4,0.6) -0.587266 -0.581283 1.02% -0.578014 1.58%

(5,0.5) -0.659056 -0.651280 1.18% -0.595504 9.64%

(6,0.4) -0.720308 -0.715813 0.62% -0.620304 13.89%

(7,0.3) -0.783270 -0.777856 0.69% -0.669220 14.56%

(8,0.2) -0.848309 -0.843980 0.51% -0.759058 10.52%

(9,0.1) -0.918761 -0.907156 1.26% -0.906622 1.32%

(10,0) -0.999415 -1.044595 4.52% -1.128720 12.94%
TABLE 29. Accuracy of u

s

(t, s) on the grid

A clear advantage of applying the LSMC to the two-dimensional functional relationship is that both t and s have

bounded domains. Comparing Tables 28 and 29, we observe significant improvement on the accuracy of results. How-

ever, as we shall see later, these results are still not accurate enough to produce a highly effective hedging program.

Table 29 shows the comparison of accuracy on grid points (t
i

, s
j

), whereas Table 30 reports the accuracy of results on

points off the grid.
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6.6.2. Preprocessed inner loops. We use the same grid as in the previous section and estimates of V
t

fromMonte Carlo

simulations. Then the risk-neutral values are used to find deltas according to (6.11) and (6.17). Aswith the LSMCmethod,

we can also implement the method of preprocessed inner loops with both the four-variable functional relationship v
x

and the two-variable functional relationship u
s

.

In Table 31, we apply themethod to approximate the actual function u
x

(t, x, y, z). Since there is no interpolation for

grid points, we shall test accuracy on only a few off-the-grid points. The interpolation is based on the four dimensional

analogue of (5.10), and we use the built-in function nterpn in Matlab to implement the procedure.

Similarly, we apply themethod to approximate the function u
s

(t, s) in Table 32. Comparedwith Table 31, we observe

that the interpolation turns to be much more accurate for the functional relationship with two variables than that with

four variables. It is in fact a common phenomenon in numerical analysis, known as the “curse of dimensionality.” As the

number of dimensions increases, the volume of the space increases so much that sampling points become scarce. To

(t,s) PDE Monte Carlo RE LSMC RE

(4.88,0.971) -0.233102 -0.239505 2.75% -0.219808 5.70%

(6.35,0.959) -0.241904 -0.243275 0.56% -0.214860 11.17%

(13.93,0.957) -0.160784 -0.159947 0.52% -0.115662 28.06%

(17.34,0.916) -0.126440 -0.125833 0.48% -0.122065 3.46%

(21.62,0.800) -0.089758 -0.089423 0.42% -0.142661 58.94%

(24.74,0.792) -0.068372 -0.068551 0.26% -0.107248 56.86%

(35.29,0.485) -0.037405 -0.037354 0.13% -0.002076 94.45%

(36.67,0.422) -0.036653 -0.036583 0.19% -0.006615 81.95%

(41.88,0.158) -0.110142 -0.104925 4.73% -0.274434 149.16%

(48.24,0.142) -0.018514 -0.018683 0.90% -0.247936 1239.16 %
TABLE 30. Accuracy of u

s

(t, s) off the grid

(t,x,y,z) PDE Monte Carlo RE Preprocessed RE

(6.68, 6103304, 6203304, 0.8720) -0.175280 -0.178346 1.08% -0.128398 26.75%

(9.34,5304180,6304180,0.6797) -0.188576 -0.178346 0.62% -0.082481 56.26%

(15.34, 6974643, 6974643, 0.3492) -0.051869 -0.051839 0.11% -0.057946 11.71%

(17.55, 598529, 6974643, 0.2968) -0.248494 -0.248275 0.41% -0.003968 98.40%

(19.07,5201927,6304180,0.6550) -0.073334 -0.051839 0.058% -0.060960 16.87%

(21.93, 2745589, 6816817,0.2760) -0.062374 -0.062183 0.31% -0.013473 78.40%

(26.39, 3175785, 7102702, 0.1359) -0.014242 -0.014192 0.55% -0.006281 55.90%

(28.27, 4588345, 6384283, 0.1626) -0.008606 -0.014192 0.23% -0.009668 12.34%

(38.62, 2781940, 7102702, 0.0601) -0.001991 -0.001991 0.19% -0.001172 41.09%

(39.76,1198307, 7792180, 0.1189) -0.016106 -0.016106 0.28% -0.000928 94.24%
TABLE 31. Preprocessed with four variables and relative errors
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achieve the same level of accuracy in four dimensions as that in two dimensions, one has to enormously increase the

number of grid points.

(t,s) PDE Monte Carlo RE Preprocessed RE

(4.88,0.971) -0.233102 -0.239505 2.75% -0.227417 2.44%

(6.35,0.959) -0.241904 -0.243275 0.56% -0.233378 3.52%

(13.93,0.957) -0.160784 -0.159947 0.52% -0.160633 0.09%

(17.34,0.916) -0.126440 -0.125833 0.48% -0.127042 0.47%

(21.62,0.800) -0.089758 -0.89423 0.42% -0.0895989 0.18%

(24.74,0.792) -0.068372 -0.068551 0.26% -0.068434 0.09%

(35.29,0.485) -0.037405 -0.037354 0.13% -0.037711 0.82%

(36.67,0.422) -0.036653 -0.036583 0.19% -0.037003 0.95%

(41.88,0.158) -0.110142 -0.104925 4.73% -0.131462 19.35%

(48.24,0.142) -0.018514 -0.018683 0.90% -0.046432 150.79 %
TABLE 32. Accuracy of u

s

(t, s) off the grid

(t,s) PDE Monte Carlo RE

(48,0.1) -0.128013 -0.083933 34.43%

(48,0.2) -0.019462 -0.019669 1.06%

(49,0.1) -0.013582 -0.013738 1.15%

(49,0.2) -0.013533 -0.013692 1.17%
TABLE 33. Errors from neighboring points of (48.24,0.142)

There is an “outlier” in Table 32 for the approximate delta value at (48.24, 0.142), which appears to have an error

of 150.79%. We look up the neighboring grid points and the corresponding delta values from inner loops in Table 33.

