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Abstract 
Traditionally, the study of the interest-rate sensitivity 

of the price of a portfolio of assets or liabilities has been 
performed using single-variable price functions and a 
corresponding one-variable duration analysis. This 
unique variable was originally defined as the yield to 
maturity of the portfolio and later generalized to reflect 

• "parallel" changes in the underlying yield curve, that is, 
changes in which each yield point moves by the same 
amount. More recently, this parallel shift model was 
generalized to linear shifts, reflecting changes in both 
the level and slope of  the yield curve, as well as to other 
mathematical models of the manner in which a yield 
curve is assumed to move. 

In general, the ability of such a model to predict 
price sensitivity is dependent on the validity of  this 
underlying yield curve assumption. For general yield 
curve shifts, large errors are possible. In practice, this 
happens to a greater extent when the portfolio contains 
both "long" and "short" positions, as is the case for sur- 
plus or net worth. A classical duration analysis can 
greatly understate price sensitivity to nonparallel yield 
curve shifts in this case. Consequently, surplus changes 
can appear unpredictable, and duration-matching strate- 
gies unsuccessful. 

In this paper, a general multivariate duration analysis 
is introduced,that does not depend on a mathematical 
formulation of  the way in which a yield curve moves. 
Consequently, complete price sensitivity information is 
derived that is equally applicable in virtually all yield 
curve environments. In addition, this model is practical 
and relatively easy to apply. 

To motivate the multivariate approach, simple exam- 
ples are presented that demonstrate the limitations of 
the traditional model when yield curve shifts are not 
parallel. Multivariate models are then developed in 
detail and shown to readily overcome these limitations. 

Examples are utilized throughout to make the theory 
more accessible. The last section focuses on applica- 
tions of these models as well as on a variety of practical 
considerations. 

1. Introduction 
The concept of duration has generated a great deal of 

interest and research activity during its relatively short 
history. Bierwag, Kaufman and Khang [3] and Inger- 
soll, Skelton and Weil [13] present interesting historic 
summaries of this activity through 1977, while the 
newer Bierwag [1] provides additional information on 
more recent developments. In addition, these sources 
contain extensive references to the literature, which are 
only highlighted here. 

The notion of duration was independently discovered 
by at least four authors. The earliest source is Macaulay 
[16], who coined the term "duration" in 1938 as a 
refinement of maturity for quantifying the length of a 
payment stream, such as a bond. His focus was on bet- 
ter defining the mean time to prepayment, and his mea- 
sure reflected a weighted average of  the times to 
maturity. At about the same time, Hicks [10] developed 
the same duration formula, calling it the "average 
period;' analyzing the price sensitivity of an income 
stream to changes in the underlying interest rate. Spe- 
cifically, the Macaulay duration equalled the elasticity 
of the price of a bond with respect to v = (1 + i) -~. 

A number of years later, Redington [17] and Samuel- 
son [25] discovered a very similar formula analyzing 
questions in what has come to be known as immuniza- 
tion theory. Redington sought to "immunize" a liability 
stream with an asset stream. This meant that the value 
of each was to be equally responsive to changes in the 
underlying interest rate. This was accomplished by 
equating first derivatives of the associated price or 
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present value functions, thereby introducing the 
approach to duration that was later generalized in the 
development of what has come to be known as "modi- 
fied duration." Similarly, Samuelson's focus was on 
immunization, analyzing the sensitivity of a firm's net 
worth to changes in the underlying interest rate. 

For the above formulations, the price function and 
the corresponding duration measure were defined in 
terms of "the interest rate," which was typically taken 
as the yield to maturity. This approach was also fol- 
lowed in Vanderhoof [27], [28], which adapted the Red- 
ington model and became, to many actuaries, an 
introduction to this field of thought. Fisher and Weft [9] 
later generalized the notion of duration so that the price 
function could reflect a complete yield curve. In this 
context, a change in yields was modeled in terms of  a 
parallel yield curve shift, whereby each yield rate is 
changed by the same amount. This duration measure 
has sometimes been referred to as D 2, to distinguish it 
from the Macaulay duration, denoted D r Correspond- 
ing to other models of yield curve shifts, other duration 
measures have been defined (see [1]-[4], [14], and [15], 
for example). In [4], it is also shown that losses associ- 
ated with choosing the wrong model can be substantial. 

More recently, Stock and Simonson [26] have ana- 
lyzed after-tax adjustments to price sensitivity, while 
Chambers, Carleton and McEnally [6] have explored 
the notion of a duration vector in immunizing 
default-free bond portfolios. In this latter paper, the var- 
ious components of the duration vector correspond to 
cash-flow-weighted moments of the adjusted times to 
maturity. The first component is similar to D2, while the 
second reflects a measure of the average time squared, 
then average time cubed, and so on. The adjustment 
made to the time values is a reduction of one period. 

In this paper, a general multivariate approach to 
duration analysis and price sensitivity is developed that 
is applicable to virtually any model of yield curve 
movements. Of  course, multivariate models have been 
used elsewhere ([1] and [12], for example). The pur- 
pose here is to explore the general mathematical theory 
and its applications in some detail. In particular, two 
general multivariate approaches are analyzed that are 
relatively easy to apply, yet provide a clearer under- 
standing of the yield curve risks inherent in the portfo- 
lio being analyzed. 

Common to both approaches is a discrete representa- 
tion of a yield curve. Although this curve is usually 
visualized as a continuous function, in practice it is typ- 
ically generated by yield values at well-defined pivotal 

points. These "yield curve drivers" usually correspond 
to semiannual yields at the actively traded commercial 
paper, note, and bond maturities. For example, one 
might base a yield curve on observed market yields at 
maturities of 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, and 30 
years. Given these observed yields, the remainder of the 
yield curve is then generated by interpolation. Conse- 
quently, these other yields are functionally dependent 
on the observed values. That is, the yield curve contin- 
uum is in practice equivalent to an m-point "vector" of 
observed variables. Naturally, other discretizations are 
possible in theory, and many are common in practice. 

Price functions can therefore be modeled in terms of 
these m external variables. The actual units of these 
observed yields are irrelevant for our purposes, as is 
their basis. Semiannual bond yields are as usable as 
effective spot rates. All that is assumed for these models 
is that the price function of the portfolio can be evalu- 
ated based on the yield variables used. Whether this 
price calculation is performed directly, such as by tak- 
ing the present value of fixed cash flows, or with an 
option-pricing or other model is again not important for. 
our purposes. 

Given this m-point representation, two duration 
approaches are developed. The "directional duration" 
approach models yield curve shifts in terms of an arbi- 
trary direction vector N. That is, the initial yield curve 
vector, i 0, is modeled as moving Ai units in the direction 
of N. The price function, P(i 0 + A/N), viewed as a func- 
tion of Ai, then reflects the price sensitivity in this direc- 
tion. Of course, when N = (1, 1 . . . . .  1), the parallel shift 
vector, this directional duration analysis reduces to the 
classical modified duration model. 

A closely related model is also developed using a 
"partial duration" calculus. Here, the yield curve shift, 
Ai, is explicitly modeled as multivariate, and the price 
function P(i 0 + Ai) is analyzed in terms of its partial 
derivatives. 

To motivate the use of these multivariate models, a 
simple example is analyzed using the traditional 
one-variable approach. This example reflects positive 
and negative cash flows, as is usually the case for the 
surplus or net worth portfolio. For example, a dura- 
tion-matching program that uses a "barbell" or "reverse 
barbell" strategy (that is, intermediate liabilities funded 
by long and short assets, or the reverse) always pro- 
duces a net worth position with "long" and "short" net 
positions at various points of the yield curve. In such a 
case, the traditional modified duration measure pro- 
vides useful information about parallel yield curve 

90 Im,estment Section Monograph 



shifts, as expected. However, nonparallel shifts produce 
price changes that are orders of magnitude larger and/ 
or of an opposite sign compared with the price changes 
the modified duration measure would suggest. 

The multivariate duration approaches are then devel- 
oped, and this example is revisited and shown to behave 
quite understandably by using these more general mod- 
els. Section 5 then explores practical considerations and 
two applications to yield curve slope sensitivity. 

This paper has been written at a level that assumes 
some familiarity with traditional duration analysis the- 
ory and applications. However, the examples used 
throughout have been kept simple and intuitive in an 
attempt to make the general theory accessible to even 
beginning practitioners. The reader is referred to Reitano 
[18] for a more introductory approach to the models 
developed here. In particular, the one-variable model 
and its properties are more fully developed and exem- 
plified. 

For a variety of applications of the multivariate mod- 
els developed in this paper, see Reitano [19]-[24]. 