At first glance, it might be surprising that off-grid points by linear interpolation would be much less accurate than the

neighboring four grid points. Owing to the efficiency of the PDE approach, we can actually present a plot of the surface

in Figure 27. A careful examination of the delta values would reveal that the surface of u
s

(t, s) has more curvature in

this particular neighborhood than other places. If points for interpolation are drawn from regions with deep curvature,

then the results would be quite inaccurate unless one uses a very dense grid.

We are now ready to present the end results of the AG-43 stochastic scenario amount calculation. Recall that cash

flows in outer loops are calculated from the GLWBmodel with parameters listed in Tables 13–14. Themodel incorporates

dynamic policyholder behavior and all expenses. In Table 34, we present CTE stochastic scenario amounts under various

volatility assumptions. The formulas for computing deltas in each section of the table are identified in the first column.

It is clear that the method of preprocessed inner loops produces results close to those from the PDEmethods in the case

where � = 0.3, and the inner loops are replaced by approximations based on two variable functional relationship v. In

contrast, the results for preprocessed inner loops are not accurate at all when � = 0.3, and inner loops are replaced by

approximations based on the four variable functional relationship u. In general, all methods produce reasonably close

results under the low-volatility assumption � = 0.1.
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� = 0.3 excluding CDHS LSMC PDE Preprocessed

70% CTE -3,725,724 -2,204,752 -1,471,402 -1,319,600

(6.17) (1,135,173) (741,975) (495,620) (432,776)

time (secs) 67.89 2692.27 544.135 4632.42

� = 0.3 excluding CDHS LSMC PDE Preprocessed

70% CTE -3,666,006 -11,685,363 -1,551,701 -3,818,887,705

(6.11) (1,107,968) (41,661,646) (484,667) (6,188,486,393)

time (secs) 68.482 2973.548 473.845 3938.779

� = 0.1 excluding CDHS LSMC PDE Preprocessed

70% CTE -40,255 461,599 665,981 581,240

(6.11) (169,037) (31,096) (67,409) (187,028)

time (secs) 64.854 2,871.289 489.255 3,921.446
TABLE 34. Comparison of CTE (best efforts) with various techniques

Another intuitive way for us to check the accuracy of delta calculations is through looking at histograms of terminal

surpluses with hedging programs. If deltas are calculated correctly, then the mixed portfolio of hedging and surplus

should becomemore or less a risk-free asset according to the no-arbitrage theory. The effectiveness of a hedging program

in this model largely relies on the accuracy of delta calculation. Figure 25 has confirmed such a prediction in the earlier

example without the consideration of expenses. In Figure 28, we can tell that the hedging program developed from the

PDE method is highly effective as terminal balances of the mixed portfolio are concentrated around values close to zero.

The LSMCmethod fails to produce any visible effect of hedging against financial risks, as the variation of portfolio values is

as big as the surplus prior to hedging. This lack of hedging effect is likely due to the fact that deltas are far from accurate,
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as shown in Table 28. The method of processed inner loops produces even worse results, as terminal portfolio values

vary so much that the scale of the plot can no longer match those of plots for LSMC and PDE methods. Figure 29 shows

the effect of hedging programs under the low-volatility assumption � = 0.1. Although the preprocessed inner loops do

not appear to have produced accurate deltas, the distribution of the terminal surplus is on the same scale as the rest of

distributions. In Figure 30, we implement similar procedures except that the LSMC and the method of processed inner

loops are applied to approximate the two-variable functional relationship, which significantly improves their accuracy.

The comparison between Figure 28 and 30 clearly shows that the accuracy of delta calculation is critical to the success

of a hedging program.
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FIGURE 28. Terminal surplus before/after hedging with delta calculations based on formula (6.11)

(� = 0.3)

6.7. Conclusions and future work. Even though the example of the AG-43 reserving exercise for a GLWB rider in Test

Case II is only based on many simplifying assumptions, it is significantly more complex than the computation of risk

measures for GMAB liabilities in Test Case I in at least two aspects:

(1) Test case I involves only one period for each of the inner loops and outer loops, much like examples in existing

academic literature on nested simulations. Test Case II makes projections in outer loops of multiple periods,

each of which invokes an inner-loop calculation.

(2) There is only one risk driver for inner loops and for outer loops in Test Case I, for which all methods work

reasonably well, albeit with different degrees of accuracy and efficiency. The risk-neutral valuation of GLWB in
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FIGURE 29. Terminal surplus before/after hedging with delta calculations based on formula (6.11)

(� = 0.1)

Test Case II has four dependent variables, a high-dimension problem for which run time increases so much that

even a simple convergence test becomes difficult. For Test Case II, we do not directly test accuracy for outer-loop

statistics as done with Test Case I. Nonetheless, a comparison for different methods is performed for inner-loop

calculations.

Based on numerical experiments in this section, we draw the following conclusions:

(1) Analytical and numerical PDE methods are in general the most efficient and accurate approaches given a small

computation budget. This observation is largely based on the accuracy test and efficiency test on inner-loop

calculations as well as the visual effect of hedging programs.

(2) Least-Squares Monte Carlo methods are significant improvements of crude Monte Carlo methods. A collection

of lower term polynomials for basis functions work sufficiently well for low-dimension problems, but one may

not be able to claim the same for high-dimension problems.

(3) Themethod of preprocessed inner loops is easiest to implement. Similar to the LSMC, it can be quite efficient in

low-dimension problems but appears much less so in high dimensions. The advantage of its efficiency is the use

of a small number of grid points. If the spacial structure of the functional relationship in inner-loop calculations

exhibits sharp turns, then the interpolation would be inaccurate without using very dense grids, which then

diminishes its efficiency.
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FIGURE 30. Terminal surplus before/after hedging with delta calculations based on formula (6.17)

(� = 0.3)

A scientific study is not complete without a note of caution on the limitation of its research findings. We briefly comment

on constraints of each of themethods discussed in this section aswell as potential futurework to address these problems:

(1) PDE approaches often require much more stochastic analysis. Although this is not a disadvantage per se, it is

harder to explain and to understand until stochastic analysis becomes a common language for communication

among actuaries.