2. The One-Variable Model and Its 
Limitations 

a. Definitions 
Let P(O denote the price function that assigns to each 

interest rate i>0, the value of a given portfolio of future 
cash flows. The actual rate i can be defined within any 
system of units---annual, semiannual, continuous, and so 
on--and generally follows from the context of the prob- 
lem. The future cash flows can be positive or negative, 
fixed or dependent on i. We assume that P(i) is twice dif- 
ferentiable and has a continuous second derivative. 

Definition 2.1: 
Given a price function P(i), the (modified) duration 

function, D(i), is defined for P(i)~O as follows: 

D( i) = - ~ i  / P( i). [] (2.1) 

Using the standard first-order Taylor series approxima- 
tion, we have: 

P(i)lP(io) = I - D(io) Ai, (2.2) 

where Ai = i - i 0. 

Definition 2.2: 
Given P(i), the convexity function, C(i), is defined for 

P(i)¢O as follows: 

C( i) = -d-~.z / e (  i) . [] (2.3) 
di 

Using the second-order Taylor series approximation: 

e(i)/P(io) ~ 1 - D(io) Ai + 1/2C(io) (Ai) 2. (2.4) 

In applications, there are two common approaches to 
using this model. With the yield-to-maturity approach, 
i 0 is taken as the (not necessarily unique) value such 
that P(i o) equals the given initial price. Equivalently, the 
yield curve is assumed to be fiat with value i o. P(i o + Ai) 
then reflects the price when the yield to maturity is 
changed by Ai. The parallel-shift approach allows cash 
flows to be initially valued on the actual yield curve, 
producing the value P(0). Then P(Ai) represents the 
price when the yield curve is changed "in parallel" by 
amount Ai, that is, when each yield point is changed by 
this common amount. Unfortunately, the use of 
one-variable models is not without its limitations, as the 
following example demonstrates. 

Assume a simple portfolio of three fixed cash flows 
equal to 20, -20, and 11, at time 0, 1, and 2 years, 
respectively. Also, assume that the one-year spot rate is 
0.105 and the two-year spot rate is 0.10. For simplicity, 
such a spot rate curve will be denoted (0.105, 0.10). At 
these rates, the current price is easily calculated to be 
10.99136. 

b. Yield-to-Maturity Approach 
Using the yield-to-matitrity (YTM) approach, the 

price function P(i) is modeled: 

P ( i ) = 2 0 - 2 O v +  llv2,  v = ( l  +i) -~. (2.5) 

The equation P(i)= 10.99136 has two solutions: 0.00445 
and 0.21565. Choosing the smaller YTM of 0.00445, the 
duration of P(i) is calculated to be 0.172, and the con- 
vexity equals 2.308. 

Using the linear approximation in (2.2): 

P(i)IP(O.O0445) -- 1 - 0.172(i - 0.00445). (2.6) 

ff the yield curve increases uniformly by 0.01 to 
(0.115, 0.11), the use of 0.01445 = 0.00445 + 0.01 for i 
in (2.6) would yield a very poor approximation. The 
actual portfolio decrease in this case is 0.0067%, while 
this linear approximation and i value would predict a 
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decrease of 0.17%. Making the adjustment for the con- 
vexity value of 2.308 improves the approximation 
slightly to a predicted decrease of 0.16%, still orders of 
magnitude from the correct answer. 

The problem here is one of units: yield curve units ver- 
sus YTM units. The proper value to use for i in (2.6) is not 
0.01445, but the YTM corresponding to the yield curve 
(0.115, 0.11). A calculation shows this value to be 
0.00485. That is, the 0.01 change in the yield curve corre- 
sponds to only a 0.0004 change in YTM, so it is obvious 
why the above initial approximation was so poor. Using 
the new YTM in (2,6) produces a predicted decrease of 
0.0069%, which compares quite favorably to the actual 
decrease of 0.0067%. Here, the convexity adjustment is 0 
to four decimal places (in percentage units). 

If the larger YTM value of 0.21565 had been chosen, 
its negative duration of-0.117 can also be interpreted 
as a problem of units. That is, an increase in spot yields 
corresponds to a decrease in YTMs, thereby correcting 
for both the wrong sign and the wrong order of magni- 
tude. Specifically, the yield curve increase of 0.01 cor- 
responds to a YTM change of-0.0006. 

Consequently, one could correct for the "units" prob- 
lem inherent with the YTM approach if an appropriate 
conversion formula can be developed (Section 3c). 
However, the YTM approach also has the uncorrectable 
problem of nonexistence of solutions. For example, the 
yield curve (0.109, 0.110) produces a price for the 
above cash flows of 10.8936, which is below the mini- 
mum value in (2.5) of 10.909. Hence, no YTM exists, 
nor does an estimable Ai. 

c. Parallel Shift Approach 
Using the parallel shift approach, the price function 

for the above cash flows is: 

P ( A i ) = 2 0 - 2 O v +  l l w  2, v=(1 .105+Ai)  -t, 

w = (1.10 + Ai) -t. (2.7) 

The equation P(Ai) = 10.99136 now has the obvious 
solution of Ai = 0. A calculation produces D(0) = 
0.0136 and C(0) = 1.404. Using (2.2), P(Ai) is linearly 
approximated by: 

P(Ai)IP(O) = 1 - 0.0136 Ai. (2.8) 

For a parallel yield curve increase of 0.01 to (0.115, 
0.11), the approximation in (2.8) predicts a portfolio 
decrease of 0.0136%, which overstates the actual 

decrease of 0.0067%. The convexity adjustment 
improves the approximation from 0.0136% to 0.0066%. 

The primary limitation of the parallel shift approach 
is that yield curve shifts are often not parallel, and the 
above model can provide poor approximations. Con- 
sider, for example, an increase in yields from (0.105, 
0.10) to (0.1075, 0.1075), that is, an increase of 25 basis 
points in the one-year spot rate and 75 basis points in the 
two-year value. Because the duration of the portfolio is 
positive at 0.0136, one expects that an increase in yields 
should decrease the portfolio value. In this case, this 
does indeed occur, and this nonparallel increase in yields 
causes a decrease in the portfolio value of 0.745%. 

However, this decrease would not have been pre- 
dicted from the first- or second-order approximations 
for P(Ai)/P(O), choosing Ai to be equal to 25 or 75 basis 
points. The best of the four approximations would pre- 
dict a portfolio decrease of only 0.010%, a very poor 
estimate. It appears that for this nonparallel yield curve 
change, the portfolio is far more sensitive than the dura- 
tion and convexity values imply. This problem has little 
to do with the size of the yield curve shift. 

For example, assume that the yield curve had 
increased only slightly from (0.105, 0.10) to (0.1052, 
0.1001). This shift is positive and nearly parallel, so 
again a portfolio decrease is expected. However, the 
portfolio value actually increases in this case by 
0.015%. Both linear and quadratic approximations pre- 
dict decreases at both 1 and 2 basis points. The best of 
these approximations calls for a decrease of 0.0001%. 
As before, the sensitivity of the portfolio to this nonpar- 
allel shift appears much greater than D(0) and C(0) 
imply. Unlike before, not even the sign of the sensitivity 
is accurately predicted. 

As was the case for the YTM approach, the problem 
here is again a problem of units. The above approxima- 
tion formulas for P(Ai) reflect the sensitivity of price to 
parallel shifts of the yield curve of Ai. This parallel shift 
is really a vector shift of Ai, where Ai -- (Ai, Ai) repre- 
sents a yield change vector that moves the yield curve 
from i 0 = (il, i2), to i 0 + Ai = (i~ + Ai, i 2 + Ai). Looked at 
this way, the shift vector Ai encompasses a "magni- 
tude," Ai, and a "direction" N = (1,1): 

Ai = Ai(1,1). (2.9) 

The various approximation formulas for P(Ai) can be 
interpreted as reflecting the change in price due to a 
change in yields of Ai, where this change is in the direc- 
tion of the vector N = (1,1). 
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Decomposing the various shifts exemplified above, 
we obtain: 

(0.01, 0.01) = 0.01 (1,I) .(2.10a) 

(0.0025, 0.0075) = 0.0025 (1,3) (2.10b) 

(0.0002, 0.0001 ) = 0.0001 (2,1). (2.10c) 
Of  course, these decompositions are not uniquely 
defined. The approximation formulas worked well for 
shift (2.10a) because the direction of  change was N = 
(1,1), the direction explicitly assumed in the derivation 
of these formulas. Nonparallel shifts (2.10b and c) 
caused poor estimates because their direction vectors 
were not equivalent to (1,1), and for the cash flows 
underlying P(Ai), this difference in directions was very 
important. 