(2) Both LSMC and preprocessed methods in this section are for the most part based on naive sampling of the

mapping between risk factors and items calculated by inner loops. For example, the equidistant grid may not

be a good choice for the surface with sharp turns and corners. It might be more efficient to sample more points

where large changes are detected and to sample fewer points where inner-loop items are relatively stable.

Future work is necessary to improve their accuracy by introducing elements of experiment design.

All mathematical formulation and methods in this report can be further extended to work with models of multiple

equity indices and combined benefits, although their comparative advantages may be different in high dimensions. One

could also include stochastic interest rate and stochastic volatility models. Keep in mind that most well-known interest

rate and volatility models developed in the literature are continuous time models, which work to the advantage of PDE

methods.
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APPENDIX A. TECHNICAL DETAILS

A.1. Optimal budget allocation. In Test Case I, all required elements for the optimal budget allocation are available in

closed form. Observe that the time-t liability L in (5.1) can be written as a function of the separate account value F
t

,

i.e., L = ⇧(F
t

) for some function⇧. To be precise, given that F
t

= x, the liability is determined by

⇧(x) := e�r(T�t)G�(�d2(x))� F
t

�(�d1(x)).

Keep in mind that in a nested simulation, we can not observe⇧(x) directly for a given scenario {F
t

= x}, because⇧(x)

is estimated by a sample mean of discounted values of GMAB benefit payments,

L̂(x) :=
1
N

N

X

k=1

e�r(T�t)(G� xLk)+,

where {L1, · · · ,LN} are mutually independent with common lognormal distribution with location parameter (r �

�2
1/2)(T � t) and scale parameter �1

p
T � t. Hence, given a outer loop scenario {F

t

= x}, we decompose each point

estimator of the inner loop as

L̂(x) = ⇧(x) + Z̄N (x),

where the pricing error is defined by

Z̄N (x) :=
1
N

N

X

k=1

e�r(T�t)(G� xLk)+ �⇧(x),

For any x > 0, by the strong Law of Large Numbers, we obtain the fact that the pricing error vanishes as the sample size

of inner loops goes to infinity:

Z̄N (x) �! 0, almost surely.

It shows that L̂ is a consistent estimator of L.

Variance of pricing error

Conditioning on that F
t

= x, the pricing error Z̄N (x) has mean 0 and variance h(x)/N , where

h(x) := G2e�2r(T�t)�(�d2(x))� 2Gxe�r(T�t)�(�d1(x))

+x2e�
2
1(T�t)�(�d3(x))�

h

Ge�r(T�t)�(�d2(x))� x�(�d1(x))
i2

(A.1)

and

d3(x) :=
ln(x/G) + (r + 3�2

1/2)(T � t)

�1

p
T � t

.

It can be shown that

h0(x) = �2Ge�r(T�t)�(�d1(x)) + 2xe�
2
1(T�t)�(�d3(x))

+2
h

Ge�r(T�t)�(�d2(x))� x�(�d1(x))
i

�(�d1(x)).

Joint density of liability and pricing error

Let g
N

(y, z) be the joint density of (L, Z̃
N

) where Z̃
N

=
p
NZ̄

N

and L = ⇧(F
t

). Let q be the lognormal density

q(y) :=
1

y
p
2⇡t�0

exp
⇢

� [ln(y/F0)� (µ� �2
0/2)t]

2

2�2
0t

�

,
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and hence

q0(y) = �3�2
0t/2 + ln(y/F0)� µt

y2
p
2⇡t�3

0t
exp

⇢

� [ln(y/F0)� (µ� �2
0/2)t]

2

2�2
0t

�

.

Conditional variance of pricing error

It follows that

⇥(u) =
1
2

Z

R
z2g

N

(u, z)dz

=
1
2
q(⇧�1(u))h(⇧�1(u))(⇧�1)0(y).

Recall that l
p

= ⇧(f
p

). Then,

✓
p

:= �⇥0(l
p

)

=
q0(f

p

)h(f
p

) + q(f
p

)h0(f
p

)
2⇧0(f

p

)2
� q(f

p

)h(f
p

)⇧00(f
p

)
2⇧0(f

p

)3
.

Recall the delta and gamma of the Black-Scholes put option are given by

⇧0(x) = ��(�d1(x)), ⇧00(x) =
�(d1(x))

�1x
p
T � t

,

where � is the standard normal density.

Optimal allocation

Let �1 be the computation cost of each inner loop, �0 be the cost of each outer loop and � be the total computation

budget. The goal of optimal allocation is to find the optimal n andm such that the mean-squared error, E[(L̂(dMpe) �

L)2], is minimized, given the budget constraint

n(m�1 + �0) = �.

When �0 ⇡ 0 and � is very large, then the optimal n andm can be determined by

m⇤ ⇡
✓

2✓2
p

�

p(1� p)�1

◆1/3

and

n⇤ ⇡
✓

p(1� p)
2✓2

p

�2
1

◆1/3

�2/3.

A.2. Sequential allocation. Here is an explanation for the optimization strategy (5.9) in the sequential allocation algo-

rithm. Observe that

P(L̂0
k

< V |L̂
k

> V ) = P(L̂
k

+ Ẑ < V |L̂
k

> V )

= P(Ẑ � L(!
k

) < �m
k

(L̂
k

� V )� (L(!
k

)� V )|L̂
k

> V ),

where Ẑ is an estimator of the liability, i.e., Ẑ = e�r(T�t)(G � xLk+1)+. It is assumed that m
k

is far larger than 1.

Hence the authors use the approximation�m
k

(L̂
k

� V )� (L(!
k

)� V ) ⇡ �m
k

(L̂
k

� V ). Then

P(L̂0
k

< V |L̂
k

> V ) ⇡ P(Ẑ � L(!
k

) < �m
k

(L̂
k

� V )|L̂
k

> V )

= P(Ẑ � L(!
k

) < �m
k

|L̂
k

� V ||L̂
k

> V ).
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Similarly, one can approximate

P(L̂0
k

> V |L̂
k

< V ) ⇡ P(Ẑ � L(!
k

) > �m
k

(L̂
k

� V )|L̂
k

< V )

= P(Ẑ � L(!
k

) > m
k

|L̂
k

� V ||L̂
k

> V ).

For any random variable with mean µ and variance �2 and any number a > 0, the one-sided Chebyshev inequality

says that

P(X � µ+ a)  �2

�2 + a2
, P(X  µ� a)  �2

�2 + a2
.

It is obvious that Ẑ has the mean 0 and the variance given by �
k

= h(F (!
k

)) where h is given by (A.1). Therefore,

P(L̂0
k

< V |L̂
k

> V ) ⇡ P(Ẑ � L(!
k

) < �m
k

|L̂
k

� V |
�

�L̂
k

> V )

 �2
k

�2
k

+m2
k

|L̂
k

� V |2
=

✓

1 +
m2

k

�2
k

�

�L̂
k

� V
�

�

◆�1

.

A similar result is true for the other case P(L̂0
k

> V |L̂
k

< V ). Therefore, in order to maximize the chance of a sign

change, we want to minimize
m2

k

�2
k

�

�L̂
k

� V
�

�,

which explains the search algorithm in (5.9). ⇤

A.3. LSMCwith basis selection. Wenow sketch the idea of the Hankel matrix approximation for identifying the complex

weights {w
m

,m = 1, · · · ,M} and the complex nodes {�
m

,m = 1, · · · ,M}. Consider the (N +1)⇥ (N +1) Hankel

matrixH defined as follows:

H =

2

6

6

6

6

6

6

6

6

6

4

h0 h1 · · · h
N�1 h

N

h1 h2 · · · h
N

h
N+1

...
...

h
N�1 h

N

· · · h2N�2 h2N�1

h
N

h
N+1 · · · h2N�1 h2N

3

7

7

7

7

7

7

7

7

7

5

.

For the practical purpose of this application, we shall consider only the case where the Hankel matrix is real-valued. Then

we can solve for the eigenvalue problem

Hu = �u,

where� is a real and non-negative eigenvalue, and u = (u0, · · · , uN

) is the corresponding eigenvector. By the definition

of Hankel matrix, it is easy to show that {h
m

,m = 0, · · · , 2N} satisfies the following recursive relation:
N

X

n=0

h
k+n

u
n

= �u
k

, k = 0, · · · , N.

If we extend the eigenvector u to a periodic sequence of periodL(L > N) and where u
k

= 0 forN < k < L, then we

can define an inhomogeneous recurrence relation
N

X

n=0

x
k+n

u
n

= �u
k

, k � 0,(A.2)

given the initial conditions x
k

= h
k

for k = 0, 1, · · · , N � 1. The solution to the recurrence relation is unique and can

be solved by

x
N+k

= �
N�1
X

n=0

u
n

u
N

x
k+n

+ �
u
k

u
N

, k � 0,
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provided that u
N

6= 0. It is well known that the solution to (A.2) can be written as the sum of a general solution to the

corresponding homogeneous recurrence relation and a particular solution, denoted by {x(p)
k

, k � 0}:

x
k

=
N

X

n=1

w
n

�k

n

+ x
(p)
k

, k � 0,

where {�1, · · · , �N} is the set ofN roots to the eigen-polynomial Pu(z) =
P

N

k=1 uk

zk. A particular solution is given

by

x
(p)
k

=
�

L

L�1
X

l=0

↵lk

Pu(↵
�l)

Pu(↵l)
, ↵ := exp

⇢

2⇡i
L

�

,

because for all k = 0, 1, · · · , N ,

N

X

n=0

x
(p)
k+n

u
n

=
�

L

L�1
X

l=0

↵lk

Pu(↵
�l)

Pu(↵l)

N

X

n=0

u
n

↵nl =
�

L

L�1
X

l=0

↵lkPu(↵
�l) =

�

L

N

X

n=0

 

L�1
X

l=0

↵(n�k)l

!

u
k

= �u
k

.

Note that |x(p)
k

|  � for all k � 0. Therefore, it follows immediately that
�

�

�

�

�

h
k

�
N

X

n=1

w
n

�k

n

�

�

�

�

�

 �, k = 0, 1, · · · , 2N.

To find the approximation, we rank all the eigenvalues of H in a decreasing order:

�0 � �1 � · · · � �
N

.

If we choose an eigenvalue �
M

(0  M  N) smaller than the level of error tolerance ✏ in (5.13), then we can obtain

the expected approximation with absolute error of at most �. Beylkin and Monzon made the observation that only first

M weights {w1, · · · , wM

} are larger than �
M

, and hence they made the claim that
P

M

m=1 wm

�k

m

has the “ nearly

optimal” representation of the Hankel matrix. Observe that one can obtain the unknown weights (w1, · · · , wN

) by

finding the unique solution to the Vandermonde system:

h
k

� �x
(p)
k

=
N

X

n=1

w
n

�k

n

, 0  k < N.

Theequation is also valid forN  k  2N . Thus, the authors recommendedusing the least-squares solution (⇢1, · · · , ⇢N )

to the overdetermined problem:

h
k

=
N

X

n=1

⇢
n

�k

n

, 0  k  2N.