For notational convenience here, let D(~.~) denote the 
duration as defined in (2.2), with the underlying direc- 
tion vector N = (1,1) explicitly displayed. For the exam- 
ple above, we have D(~.I ) - 0.0136. In the next section, 
duration and convexity are formally defined with 
respect to directions other than (1,1). With those defini- 
tions, one can calculate: 

Do.i) = 0.0136 C(l,i) = 1.404 (2.11a) 

D(l.3 ) = 3.0212 C(i.3 ) = 34.214 (2.11b) 

D(2.I ) = -1.4767 Ct~.l ) = -6.688 (2.11c) 

These duration and convexity values reflect the price 
sensitivity to yield curve shifts in various directions. 
They are seen to differ greatly. 

Once such directional durations and convexities 
have been defined and calculated, one can develop the 
corresponding approximation formulas, such as the 
counterpart to (2.4): 

P(i o + AiN)/P(i o) -- 1-ON(i0)Ai+ l/2C~(io)(A02. (2.12) 

Utilizing (2.12) and the directional values in (2.11), the 
following improved estimates are obtained: 

First Second Exact 
Shift Order Order Value 

(0.01,0.01) -0.0136% -0.0066% -0.0067% 
(0.0025,0.0075) --0.7533% -0.7446% -0.7447% (2.13) 
(0.0002, 0.0001) +0.0148% +0.0148% +0.0148% 

This multivariate approach to duration and convexity 
is explored in detail in Section 3. 

3. Multivariate Models 

a. Direct ional  Durat ions  and  
Convexities 

Let i 0 = (ion, io2 . . . . .  iota ) represent an m-16oint yield 
curve on which the portfolio is valued. For example, the 
components of this yield vector could correspond to 
yield curve pivotal points, such as yields for terms: 
0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, and 30 years. These 
yield curve drivers are then the defining variables of  the 
price function, since other yield values are typically 
interpolated and therefore dependent on these values. 
Also, let N = (n~ . . . . .  nm) be a direction vector, N ~ 0, 
and INI , ~  2,1/2 = tzLn~) denote its length. In general, vec- 
tors will be identified with column matrices when used 
in matrix calculations, with the exception of the total 
duration vector (Section 3c), which will be identified 
with a low matrix. 

Consider P(t)=P(io+tN ), where P(i) is a multivariate 
price function, assumed to be twice continuously differ- 
entiable. Clearly, this function defines the price of the 
portfolio as the initial yield curve i 0 is shifted t units in 
the direction of  N, that is, where i01 is shifted tn r units, 
io2 is shifted tn 2 units, and so on. Using a Taylor series 
expansion, P(t) can be approximated to first and second 
order in t as follows: 

P(t) .-- P(O) + P'(O)t, (3.1a) 

P(t) = P(O) + P'(O)t + ll2P'(O)t 2. (3. lb) 

In order to calculate the derivatives of P(t) needed in 
(3.1), let Pj(i) denote the j-th partial derivative of  P(i), 
and P#(i) denote the corresponding mixed second-order 
partial derivative. We then obtain: 

P'(t) = Y~njPj (i o + iN), (3.2a) 

P"(t) = Y~Y-nineP:k (i 0 + tN). (3.2b) 

Evaluated at t=0, the expressions in (3.2) are seen to 
be the first- and second-order directional derivatives of 
the price function P(i) evaluated at io; that is, 

P'(O) - ~P i ~-~ o = ~n~ej ( io) ,  (3.3a) 

P'(0)-~2p io = ZZnjn,Pj,(io). (3.3b) 
~N ~ 
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In anticipation of combining (3.1) and (3.3), the follow- 
ing definitions are motivated: 

Definition 3.1: 
Let P(i) be a multivariate price function and N ¢ 0 a 

direction vector. The directional duration function in the 
direction of N, DN(i), is defined for P ( i ) ,  0 as follows: 

0P . Ds(i)  = - ~-~/P(1). [] (3.4) 

Definition 3.2: 
Given the assumptions of Definition 3.1, the direc- 

tional convexity function in the direction of N, CN(i), is 
defined for P(i) ;~ 0 as follows: 

02p CN(i) = ~ - ~ / P ( i ) .  [] (3.5) 

Substituting (3.3) into (3.1), the following counter- 
parts to (2.2) and (2.4) are produced: 

P(i 0 + AtN)/e(i o) = 1 - DN(i 0) Ai, (3.6) 

P(i o + A~qNr)/p(io) = 1 - O ~ i  o) Ai + ll2CN(i o) (Ai) 2. (3.7) 

As an example, consider the price function in (2.7) 
explicitly expressed as a multivariate function: 

e(i~,i E) = 20 - 20v + 1 lw 2, (3.8) 

where v=( l+ i i )  -1, w=(l+i2) -I. The various partial 
derivatives of P(il,i2) are easily calculated to be: 

Pt(ii,i2) = 20v2; P2(it,i2) = -22w 3 (3.9a) 

Pt~(it,iE) =-40v3; P22(it,i2) = 66w4; PiE = PEt - 0 .  (3.9b) 

Evaluating these derivatives on i o = (0.105, 0.10) and 
performing the necessary weighted summations in 
(3.3), the directional durations and convexities dis- 
played in (2.11) can be readily verified. 

Before continuing, note that: 
(1) If N = (1 . . . . .  1), the parallel shift direction vector, 

DN(i 0) equals the traditional value of D(0), and 
C#(i0) = C(0), where these latter values are calcu- 
lated utilizing the parallel shift approach. Below, 
these traditional values will also be denoted D(i0) 
and COo)- 

(2) Formulas (3.6) and (3.7) are consistent even though 
there are infinitely many ways to specify the direc- 
tion vector N. For example, given N, let N' = 1/2N. 

(3) 

The corresponding shift magnitudes satisfy: Ai' = 
2Ai. The estimates in (3.6) and (3.7) will then be 
the same for N and N', since D;, = l/2D N, and 

C;~ = 1/4C u by (3.3). 
To be uniquely defined, one can normalize the 

model by requiring the direction vector N to satisfy 
INI--1. The magnitude variable, Ai, is then 
uniquely defined as the length of the shift vector 
AiN. However, regardless of whether N is normal- 
ized, consistent estimates are produced. 
A variety of the duration measures developed in the 
past and referenced in the introduction are special 
cases of directional durations, because they reflect 
explicit models of assumed yield curve shifts. 

In addition, "key rate" durations of Ho [12] are 
also directional durations. In this model, the yield 
curve components in i o are spot rates, often on a 
monthly basis. A collection of "pyramid" direction 
vectors, Nj, are then defined, such as: 

Nj = (0 . . . . .  0, 1/2, 1, 2/3, I/3, 0, 0 ...). 

The actual spot rate corresponding to the compo- 
nent 1 in Nj is the "key rate," and the various key 
rate durations are equivalent to the directional dura- 
tions DN(i0). 

The collection of pyramid direction vectors used 
in the Ho model form a "partition" of the parallel 
shift vector: 

~ Nj = (1, 1 .... 1). 

In Section 4a, this property will be seen to have 
an important corollary. 

Proposition 1: 
Let P(i) be a multivariate price function and N a 

direction vector with P(i o + A/N) ;~ 0 for IAi[ < K.  Then ' 

P(io+AiN) /P( io)= expI- !DN(i0+ tN)dt], (3.10) 

for [Ai[< K.  

Proof:. Define f ( t )  = lnlP(i0 + tN)l. Then - f ' ( t )  = 
DN(i o + tN), which can be integrated and exponentiated 
to produce (3.10). [] 

From (3.10), the following first-order exponential 
approximation is transparent: 

P(i 0 + AiN)IP(io) -- exp[-DN(i0) Ai]. (3.11) 
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To develop a second-order exponential formula, we 
must expand the exponent function in (3.10) as a Taylor 
series in Ai. To do this, let: 

f ( A i )  = DN(iO + tN)dt .  (3.12) 
0 

We then have: 

f ' (Ai )  = DN(i o + Az~l), (3.13) 

f"(Ai) = D~ (i o + A,N) - C~(i o + A/N). 

The second-derivative formula is readily verified by tak- 
ing directional derivatives of the identity, ~PI3N = -DNP. 

Approximating f(Ai) by a second-order Taylor series 
about Ai = 0 and substituting into (3.10), we obtain: 

P(i o + AiN)IP(i o) -- exp{-D#(i o) Ai 

+ 1/2 [CN(i 0) - D2N (i0)](Ai)2}. (3.14) 

b. Properties of the Directional Duration 
Approximations 

In this section, properties of  the various approxima- 
tions above are explored. We begin with an error analy- 
sis of the first-order estimates. 

Proposition 2: 
Let P(i) be a price function which is nonzero at i 0. 