A.4. Derivation of PDE. Define the process

X
t

:= E
h

Z 1

0

e�rs

s

p
x

hG
s

I(F
s

< 0)ds�
Z 1

0

e�rs

s

p
x

(m
w

G
s

+mF
s

)I(F
s

> 0)ds

�
Z 1

0

e�rsµl

s

f(Y
s

)
s

p
x

c
s

F
s

I(F
s

> 0)ds
�

�

�

F
t

i

= e�rtV
t

+

Z

t

0

e�rs

s

p
x

hG
s

I(F
s

< 0)ds�
Z

t

0

e�rs

s

p
x

(m
w

G
s

+mF
s

)I(F
s

> 0)ds

�
Z

t

0

e�rsµl

s

f(Y
s

)
s

p
x

c
s

F
s

I(F
s

> 0)ds,

Therefore,

dV
t

= ertdX
t

+
h

rV
t

�
t

p
x

hG
t

I(F
t

< 0) +
t

p
x

(m
w

G
t

+mF
t

)I(F
t

> 0) + µl

t

f(Y
t

)
t

p
x

c
t

F
t

I(F
t

> 0)
i

dt.

(A.3)
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Recall that by the strongMarkov property of the underlying process, we know that theremust exist a smooth function

v(t, x, y, z) such that

V
t

= v(t, F
t

, G
t

,
t

p
x

).

Applying Itô’s formula, we obtain

dv(t, F
t

, G
t

,
t

p
x

) = v
t

(t, F
t

, G
t

,
t

p
x

)dt+ v
x

(t, F
t

, G
t

,
t

p
x

)dF
t

(A.4)

+v
y

(t, F
t

, G
t

,
t

p
x

)dG
t

+ v
z

(t, F
t

, G
t

,
t

p
x

)d
t

p
x

+
1
2
v
xx

(t, F
t

, G
t

,
t

p
x

)dhF i
t

= v
t

(t, F
t

, G
t

,
t

p
x

)dt+ v
x

(t, F
t

, G
t

,
t

p
x

)[(r �m)F
t

dt+ p�F
t

dB
t

� (m
w

+ h)G
t

dt]

+v
y

(t, F
t

, G
t

,
t

p
x

)dG
t

+ v
z

(t, F
t

, G
t

,
t

p
x

)d
t

p
x

+
1
2
p2�2v

xx

(t, F
t

, G
t

,
t

p
x

)F 2
t

dt

=

"

v
t

(t, F
t

, G
t

,
t

p
x

) + v
x

(t, F
t

, G
t

,
t

p
x

)[(r �m)F
t

� (m
w

+ h)G
t

]

+
1
2
v
xx
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, G
t

,
t

p
x

)p2�2F 2
t

� v
z

(t, F
t

, G
t

,
t

p
x

)[µd

x+t

+ f(Y
t

)µl

t

]
t

p
x

+v
y

(t, F
t

, G
t

,
t

p
x

)⇢G
t

#

dt+ v
y

(t, F
t

, G
t

,
t

p
x

)G
t

dL
t

+ p�F
t

v
x

(t, F
t

, G
t

,
t

p
x

)dB
t

,

where

dG
t

= G
t

dL
t

+ ⇢G
t

dt.

Comparing (A.3) and (A.4), we observe immediately that dt terms should be equal and the term v
y

(t, F
t

, G
t

,
t

p
x

)G
t

dL
t

must be zero. We obtain the PDE for t > 0 and x, y > 0, 0 < z < 1 :

v
t

(t, x, y, z) + v
x

(t, x, y, z)[(r �m)x� (m
w

+ h)y] +
1
2
v
xx

(t, x, y, z)p2�2x2(A.5)

�v
z

(t, x, y, z)[µd

x+t

+ f(x/y)µl

t

]z + v
y

(t, x, y, z)⇢y

= rv(t, x, y, z) + z(m
w

y +mx) + µl

t

f(x/y)c
t

xz,

subject to

v
y

(t, x, y, z)|
x=y

= 0.(A.6)

Note that if F
t

= 0 then F
s

 0 for all s � t. Hence, given that F
t

= 0, we must have

V
t

=
t

p
x

Z 1

t

e�r(s�t)
s�t

p
x+t

hG
t

e⇢(s�t)ds =
t

p
x

hG
t

Z 1

0

e�(r�⇢)s
s

p
x+t

ds =
t

p
x

hG
t

a
x+t

.

Keep in mind that the life annuity a
x+t

is calculated with the force of interest r � ⇢. The boundary condition for the

original PDE is

v(t, 0, y, z) = hyza
x+t

.(A.7)

Since lim
t!1 t

p
x

= 0, it is also clear that

lim
t!1

v(t, x, y, z) = 0.

We can reduce the dimension of the PDE by defining a function u(t, s) such that

v(t, x, y, z) = zyu(t, x/y).(A.8)

It follows immediately that the PDE reduces to (6.15). Observe that

v
y

(t, x, y, z)|
x=y

= zu(t, s)|
s=1 + zyu

s

(t, s)
@s

@y

�

�

�

s=1
= zu(t, 1)� zu

s

(t, 1).
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In view of (A.6), we obtain the corresponding boundary condition for u (6.16a). Similarly, we obtain the boundary con-

dition (6.16b) and the terminal condition (6.16c) from the corresponding conditions for v.

A.5. Dynamics of mixed surplus and hedging portfolio. The self-financing condition (6.12) implies that

�h
t

S
t

+�R
t

� rR
t��t

�t� CF(�t) = 0.

We add and subtract the term S
t��t

�h
t

and obtain

�h
t

S
t

� S
t��t

�h
t

+ S
t��t

�h
t

+�R
t

� rR
t��t

�t� CF(�t) = 0,

or equivalently,

�S
t

�h
t

+ S
t��t

�h
t

+�R
t

� rR
t��t

�t� CF(�t) = 0.

Taking�t to zero, we find the continuous-time version of the self-financing condition

dh
t

dS
t

+ S
t

dh
t

+ dR
t

= rR
t

dt+ CF(dt),

where

CF(dt) =
h

t

p
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(m
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t

> 0) + µl

t

f(Y
t

)
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p
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 0)
i

dt.