Then for Ai sufficiently small: 

exp[-DN(i o) Ai] < P(i)/P(i o) C > D 2 

1 - DN(i0) Ai < e(i)lP(i o) (3.15)  
< exp[-DN(i o) Ai] 0 < C < D 2 

P(i)lP(io) < 1 - D~(io) Ai C < 0 

where i = i 0 + A/N, D = DN(i0), and C = Cs(io). 
Proof'. The bounds in (3.15) correspond to the linear 

and first-order exponential approximations in (3.6) and 
(3.11). For small Ai, the sign of the error in these 
first-order approximations equals the sign of the second- 
order terms in the respective expansions in (3.7) and 
(3.14). For the linear approximation, this term has the 
sign of CN(i0), while for the exponential approximation, 
this term has the sign of CN(i o) - D~ (io). The bounds in 
(3.15) follow from this and the observation that 1 + x < e  ~ 
for all x. [] 

Next, we investigate the conditions under which the 
various approximations for P(i)lP(io) are exact. Using 

the identity in Proposition 1, it is natural to expect that 
such exactness is related to the behavior of  D(i) near i 0. 

Proposition 3: 
The various approximations for P(i 0 + AiN)IP(i o) 

will be exact if and only if DN(i) assumes one of the fol- 
lowing functional forms: 

Exponential Approximation 

(3.11) 1st Order 
(3.14) 2nd Order 

Polynomial Approximation 

Model for D~(i) 

D 
D + [DZ - C] Ai 

(3.16) 
Model for DN(i) 

(3.6) 1st Order D/(1 -DAi) 
(3.7) 2nd Order (D - CAO/(1 -DAi  + 1/2C(A02) 

where i = i o + AiN, D = DN(i0), and C = CN(io). 
Proof. The models for DN(i ) in (3.16) can be derived 

by equating the exact value of  P(i 0 + At~l)lP(i o) as given 
in (3,10) to the respective approximations, and solving 
for DN(i ). Although integral equations are encountered, 
these are easily solved by first taking logarithms, then 
differentiating with respect to Ai. [] 

Note that the underlying model for D(i) in (3.6) can 
be counter-intuitive. A calculation shows that this func- 
tion is an increasing function of  Ai, while DN(i) is an 
increasing function locally only when it has a positive 
directional derivative. Based on (3.13), this occurs only 
when D~ (i o) exceeds C~v(io). While somewhat more 
complicated, the model for DN(i) underlying (3.7) does 
not have this potential problem, in that it too will be an 
increasing function locally only when D~ (i o) exceeds 
c,~(i0). 

As a final investigation, it is next shown that each of 
the exponential relationships in (3.10), (3.11), and 
(3.14) equals the limiting case of applying the linear 
approximation in (3.6) to ever finer subdivisions of the 
segment from i 0 to i. The formula that results depends 
on the assumption made about the values of DNO ) in 
this approximation. 

To this end, let i o and i = i 0 + AiN be given and define 
a subdivision of  the corresponding segment by: 

ij = i 0 + ~ A i N ,  j = 0  . . . . .  n. (3 .17)  

Clearly, we have that: 

P( i )  = fi e ( i j )  
P(i0) : ~ P ( i j _ , )  " 

(3.18) 
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Applying the linear approximation in (3.6) to each 
term in this product, let: 

tl  

K, = r - i [1-DN(i j_~)(Ai /n) ] .  (3.19) 
j = l  

Proposition 4: 
Let K n be defined as in (3.19) above. Then: 

lim(Kn) = exp - DN(io + tN)dt , (3.20) 

as n--->~.  

Proof: Because P(i) is twice continuously differen- 
tiable by assumption, DN(i ) is bounded on the segment 
[io,i]. Hence, an initial value of n o can be chosen so that 
for n>n o, K~ equals the product of positive factors. For 
such an n, ln(K~) is therefore well defined. Because 
In(x) is a continuous function, as is its inverse e x, K n will 
converge if  and only if  ln(Kn) converges. 

Now, 
n 

ln(K~) = ~ In[1 -ON(i j_ t ) (Ai /n)]  
J=J (3.21) 

n 

= - ~ D N ( l j _ l ) ( A i / n  ) + 0 ( l / n )  
j= l  

Taking limits in (3.21), we see that the summation con- 
verges to the Riemann integral of DN(i) as in (3.20). [] 

As is easily seen, if D~(ij_~) in (3.19) is set equal to 
DN(i0), or approximated linearly by DN(i 0) + [ D~ (i0) - 
C~(i0)](] - 1) Ailn, the corresponding limits are equal to 
the approximations in (3.11) and (3.14), respectively. 

c. Partial Durations and Convexities 
As shown in Section 3a, the classical duration and 

convexity analysis of Section 2 can be readily general- 
ized to include yield curve shifts that are not parallel. 
An alternative model would be one that more explicitly 
recognizes the multivariate nature of yield curve 
changes, that is, a model that estimates P(i 0 + Ai) 
directly, where i 0 is the initial yield curve vector and 
Ai = (Ai l . . . . .  Aim) is a yield change vector. 

To this end, consider the following m-dimensional 
versions of the first- and second-order Taylor series: 

P(i 0 + Ai) = P(i0) + ~Pj (io) Aij, (3.22a) 

P(i o + Ai) - P(io) + ,~.,Pj (io) Aij 

+ 1/2EEPjk (i0) Aij Ai,. (3.22b) 

These approximations naturally motivate the follow- 
ing definitions: 

Definition 3.3: 
Given a multivariate price function P(i), thej-th partial 

duration function, denoted Dj(i), is defined for P(i) ~ 0 as 
follows: 

Dj(i) = -Pj(i)/P(i), j = 1 . . . . .  m. [] 

D, efinition 3.4: 
Given the price function P(i), the jk-th partial con- 

vexityfunction, denoted Cj~(i), is defined for P(i) ~ 0 as 
follows: 

Cjk(i) = Pjk(i)/P(i), j ,k = 1 . . . . .  m. [] 

Definition 3.5: 
Given the above definitions, the total duration vector, 

denoted D(i), and the total convexity matrix, denoted 
C(i), are defined as follows: 

D(i) = (Dr(i) . . . . .  Din(i)), (3.25) 

C(i) = 

C i l ( i )  .... C,m(i)  

. [] (3.26) 

Cml(i)  .... Cmm(i) 

Utilizing these definitions in (3.22), the following gen- 
eralizations of (2.2) and (2.4) are produced: 

P(i o + Ai)/P(io) = 1 - D(io) • Ai (3.27) 

P(i o + Ai)/P(io) = 1 - V(io) • Ai + 1/2AirC(io) Ai. (3.28) 

To simplify notation, (3.27) utilizes the well known 
dot product or inner product notation, whereby if x and 
y are m-vectors, x.y is defined: 

x.y = ~,xyj. (3.29) 

Equivalently, this is the matrix product of the 1 ×m row 
matrix D(i0), and the m × l  column matrix Ai. Also, 
the last term in (3.28) is expressed in matrix product 
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notation, or more specifically, as a quadratic f o r m  in Ai. 
By the above convention for Ai, Ai r is the correspond- 
ing row matrix, or transpose of Ai. Standard matrix cal- 
culations then produce: 

xrCx = ~,~,CjeXlxk. (3.30) 

Note that for the smooth price functions assumed here: 

Cjk(i) = Cky(i), 

because of  the corresponding property for mixed partial 
derivatives. Consequently, C(i) is a symmetric matrix in 
this case, that is, 

C( i )  = C(i) r. (3.32) 

Again returning to the example in (3.8) with i 0 = 
(0.105, 0.10), the partial derivatives in (3.9) imply: 

D~(i0) = -1.4902, D2(i0) = 1.5038, (3.33a) 

Cjl(i0) = -2.697,  C22(i0) = 4.101, Ci2 = C21 = 0. (3.33b) 

Hence, the first-order approximation in (3.27) becomes: 

P(i 0 + Ai) -- 10.99136(1 + 1.4902Ai~ - 1.5038Ai2). (3.34) 

Noting the functional form of (3.34), it is little won- 
der that for nonparallel yield curve shifts, Ai~ ~ Ai 2, this 
price function changed in ways not anticipated by the 
traditional approximation (2.8). Namely, this price func- 
tion is relatively sensitive to movements in Air and Ai 2 
separately. However, because these sensitivities are of 
opposite sign and similar magnitude, the traditional 
approximation, which assumes Ai~ = Ai 2, produces an 
apparent sensitivity of only 0.0136. Similarly, the tradi- 
tional convexity value of 1.404 disguises the greater sen- 
sitivities implied by the partial convexities in (3.33b). 

In this example, the partial durations are seen to sum 
to the modified duration, while the partial convexities 
sum to the traditional convexity value. The following 
proposition formalizes this result: 

Proposition 5: 
Let i 0 be a yield curve vector and D(i0) and C(i0) 

denote the duration and convexity values calculated 
using the "parallel shift" approach. Then: 

D(i 0) = ]~Dj(i0), (3.35) 

C(i 0) = Z~Cjk(i0). (3.36) 

• Proof'. Let M = (1 . . . . .  1), the parallel shift direction 
vector and define the price function P(0  = P(io + tM)] 
Then: 

P'(i) = ~Pj(i  0 + iM), (3.37a) 

P"(i) = EEP#( i  0 + ~M). (3.37b) 

Evaluating (3.37) at i -- 0 and dividing by P(0) -- P(i 0) 
completes the proof. [] 

Turning next to the exponential models, we have the 
following: 

Proposition 6: 
Let r(t) be a smooth parametrization of yield curve 

vectors defined on [0, 1] so that r(O) = i 0, r(1) = i 0 + Ai. 
Also, assume that P[r(t)] ;~ 0 for O<t< 1. Then: 

P(i0 + Ai ) /P ( io )  -- exp - D[r ( t ) l  • r ' ( t )d t  , (3.38) 

where r'(t) denotes the ordinary derivative of this vector 
valued function. 

Proof. Define f ( t ) - - l n l P [ r ( t ) ] l .  A calculation 
shows thatf '( t)  = -D[r(t)] .r ' ( t ) ,  which can be integrated 
and exponentiated to complete the proof. [] 

In the special case in which r(t) is linear, r(t) = ~+tz~, 
the more general formula in (3.38) is easily seen to reduce 
to the directional derivative counterpart in (3.10), with z~ 
here corresponding to AtN above. 

From Proposition 6, the following approximation 
results: 

P(i o + Ai)/P(i o) -- exp[-D(io).r'(0)]. (3.39) 

To develop the second-order exponential approxima- 
tion, partial derivatives of  the various partial durations 
are required. Analogous to (3.13), we have: 

0Dj 
Oi'---~ = DkDj - C~k, (3.40) 

which is derived by differentiating the identity Pj=-PDi ,  
with respect to i k. Proceeding as before, one can expand 
the exponent function in (3.38) as a one-variable Taylor 
series by replacing the upper limit of integration with s, 
say, then substituting s= 1 into the second-order Taylor 
expansion to obtain: 

P(i o + Ai)/P(i0) --- exp {-D(i0).r'(0) + 1/2 [r'(0) r 

[COo) - D(io)rD(io)]r'(0) - D(io).r"(0)] }. (3.41) 

V. Multlvariate Duration Analysis 97 



In the special case in which r(t) is linear, r'(t) = Ai 
and r"(0) = 0. Consequently, (3.39) and (3.41) reduce to 
the directional derivative counterparts in (3.11) and 
(3.14), respectively. 

d. YTM Approach Revisited 
As before, let i 0 be a yield curve vector, and I o the 

equivalent YTM so that P(io)=P(lo). Expanding into the 
respective first-order Taylor series, 

P(i 0 + Ai) - P(io) [1 - D(io) • Ai], (3.42a) 

P(I o + AI) -- P(Io) [1 - O(10) • A/]. (3.42b) 

Equating these values, we can solve for A/ when 
D(lo)~O, obtaining, 

AI - D(i0). Ai (3.43) 
D(lo) 

When Ai is a parallel shift, the numerator of (3.43) 
reduces to D(io)Ai since D(ic) = ,~,Dj(i o) by Proposition 5. 

As an example, recall the price function (2.5) of Sec- 
tion 2b, where the initial yield curve, i o = (0. 105, 0.10), 
was seen to be equivalent to the yield to maturity, I 0 = 
0.00445; that is, both produced an initial price of 
10.99136. Consider first the parallel yield curve shift of 
0.01 exemplified there. To apply (3.43), recall that D(Io) 
= 0.172 from (2.6), while D(io) = 0.0136 from (2.8). We 
then obtain A/--0.0008, compared with the exact value 
of 0.0004. Consider next the small nonparallel shift, Ai = 
(0.0005, 0.001). Using (3.43) and the partial durations 
in (3.33), one approximates the associated change in the 
yield to maturity, A/-0.00442. Estimating A/directly 
proves this result to be a little understated, in that AJ = 
0.00455. 

By expanding the Taylor series in (3.42) to include 
second-order terms, A/can be estimated using the qua- 
dratic formula: 

AI -- {O - ~[D 2-  2CD. Ai + CAirCAi] } / C ,  (3.44) 

where D=D(Io), C=C(Io), D=D(i0), and C=C(i0). This 
formula simplifies greatly for parallel shifts since D.Ai 
= D(10)Ai, and AirCAi = C(i0)(Ai) 2. In (3.44), the nega- 
tive square root is chosen to satisfy the initial condition 
that A J=0 when Ai=0. 

Using (3.44), the parallel shift of 0.01 is seen to be 
equivalent to a YTM shift of 0.0004, which is exact to 
four decimal places. For the nonparallel shift, Ai = 
(0.0005, 0.001), the estimate for A / i s  also improved 

compared with the linear estimate, reproducing the 
exact value of A/ = 0.00455 to five decimal places. 
Note, however, that it is possible to obtain a negative 
quantity within the square root in (3.44), for example, 
the shift Ai = (0.005, 0.01). In such a case, there is no 
real number, A/, for which the one-variable second- 
order Taylor series equals the multivariate series reflect- 
ing Ai, D(i), and C(i). 

e. Parallel Shift Approach Revisited 
Consider next the parallel shift analysis of Section 

2c. Recall that it was shown that nonparallel shifts 
could be accommodated by redefining duration and 
convexity to reflect these nonparallel yield curve direc- 
tions. Another interpretation is possible whereby non- 
parallel shifts are first translated to "equivalent parallel 
shifts," and the traditional Section 2a formulas are then 
applied. This notion is more fully explored in Section 
4b and seen to provide an intuitive basis for new yield 
curve risk exposure measures. 

To this end, the first-order expansion of P(i 0 + Ai) in 
(3.42a) must be used twice, once for the general Ai and 
once for the parallel shift vector, Ai=AiM, where 
M=(1 . . . . .  1). Equating these approximations, we can 
solve for Ai when D(io) ¢ 0, obtaining: 

Ai - D(i0) • Ai (3.45) 
D(i0) 

Unlike the YTM counterpart formula in (3.43), here Ai 
is seen to be a weighted average of the various compo- 
nent Aij values since ~Dj(io)=D(i0). 

Using the partial durations in (3.33a), we can apply 
(3.45) to the nonparallel shifts in (2.10), to obtain: 

Ai "Equivalent" Ai 

(0.0025, 0.0075) 0.5554 
(0.0002, 0.0001) -0.0109 

Interpreted this way, we see that the traditional formu- 
las can provide poor estimates for nonparallel shifts 
because the units of the equivalent parallel shift, Ai, can 
be orders of magnitude larger, and/or of a different sign, 
than may be inferred from the various nonparallel shift 
values of Aij. This cannot happen if all Dj(i0) values 
have the same sign. In such a case, the equivalent Ai 
will be within the range of Aij values (Proposition 13). 

A second-order counterpart to (3.45) can also be 
developed. A calculation shows it to be identical to 
(3.44), only with D=D(i 0) and C=C(i0). 
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4. Additional Properties of 
Multivariate Models 

a. Duration and Convexity Relationships 
In this section, relationships between the various 

duration and convexity measures defined in the previ- 
ous sections are investigated. 

Proposition 7: 
Let P~(i) and P2(i) be price functions with corre- 

sponding total duration vectors Dl(i), D2(i), and total 
convexity matrices Cl(i ) and C2(i). Let P(i) = Pl(i) + 
P2(i). Then for P(io) ~: 0, 

D(i 0) = [Px(i0)Dt(i0) + P2(i0)D2(i0)]/P(io), (4.1) 

COo) = [e~(i0)Cl(io) + P2(io)C2(io)]/P(io). (4.2) 

Proof: As is the case for the traditional values, this 
result follows directly from the additive property of 
derivatives. [] 

Proposition 8: 
Let N ;~ 0 be a direction vector. Then: 

Ou(i o) = N . D ( i o ) ,  (4 .3 )  

Cs(io) = N'rC(i0)N. (4.4) 

Proof'. Both formulas follow directly from (3.3) and 
the definitions of the various duration and convexity 
values. [] 

A simple corollary to Proposition 8 is possible con- 
ceming the "key rate" durations of Ho [ 12]. As noted in 
Section 3a, the collection of direction vectors, Nj, form 
a partition of the parallel shift vector, (1, 1 . . . . .  1). Con- 
sequently, key rate durations sum to the traditional 
duration measure since: 

]~Du(io) = ]~Nj.D(io) 

= (I . . . . .  1 ) .D( io)  

= D(io),  

by Proposition 5. 
This result has been independently derived by Ho. 
The following proposition summarizes a number of 

earlier results regarding derivatives of the various dura- 
tion functions. 