Finally, we are ready to compute the dynamics of the portfolio:

dH
t

= d(h
t

S
t

+R
t

)

= h
t

dS
t
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dh
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t

dh
t
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+ rR
t

dt+ CF(dt)

= h
t

dS
t
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� h
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S
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)dt+ CF(dt).(A.9)

Recall that v satisfies the PDE (A.5), then

dv(t, F
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,
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p
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p
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.

Note that the term
t

p
x

hG
t

I(F
t

 0) included in CF(dt) comes from the boundary condition (A.7). Recall that we

consider

�
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=
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S
t

v
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t
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,
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p
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It follows that

dv(t, F
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,
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p
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) = r[v(t, F
t

, G
t

,
t

p
x

)��
t

S
t

]dt+ CF(dt) +�
t

dS
t

.

Note that the GLWB liability V
t

= v(t, F
t

, G
t

,
t

p
x

) and h
t

= �
t

. Subtracting (A.10) from (A.9) yields

d(V
t

�H
t

) = r(V
t

�H
t

)dt,

which implies that for some constant C and all t � 0

e�rt(V
t

�H
t

) = C.



NESTED STOCHASTIC MODELING 81

SinceH0 = 0, then it shows that C = V0.

H
t

= V
t

� ertV0.

A.6. Derivation of analytical solution. Consider the case where p = 1, µd

x+t

= � and µl

t

= 0. Then
t

p
x

= e��t for all

x > 0 and (assuming �+ r � ⇢ > 0)

a
x+t

=
1

r � ⇢+ �
.

The the PDE (6.15) reduces to the ODE

1
2
�2s2u

ss

+ [(r �m� ⇢)s� (m
w

+ h)]u
s

� [�+ r � ⇢]u�m
w

�ms = 0,

subject to the boundary conditions

u(1) = u
s

(1),

u(0) =
h

�+ r � ⇢
.

This reduces to a special case where the future lifetime is exponentially distributed and the lapse rate is a constant that

can be combined with the force of mortality. We can find analytical solution to the no-arbitrage value of the GLWB in

this case.

If we let w = �

2

4(m
w

+h)s = ks, the ODE of w becomes

2w2u
ww

+



4(r �m� ⇢)
�2

w � 1

�

u
w

� 4(�+ r � ⇢)
�2

u� 4mw

k�2
� 4m

w

�2
= 0,

with boundary conditions

u(k) = ku
w

(k),

u(0) =
h

�+ r � ⇢
.

Let r⇤ := 4(�+r�⇢)
�

2 , ⌫ = 2(r�m�⇢)��

2

�

2 and µ =
p
2r⇤ + ⌫2. The ODE is simplified to

2w2u
ww

+ [2(⌫ + 1)w � 1]u
w

� r⇤u� 4mw

k�2
� 4m

w

�2
= 0.

The differential equation has the following general solution:

u(w) = C1w
(1�⌫)/2 exp

✓

� 1
4w

◆

M(⌫�1)/2,µ/2(
1
2w

)

+C2w
(1�⌫)/2 exp

✓

� 1
4w

◆

W(⌫�1)/2,µ/2(
1
2w

)� mw

k(�+m)
+

(h+m

w

)m
�+m

�m
w

r � ⇢+ �
,

whereM is the Whittaker-M function andW is the Whittaker-W function. The derivations of these fundamental solu-

tions can be found in Feng and Volkmer [8].

Let us rewrite the two fundamental solutions

f(⌫�1)/2(w) = w(1�⌫)/2 exp
✓

� 1
4w

◆

M(⌫�1)/2,µ/2(
1
2w

),

and

g(⌫�1)/2(w) = w(1�⌫)/2 exp
✓

� 1
4w

◆

W(⌫�1)/2,µ/2(
1
2w

).
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It is easy to show that

f 0


(y) = �( 12 + µ+ )f
+1(y), g0



(y) = g
+1(y),

lim
y!1

f


(y) = 0, lim
y!0+

g


(y) = 0.

Then we obtain

C1 =
(h+m

w

)��(1 + (µ� ⌫)/2)
(�+m)(r � ⇢+ �)�(1 + µ)

2�(⌫�1)/2,

C2 =
C1[f(⌫�1)/2(k) + k(µ/2 + ⌫/2)f(⌫+1)/2(k)] +

(h+m

w

)m
�+m

�m

w

r�⇢+�

kg(⌫+1)/2(k)� g(⌫�1)/2(k)
,

Finally, we get the solution of the ODE

u(w) = C1f(⌫�1)/2(w) + C2g(⌫�1)/2(w)� mw

k(�+m)
+

(h+m

w

)m
�+m

�m
w

r � ⇢+ �
.

Here we can also its derivative with respect to s:

u
s

= ku
w

= k



C2g(⌫+1)/2(w)� C1(⌫ + µ)
2

f(⌫+1)/2(w)

�

� m

�+m
.(A.10)

A.7. Stochastic representation of u(t, s). Observe that the bivariate process {(F
t

, G
t

), t � 0} is a strong Markov

process. Recall that the processG has the following stochastic representation:

G
t

= e⇢t max
⇢

G0, sup
0ut

{e�⇢uF
u

}
�

= e⇢tG0 max
⇢

1, sup
0ut

{e�⇢uF̃
u

}
�

,

where F̃0 = F0/G0 and

dF̃
t

= [(r �m)F̃
t

� (m
w

+ h)G
t

]dt+ p�F̃
t

dB
t

.

Observe that for s � t � 0

G
s

= e⇢s max
⇢

e�⇢tG
t

, sup
tus

{e�⇢uF
u

}
�

= e⇢(s�t) max
⇢

G
t

, e⇢t sup
tus

{e�⇢uF
u

}
�

.