Proposition 9: 
Let N ;~ 0 be a direction vector. Then: 

d . 
~iiD(to) = D2(i0)- C(io), (4.5) 

~NDN(io) 2 • = DN(lo)  - CN(io) ,  (4 .6)  

~/jDk(io) = - (4.7) Dj(i0)Dk(i0) C~k(i0), 

~/j D(io) = D(i0)D~(io)- ~Cjk(io) .  (4.8) 
k 

Proof: Relationship (4.5) is derived by differentiat- 
ing the identity, P'(/) = -P(i)D(i), solving for D'(i) and 
substituting i = i 0. Similarly, (4.6) is derived from the 
identity, Pu(i) = -P(i)Du(i), where Pu(i) denotes the 
directional derivative of P(i). Here, however, it is the 
directional derivatives that are taken. 

Differentiating the identity, Pk(i) = -P(i)Dk(i ) with 
respect to ij leads to (4.7), while summing this result 
with respect to k and using (3.35) produces (4.8). [] 

Turning next to bounds for directional derivatives, 
we have: 

Proposition 10: 
Let P(i) be a price function and D(io) its total dura- 

tion vector evaluated on i 0. Then for all direction vec- 
tors, N, 

- [D( i0) l  [HI -< Du(i0) < [D(i0)l IS l ,  (4 .9)  

where I I denotes the length of the given vectors. Fur- 
ther, the upper bound in (4.9) is achieved for all positive. 
multiples of the unit vector: 

No = D ( i 0 ) / [ D ( i 0 ) l ,  ( 4 .10 )  

while the lower bound is achieved for all negative mul- 
tiples. 

Proof. This proposition is an immediate consequence 
of the Cauchy-Schwarz inequality, since by Proposition 
8, Du(i o) is an inner product. Specifically, the absolute 
value of an inner product is less than or equal to the 
product of  the vectors' lengths, with equality if and 
only if the vectors are parallel. [] 

Note that by Proposition 10, if Di(i0) = D(io)/m for all 
j, the corresponding price function is most sensitive to 
parallel yield curve shifts, since then No= (1, 1 . . . . .  1). 
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Proposition 11 shows that given D(i0), the range of 
price sensitivity displayed in (4.9) is minimized in this 
case. 

Propos i t i on  11:  

Let D(io) be a total duration vector with associated 
duration D(i0). Then: 

ID(i0)l-> ID(i0)l/,fm, (4.11) 

where m is the dimension of D(io). Further, the lower 
bound in (4.11) is achieved if and only if Di(i0) = D(io)lm, 
for all j. 

Proof. Although this is a familiar calculus result, a 
simple noncalculus proof is possible. Changing nota- 
tion, let A be the vector with aj = D(io)lm, for all j, and 
let B also have the property that ]~bj=D(io). Then 
C = B - A  satisfies Y.ci = 0, so IBI 2 = IAI 2 + ICI 2 . Hence, 
since ICI 2 > 0,  IB[ 2 is minimized when C = 0. [] 

Bounds for directional convexities are considered 
next. While the following result and proof reflect 
known extremal properties of quadratic forms and use 
well-known techniques, they are included here for com- 
pleteness. 

Propos i t i on  12: 

Let P(i) be a price function and C(i 0) its total con- 
vexity matrix evaluated on i o. Then: 

L, IN[ z -< CN(i0) --< ~mlNI 2 , (4.12) 

where ~ ' l  and ~'m are the smallest and largest eigenvalues 
of COo), respectively. Further, the bounds in (4.12) are 
achieved for all multiples of the associated eigenvec- 
tors, N~ and N m. 

Proof'. From (4.4), it is clear that: 

C~v(i0) = a2C#(i0), (4.13) 

and hence (4.12) need only be established for INI = 1. 
By (3.32), C(io) is a symmetric matrix, so all eigenval- 
ues are real numbers. In addition, C(i o) must have m 
independent unit eigenvectors, NI . . . . .  N m, which are 
mutually orthogonal and in Which basis C(io) is a diago- 
nal matrix. 

Let P be the change of basis matrix with the Nj as 
column vectors. For convenience, we enumerate the 
eigenvectors so that N 1 is associated with the smallest 
eigenvalue, and N m the largest. Because the columns of 

P are mutually orthogonal, p-i = pr, where pr  is the 
transpose of P. 

Changing coordinates, let N = Px, so the compo- 
nents of x equal the coordinates of N in the {Ni} basis. 
From (4.4), we obtain by substitution, recalling that 
( Ix)  r = xrpr: 

m 

Cu(i 0) = xrPrC(i0)Px = ~ ~,x 2 , (4.14) 
i = 1  

since prCp is diagonal as noted above. In addition, 
expressing INI 2 as NvN, the constraint INI 2 - 1 = 0 
becomes: 

m 

INI 2 - t = xrPrPx - 1 = ]~ xff - 1 = 0. (4.15) 
i = 1  

m 

Substituting x~ -- 1 - ~ x ~  into (4.14), we obtain: 
i = 2  

,'71 

CN(i0) = ~.1 + ~ (~.;- kl)x~. (4.16) 
i = 2  

Because the summation in (4.16) is non-negative, the 
minimum Cu(i0) is obtained when x i = 0 for i>_2, and 
x I = 1. That is,~Cu(i0) has minimum value ~'l, when x = 
(1, 0 . . . . .  0), and hence N = Px = N v 

r a - I  

Substituting X2m = 1 -- ]~ X~, an identical argument 
i = 1  

completes the proof. [] 

From Proposition 12, ii is clear that the directional 
convexities of a price function need not have the same 
sign. In particular,, all CN(i 0) will be positive only when 
all ~.j are positive, that is, only when COo) is a positive 
definite matrix. Similarly, all CN(io) will be negative 
only when COo) is a negative definite matrix. In general, 
Cu(i0) will take on both signs for different values of N. 

The simple example in (3.8) has directional convexi- 
ties of both signs. By (3.33), COo) is a diagonal matrix. 
Consequently, its eigenvalues equal the respective diag- 
onal elements, and we have by (4.12): 

-2.6971NI 2 -< CN(i0) < 4.1011NI 2 , (4.17) 

with corresponding unit eigenvectors: Nt=(1,0) and 
N,,=N2=(0,1). 

This observation concerning the sign of C/v(i0) is 
important because it is often tacitly assumed that "posi- 
tive convexity," or CN(i0)>0 when N = (1 . . . . .  1), is 
always good, and more is always better. See Reitano 
[22] for a more detailed analysis of this issue. 
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A fast way to estimate the potential size of the inter- 
val in (4.12) is to calculate the "norm" of the total con- 
vexity matrix, IC(i0)l, using any submultiplicative 
norm. This is because [~,jl -< IC(i0)l for all eigenvalues 
kj. Consequently, (4.12) can be rewritten: 

ICN(io)l  < IC( io) l  INI 2 • (4.12)'  

Though not a sharp estimate like that produced by 
the interval in (4.12), the above interval is easily calcu- 
lated. For example, one possible norm is: 

IC(io)l = max ~lCij(io)l .  
J i 

For the above example, we see from (3.33) that 
IC(io)l = 4.101 using this norm, and (4.12)" simply 
symmetrizes the interval in (4.17). In general, however, 
the estimates may differ significantly, especially when 
(4.12) is highly asymmetric. 

b. Durational Leverage and the 
Durational Multiplier 

In Section 3e above, the notion of  an equivalent par- 
allel shift was introduced in (3.45). Here, we formalize 
this concept and investigate its properties. 

Definition 4.1: 
Let P(i) be a price function and i o a yield curve vec- 

tor so that D(io) ~ O. For a yield curve shift Ai, the 
equivalent parallel shift, Ai r , is defined: 

Ai r = D( io) .Ai .  [] (4.18) 
D(io) 

Clearly, Ai r is a function of both i o and Ai, though for 
notational convenience, this dependence will usually be 
suppressed. The relationship between Ai r and the length 
of Ai is of immediate importance. As noted in Section 3e, 
we have the following: 

Proposition 13: 
Assume D(io) ~ 0 and all Dj(i0) have the same sign. 