Then it follows from the strong Markov property that

E[
s

p
x

G
s

|F
t

] =
t

p
x

G
t

E(Y
t

,1)



t�s

p
x+t

e⇢(s�t) max
⇢

1, sup
0us�t

{e�⇢uF̃
u

}
��

=
t

p
x

G
t

E(Y
t

,1) [
t�s

p
x+t

G
t�s

] ,

where E(x,y) is the expectation under the probability measure for which F0 = x andG0 = y. Similarly,

E[
s

p
x

F
s

|F
t

] =
t

p
x

F
t

E(Y
t

,1)
h

t�s

p
x+t

F̃
s�t

�

�

�

F
t

i

= G
t

E(Y
t

,1)
h

t�s

p
x+t

F̃
s�t

i

.
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Then

V
t

: =
t

p
x

E
"

Z 1

t

e�r(s�t)
s�t

p
x+t

hG
s

I(F
s

< 0)ds�
Z 1

t

e�r(s�t)
s�t

p
x+t

(m
w

G
s

+mF
s

)I(F
s

> 0)ds

�
Z 1

t

e�r(s�t)µl

s

f(Y
s

)
s�t

p
x+t

c
s

F
s

I(F
s

> 0)ds

�

�

�

�

�

F
t

#

=
t

p
x

G
t

E(Y
t

,1)

"

Z 1

0

e�rv

v

p
x+t

hG
v

I(F̃
v

< 0)dv �
Z 1

0

e�rv

v

p
x+t

(m
w

G
v

+mY
t

F̃
v

)I(F̃
v

> 0)dv

�
Z 1

0

e�rvµl

t+v

f(Y
v

)
v

p
x+t

c
t+v

F̃
v

I(F̃
v

> 0)dv

#

.

Comparing the above expression and (A.8), we obtain the following representation:

u(t, s) = E(s,1)

"

Z 1

0

e�rv

v

p
x+t

hG
v

I(F̃
v

< 0)dv �
Z 1

0

e�rv

v

p
x+t

(m
w

G
v

+mF̃
v

)I(F̃
v

> 0)dv

�
Z 1

0

e�rvµl

t+v

f(Y
v

)
v

p
x+t

c
t+v

F̃
v

I(F̃
v

> 0)dv

#

.

APPENDIX B. NUMERICAL ALGORITHMS

For numerical purposes, we truncate the state space of t to (0, T ) for enough big T > 0. Consider the following

conditions:

u(T, s) = 0,

u(t, 0) = hā
x�t

,

u
s

(t, 1) = u(t, 1).

For ease of presentation, we define c1(s), c2(s), c3(s)andc4(s) as follows:

c1(s) =
1
2
p2�2s2,

c2(s) = (r �m� ⇢)s� (m
w

+ h),

c3(t, s) = �[µd

x+t

+ µl

t

f(s) + r � ⇢],

c4(t, s) = �(m
w

+ms)� µl

t

f(s)c
t

s.

We then introduce w(t, s) = u(T � t, s) defined on (0, T )⇥ [0, 1], which satisfies the forward PDE

w
t

= c1(s)wss

+ c2(s)ws

+ c3(T � t, s)w + c4(T � t, s)(B.1)

subject to the boundary conditions:

w(0, s) = 0,(B.2)

w(t, 0) = hā
x+T�t

,(B.3)

w
s

(t, 1) = w(t, 1).(B.4)

We set up the grids (t
i

, s
j

) as follows and denote the solution w(t
i

, s
j

) on the grid points by wi

j

, where

t
i

= (i� 1)4t, for i = 1, · · ·, N
t

+ 1, N
t

:= T/4t,

s
j

= j4s, for j = 0, · · ·, N
s

, N
s

:= 1/4s.
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Discretization of (B.1) gives

wi+1
j

� wi

j

4t
=c1(j4s)

wi+1
j+1 + wi+1

j�1 � 2wi+1
j

(4s)2
+ c2(j4s)

wi+1
j+1 � wi+1

j�1

24s

+ c3(T � (i� 1)4t, j4s)wi+1
j

+ c4(T � (i� 1)4t, j4s).

For brevity, we use the notation

↵ =
1
4t

, �
j

=
c1(j4s)
(4s)2

, �
j

=
c2(j4s)
24s

,

ci3,j = c3(T � (i� 1)4t, j4s), ci4,j = c4(T � (i� 1)4t, j4s).

For j = 1, · · ·, N
s

, the recursive relation can be rewritten as

�(�
j

� �
j

)wi+1
j�1 + (↵+ 2�

j

� ci3,j)w
i+1
j

� (�
j

+ �
j

)wi+1
j+1 = ↵wi

j

+ ci4,j ,(B.5)

The Neumann condition (B.4) yields

wi+1
N

s

+1 = wi+1
N

s

�1 + 24swi+1
N

s

.

For j = N
s

, we obtain

�2�
N

s

wi+1
N

s

�1 + (↵+ 2�
N

s

� ci3,N
s

� (�
N

s

+ �
N

s

)24s)wi+1
N

s

= ↵wi

N

s

+ ci4,N
s

.

Combining boundary condition (B.3) and recursive relation (B) for j = 1 gives

(↵+ 2�1 � ci3,1)w
i+1
1 � (�1 + �1)w

i+1
2 = ↵wi

1 + ci4,1 + (�1 � �1)w
i+1
0 .

We set the vector

wi = (wi

1, · · ·, wi

N

s

)>.

Then (B) translates to

Biwi+1 = ↵wi + ci4 + ((�1 � �1)w
i+1
0 , 0, · · ·, 0)>,

where ci4 = (ci4,1, · · ·, ci4,N
s

)>. TheN
s

byN
s

matrixBi is given by

Bi =

0

B

B

B

B

B

B

B

B

@

↵ + 2�1 � c

i

3,1 �(�1 + �1) 0 · · · 0 0 0

�(�2 � �2) ↵ + 2�2 � c

i

3,2 �(�2 + �2) · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 0 �2�
N

s

↵ + 2�
N

s

� c

i

3,N
s

� (�
N

s

+ �

N

s

)24s

1

C

C

C

C

C

C

C

C

A

.

On the j-th row (j = 2, · · ·, N
s

� 1), the tridiagonal elements are

�(�
j

� �
j

), (↵+ 2�
j

� ci3,j), �(�
j

+ �
j

).