Then for all Ai: 

rnin(Aij) < Ai r _< max(A/j). (4.19) 

Proof: By (4.18), Ai r = ~,~,jAij where E~,j=I. By 
assumption, all ~,j satisfy 0<~,j__l, implying (4.19). [] 

In the more general case, the relationship between 
Ai r and Ai is somewhat more complicated. To this end, 
we have: 

Definition 4.2: 
Given i o and Ai, the directional leverage o f  P(i) in the 

direction of Ai, denoted L(Ai), is defined: 

Ai e 
L(Ai) = iAi--- ] . (4.20) 

The durational leverage o f  P(i) at i 0, denoted L(io), is 
defined: 

L(i0) = max L(Ai). [] (4.21) 

As for Ai r, the dependence of  L(Ai) on i o will usually 
be suppressed. From Definition 4.1, we see that L(Ai) is 
truly a function of direction alone, since for any ~>0, 
L(LAi)=L(Ai). Consequently, L(Ai) achieves all its val- 
ues on the unit sphere, IAil = 1. Since L(Ai) is clearly a 
continuous function, it attains a maximum on this 
sphere and L(i0) is consequently well defined. Because 
L(Ai) is an odd function, that is, L(-Ai) = -L(AI), we 
have that: 

-L(i0)lAil < Aie < L(i0)lAi]. (4.22) 

Proposition 14: 
Given the definition above, we have: 

_ D(io) < L(Ai) < D(io) . (4.23) 
D(i0) D(i0) 

Further, the upper bound in (4.23) is achieved if and 
only if Ai = cD(io), where sign c = sign D(io). 

Proof'. This result is an immediate consequence of 
(4.18) and Proposition 10, since D(io) x Ai = D~,(io) by 
Proposition 8. [] 

Corollary: 
L(io) = D(i0) . [ ]  

D(io) 

From the above analysis we see that the total dura- 
tion vector D(io) provides the direction in which L(Ai) is 
maximized. Further, its length, in units of D(i0), quanti- 
fies the relationship between Ai r and PAil. Conse- 
quently, if [D(i0)l is large relative to ID(io)l; that is, if 
L(i o) is large, even small nonparallel shifts have the 
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potential to produce large equivalent parallel shifts and 
hence large changes in price. 

Proposition 15: 
For any price function, P(i), 

L(i0) >- 1 / , fm,  (4.24) 

with equality if and only if Dj(i0) = D(io)/m for all j. 
Further, if all Dj(i 0) have the same sign, 

L(i0) _< 1. (4.25) 

Proof'. Inequality (4.24) follows from the above cor- 
ollary and Proposition 11. For (4.25), note that: 

L(i0) 2 = ~D~/(~D~) 2 

which is clearly less than or equal to 1 if all Dj have the 
same sign. [] 

For the example in (3.8), we have from (3.33a) that 
L(~) = 155.7. That is, given any restriction on JAil, one 
can find yield curve shifts of that length so that Ai e = _+ 
155.71Ai]. By Proposition 14, all such critical shifts are 
proportional to D(i 0) = (-1.4902, 1.5038). For example, 
the shift ~ = (-0.00070, 0.00071) has a length equal to 
about 10 bp, with A :  = 0.155. Changing the signs in Ai 
produces A :  = -0.155. 

The leverage concept above has intuitive appeal, 
because it provides a method of relating the sizes of 
nonparallel shifts with those of the corresponding 
equivalent parallel shifts. The basis of this correspon- 
dence is that the durational effect in (2.4) and (3.27) is 
the same for each shift. Note, however, that the units 
used to measure the shifts are different. For ~ ,  the unit 
basis is vector length, JAil, while for A: ,  the unit basis 
equals the amount of the parallel displacement. In par- 
ticular, if Ai E is the parallel shift vector corresponding 
to Ai e, we have I x:l = f ~ l A : l .  This difference in 
units causes the value of L(i o) and the inequalities in 
(4.22) to disguise somewhat the potential for yield 
curve risk. 

We proceed to quantify yield curve risk in a manner 
that overcomes this difference in units. Given a yield 
curve shift Ai, we seek a relationship between its dura- 
tional effect and that produced by a parallel shift of the 
same length and orientation. By "orientation," we mean 

as given by the sign of A: .  So if AiE>0, we compare the 
durational effect of Ai to that of a positive parallel shift 
of the same length, and conversely. 

To this end, the durational effect of Ai is D(i0).Ai, 
while the durational effect of the parallel shift of the 
same length and orientation is :l:D(i0)lAil/4rm. Here, 
we choose the sign consistent with the sign of Ai e. The 
"directional multiplier" is defined as the ratio of these 
durational effects. By the above orientation convention, 
this ratio is always positive, so absolute values are used 
to simplify notation. 

Definition 4.3: 
Let P(i) be a price function and i 0 a yield vector so 

that D(io);~0. For a yield curve shift Ai, the directional 
multiplier of P(i) in the direction of Ai, denoted M(Ai), 
is defined: 

M(Ai) = 4~lD(i0). All (4.26) 
ID(i0)l[Ail 

The durational multiplier, denoted M(io), is defined: 

M(i0) = max M(Ai). [] 

As was the case for L(Ai), M(Ai) is a function of 
direction alone since M(XAi)=M(Ai) for ~.>O. More- 
over, M(Ai) is an even function in that M(-AI)=M(Ai). 
Consequently, M(io) is well defined, though this maxi- 
mum is achieved at two points. In addition, note that 
M(Ai) = d~IL(Ai)l ,  and so M(io) = , f~L(i0) .  Conse- 
quently, the above propositions apply immediately to 
M(Ai). 

Also, note that: 

M(Ai) = IAiEl/IAil, (4.28) 

where Ai e is the vector corresponding to A: .  
For the example in (3.8), we have MOo) = 220.2. 

That is, the durational effect of a yield curve shift can 
be 220 times greater than the effect of a parallel shift of 
the same length and orientation. By Proposition 14, this 
multiplier is realized when Ai equals any multiple by 
D(io). 

In addition to providing intuitive measures of yield 
curve exposure, L(Ai) and M(AI) can be used to quan- 
tify an effective duration measure. To this end, let Ai be 
given, and let Ai equal the value of the parallel shift of 
the same length and orientation. As noted above: 

Ai = sign (A/e) IAil/4~. (4.29) 
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From (3.27), we have: 

P(i o + Ai)/e(i o) = 1 - L(Ai) O(i0) IAil. (4.30) 

Consequently, L(Ai)D(io) quantifies an effective dura- 
tion measure in units of IAil, while L(io)D(io) equals the 
maximum effective duration in these units. Equiva- 
lently, 

P(io + Ai)lP(io)-- 1 -M(Ai)  O(io)Ai, (4.31) 

where Ai is given by (4.29). M(AI)D(i o) quantifies an 
effective duration measure in units of parallel shifts Ai, 
while M(io)D(io) equals its maximum value. 

In practice, (4.31) is easier and more intuitive to use 
because it is a straightforward generalization of (2.2). 
This is because M(Ai)= 1 for parallel shifts by (4.28). 
Also, because M(Ai)>0 by definition, this effective 
duration measure has the same sign as D(io), reflecting 
only the muliplier effect of nonparallel shifts of the 
same length and orientation as Ai. In this light, M(io) is 
indeed a durational multiplier in that, in units of parallel 
shifts Ai, the effective duration can be as great as 
M(io)D(io). Consequently, M(i0)D(i0) can be viewed as a 
proxy for potential yield curve risk. 

c. Compound Duration Functions 
In this section, the concept of the duration of dura- 

tion is defined and used to restate the second-order 
approximations in an intuitively natural way. 

Definition 4.4: 
Given a directional duration function D~(i), the com- 

pound directional duration, DND~(i ), is defined for 
DN(i) ~ 0 as follows: 

ODN 
DuDu(i) = --~-~ /DN(i)  . (4.32) 

When N = (1, 1 . . . . .  1), the parallel shift vector, this 
compound duration is called the duration o f  duration 
and denoted DD(i). [] 

Definition 4.5: 
Given a partial duration function, Dk(i), the com- 

pound jk-th partial duration, D~Dk(i), is defined for 
Dk(i) ,  0 as follows: 

~Ok 
DjDi(i) = - - ~ j / D , ( l ) .  [] (4.33) 

From Proposition 9: 

DD(i) = CO)/DO) - D(i), 

DNDu(i) = C~(i)/Du(i) - Dry(i), 

DiDk(i) = Cjk(i)/D~(i) - Dj(i). 

(4.34) 

(4.35) 

(4.36) 

Substituting the first-order Taylor series approximation: 

DN(i 0 + tN) -- Ds(i0) [1 - D~/)u(i0)t ] (4.37) 

into the exponential identity (3.10) and integrating with 
respect to t produces: 

P(i 0 + AiN)IP(i o) = 
exp {-AiDu(io) [1 - OuDN(io) Ai/2] }. (4.38) 

A simple calculation shows that (4.38) is equivalent 
to the second-order exponential approximation in 
(3.14). Note, however, that this approximation can be 
interpreted as the corresponding first-order approxima- 
tion in (3.11) with an adjusted directional duration 
value. The adjustment corresponds to a yield change of 
Ail2 and resembles the classical linear duration approx- 
imation (2.2), using D~Ds(i0). In particular, from (4.37) 
this adjusted directional duration equals an approxima- 
tion for D~(i o + NAil2). 