We can determine w by

wi+1 = (Bi)�1
h

↵wi + ci4 + ((�1 � �1)w
i+1
0 , 0, · · ·, 0)>

i

,

marching alternatively in the i direction, starting from i = 1, where we have the initial condition

w1 = 0.



NESTED STOCHASTIC MODELING 85

REFERENCES

[1] Beylkin, G. and Monzon, L. (2005). On approximation of functions by exponential sums. Applied and Computational Harmonic Analysis, 19(1): 17–48.

[2] Broadie, M., Du, Y., and Moallemi, C. C. (2015). Risk estimation via regression. Operations Research (5): 1077–1097.

[3] Gorski, L. M., Brown and R. A. B. (2005). Recommended Approach for Setting Regulatory Risk-Based Capital Requirements for Variable Annuities and

Similar Products. American Academy of Actuaries, Boston, MA.

[4] Feng, R. (2014). A comparative study of risk measures for guaranteed minimummaturity benefits by a PDE method. North American Actuarial Journal,

18(4), 455–466

[5] Feng, R. and Huang, H. (2016) Statutory financial reporting for variable annuity guaranteed death benefits: Market practice, mathematical modeling

and computation, Insurance: Mathematics and Economics 67: 54–64.

[6] Feng, R. and Jing, X. (2016) Analytic valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits, Preprint.

[7] Feng, R. and Volkmer, H. (2012). Analytical calculation of risk measures for variable annuity guaranteed benefits. Insurance: Mathematics and Econom-

ics 51(3): 636–648.

[8] Feng, R. and Volkmer, H. V. (2016). An identity of hitting times with application to the valuation of guaranteed minimum withdrawal benefit. Mathe-

matics and Financial Economics 10(2): 127–149.

[9] Gordy, M. B. and Juneja, S. (2010). Nested simulation in portfolio risk measurement.Management Science 56(10): 1833–1848.

[10] Hardy, M. R. (2003) Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance. John Wiley & Sons

[11] Koursaris, A. (2011) A least squares Monte Carlo approach to liability proxy modelling and capital calculation. Barrie & Hibbert, technical report.

[12] Liu, M. and Staum, J. (2010) Stochastic kriging for efficient nested simulation of expected shortfall. Journal of Risk 12(3): 3–27.

[13] Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. Review of Financial Studies, 14:

113–147.

[14] Milevsky, M. A. and Salisbury, T. S. (2006). Financial valuation of guaranteed minimum withdrawal benefits. Insurance: Mathematics and Economics,

38(1): 21–38.

[15] Stentoft, L. (2004). Convergence of the Least Squares Monte Carlo approach to American option valuation,Management Science 50(9): 1193–1203.

[16] Ulm, E. R. (2008). Analytic solution for return of premium and rollup guaranteed minimum death benefit options under some simple mortality laws.

ASTIN Bulletin 38(2): 543–563.



   2 

 

 Copyright © 2016 Society of Actuaries 

 

 

Nested Stochastic Modeling for Insurance 
Companies 
   

Caveat	and	Disclaimer	
USE THIS FOR EXPERIENCE STUDIES AND DIR: 
This study is published by the Society of Actuaries (SOA) and contains information from a variety of sources. It may or may not reflect the experience of any individual 
company. The study is for informational purposes only and should not be construed as professional or financial advice. The SOA does not recommend or endorse any 
particular use of the information provided in this study. The SOA makes no warranty, express or implied, or representation whatsoever and assumes no liability in 
connection with the use or misuse of this study.  
 
USE THIS FOR PRACTICE RESEARCH: 
The opinions expressed and conclusions reached by the authors are their own and do not represent any official position or opinion of the Society of Actuaries or its 
members. The Society of Actuaries makes no representation or warranty to the accuracy of the information. 
 
Copyright ©2016 by the Society of Actuaries. 

SPONSOR	 Financial	Reporting	Section	
	
	
Modeling	Section	
	

AUTHORS	
	

LEAD INVESTIGATOR: 
 
Runhuan Feng, PhD, FSA, CERA 
University of Illinois at Urbana-Champaign 
 
ASSISTANTS: 
 
Zhenyu Cui, PhD 
Steven Institute of Technology 
 
Peng Li, MS 
Central University of Finance and 
Economics 
 
 
	

	 	 	


	Nested Stochastic Modeling Cover.docx  word document
	StudyReportFinal.pdf  Nested Modeling
	1. [rgb]0.09,0.19,0.47Executive Summary
	2. [rgb]0.09,0.19,0.47Acknowledgements
	3. [rgb]0.09,0.19,0.47Introduction
	4. [rgb]0.09,0.19,0.47Terminology and Categories
	5. [rgb]0.09,0.19,0.47Study Findings on Case I
	5.1. Closed-form solution
	5.2. Crude Monte Carlo
	5.3. Optimal budget allocation
	5.4. Sequential allocation of inner loops
	5.5. Preprocessed inner loops
	5.6. Least-Squares Monte Carlo (LSMC)
	5.7. LSMC with basis selection
	5.8. Numerical results
	5.9. Error analysis of inner-loop approximation

	6. [rgb]0.09,0.19,0.47Study Findings on Case II
	6.1. Overview of nested structure
	6.2. Conceptual comparison of Monte Carlo and PDE methods
	6.3. Modeling GLWB liabilities: practice versus mathematical formulation
	6.4. Computational techniques
	6.5. Numerical comparison of Monte Carlo and PDE methods: inner loop
	6.6. Numerical comparison of all techniques: outer loop
	6.7. Conclusions and future work

	Appendix A. [rgb]0.09,0.19,0.47Technical Details
	A.1. Optimal budget allocation
	A.2. Sequential allocation
	A.3. LSMC with basis selection
	A.4. Derivation of PDE
	A.5. Dynamics of mixed surplus and hedging portfolio
	A.6. Derivation of analytical solution
	A.7. Stochastic representation of u(t,s)

	Appendix B. [rgb]0.09,0.19,0.47Numerical Algorithms
	References