For example, consider the price function in (2.7) and 
the parallel shift of 0.01 in (2.10a). Letting N = (1,1), 
we have from (2.11a) that DN(i0)=0.0136, and 
DND~(io)=103.2. For Ai = 0.01, the adjusted duration 
equals 0.0066, which when used in (4.38) reproduces 
the second-order estimate in (2.13). For the nonparallel 
shifts, N=(1,3) and N=(2,1), the corresponding values 
of DNDN(i0) are easily calculated to be 8.3 and 6.0, 
respectively. 

By definition, the second-order approximation in 
(3.7) can also be restated: 

P(i o + AzN)/P(i0) -- 1 - AiDu(io) 

x {l - [DNDN(io) + DN(io) ] Ai/2} (4.39) 

Again, this approximation utilizes an adjusted dura- 
tion value, where the adjustment reflects (2.2). Here, 
however, DuDN(io) + DN(io) or Cu(io)/Ds(io) is the 
adjusting factor. 

For the partial duration counterparts, the approxima- 
tion: 

Dk(i o + tAi) = Dk(io) [1 - t ~ Dj Dk(i o) Aij.], (4.40) 
Y 

can be substituted into the exponential identity (3.38), 
with r(t)=io+tAi, and integrated to obtain: 
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P(i 0 + Ai)/P(i 0) 

=exp{-~AikD,(io)[1-~. DjDk(io)Aij/21}.(4.41) 
J 

This exponential approximation is equivalent to (3.40) 
with r(t)=i0+tAi. By definition, the second-order 
approximation in (3.28) can also be restated: 

P(io+Ai)/P(io) = 1 - ]~Aik D,(i 0) 
k 

x{1-~[DjDk(io)+Dj(io)]Aij/2}. (4.42) 

5. Applications 

a. Partial Duration and Convexity 
Estimates 

In general, the various derivative-based definitions 
can be applied directly only when cash flows are fixed 
and independent of  interest rates, and when the yield 
vector used reflects the corresponding spot rates. For 
example, assume a fixed vector of annual cash flows, 
K = ( g  . . . . .  c,.), and the associated spot rate vector, 
i = (i~ . . . .  , i,.). Naturally, the price function is given by: 

e(1) = ]~cjvj, (5.1) 

where vj = (1 + ij.) -~. A simple calculation produces: 
• j + l  

Dj(i) = jcjvj (5.2) 
e ( i )  ' 

j(j + 1)cjv~ ÷2 
Cjj(i) = P(i)  , C#(i) = 0, j ~: k. (5.3) 

These partial durations clearly sum to the modified 
duration, and the partial convexities sum to the tradi- 
tional convexity value. In addition, because C(i) is a 
diagonal matrix, the second-order formulas simplify. 
For example, (3.28) reduces to: 

P(i + Ai)/P(i) = 1 - ~ j ( i ) A i j  + ff2ECi/(i)(Aij) z. (5.4) 

In the real world, however, many financial models 
contain options that make cash flows interest-sensitive. 
Assets can be prepaid (that is, "called") at the option of 
the borrower for a fixed price. Liability streams associ- 
ated with guaranteed interest contracts (GICs), single- 
premium deferred annuities (SPDAs), savings accounts, 

and so on often contain put options (that is, for with- 
drawal) and call options (that is, for additional invest- 
ment). In addition, complex portfolios typically reflect 
hundreds of spot rates, potentially requiring hundreds 
of partial durations and convexities. The total duration 
vectors therefore are quite large, contain generally very 
small values, and provide little insight on the portfolio's 
yield curve sensitivities. 

For interest-sensitive cash-flow streams, the formal 
derivatives of the price function involve both derivatives 
of  the interest factors, as in this paper's examples, and 
derivatives of  the cash-flow stream itself. Typically, 
cash-flow sensitivity cannot be modeled directly in 
closed mathematical form, precluding differentiation. 
Rather, "option pricing" models are commonly used 
([5], [7],  [8], [11]). With them, P(i) and e(i) are not 
defined directly in terms of discounted cash flows, but 
are defined indirectly in a manner that reflects the effect 
of options on the value of the cash-flow stream. Such 
option-pricing models produce a price that is very much 
a function of the yield curve assumed, and the price 
function can therefore be discretely estimated. 

While the spot rate basis is workable, it often pro- 
duces large numbers of  very small partial duration and 
convexity estimates. A preferable approach is to 
"group" yield curve sensitivity into a smaller number of 
yield points, producing more meaningful estimates. A 
natural basis for this is the observed yield curve drivers 
on a typical bond yield curve. Such a curve may reflect 
yields at maturities 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, and 
30 years, for example. From these yields, other values 
are interpolated before this yield curve is transformed 
into the corresponding spot rate curve, which is then 
used as input to an option-pricing model or used 
directly for discounting fixed cash flows. Consequently, 
all yield curve sensitivities emanate from these basic 
ten or so variables, and this is the basis recommended 
for use as the yield curve vector. 

By using such a yield curve basis to model P(i) and 
an option-pricing model or direct calculation, Du(i0) 
and Cu(io) can be estimated discretely by central differ- 
ence formulas: 

O~ (i0) = - [e( i  0 + eN) - e(i  0 - eN)l/2eP(io), (5.5) 

C~ (io) = [P(i o + eN) - 2P(i 0) + e(i o - eN)]/cZP(io). (5.6) 

Forward difference formulas are also common, though 
they tend to be "biased" in that they better reflect sensi- 
tivity to an increase in interest rates. 
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To estimate e, one commonly uses judgment and 
some trial and error. Theoretically, the error in these 
estimates can be displayed by expanding P(i o + eN) and 
P(i 0 - eN) into Taylor series in e and substituting into 
the respective formulas. This produces: 

D~ (i 0) - D ~ i  o) = -P~)(i  o) e2/6e(io) + 0(e'), (5.7) 

C~ (i o) - CN(io) = P~)(i o) e2/12P(io) + 0(e'). (5.8) 

As can be seen from these formulas, the duration and 
convexity estimates improve quickly as e decreases. 
However, the third and fourth directional derivatives of 
P(i o) are generally not known, so the direct application 
of (5.7) and (5.8) to select an e with a given error toler- 
ance is not practical. Logically, an e is desired that 
makes D~(i) close to DN(i) in the sense that using e/2, 
say, improves the estimate little. In practice, good 
results can often be obtained with e equal to 5 to 10 
basis points, when INJ equals the length of the parallel 
shift vector (1 . . . . .  1). 

Alternatively, to calculate the various directional 
derivatives and convexities, it is sufficient to estimate 
only the partial duration and convexity values by Propo- 
sition 8. The above formulas generalize to: 

D) (i o) = -[P(i o + ei) - P(i o - ei)]/2ep(io), (5.9) 

C~.k (io) = [e(io + aj + e~) - P(i o - aj + e~) - e(i o +ej - e k) 

+ P(io - ej - g,)]/4Ej~P(io). (5.10) 

Here, ej = ej(0 . . . . .  1 . . . . .  0), where ej is the j-th coordi- 
nate, and e = (et . . . . .  era). As was role for the one-variable 
model, judgment and trial and error are needed to deter- 
mine an appropriate set of values for ej, which could be 
chosen to be equal for simplicity. Error estimation for- 
mulas generalizing (5.7) and (5.8) can again be devel- 
oped by using multivariate Taylor series expansions, to 
produce: 

Dy(io) _ Dj(io) = _ p~3)(io) e~/6P(i o) + 0 (e~) (5.11) 

c j~ (io) - c# ( io )  = r-~,,c3. 
~2D(L 3) + o , - j ,  (i0)]/6e(io) + o(e~, e,)'. (5.12) 

~c3) denotes the third partial derivative with In (5.11), r# 
respect to i t, while in (5.12), the (3, 1) and (I, 3) nota- 
tion denotes the corresponding mixed fourth-order par- 
tial derivatives with respect to j and k. In practice, 5 to 
10 basis points will often suffice. 

Given m yield points, 2m+ 1 price calculations are 
required for the partial durations in (5.9), and 2m(m-1) 

additional calculations are needed for the partial con- 
vexities in (5.10), totalling 2m2+ 1 price calculations in 
all. Here we assume that Cjj(i 0) in (5.10) is estimated 
with Ejl2 when ej is used for (5.9). 

If desired, the total number of  calculations can be 
reduced by almost half, to m2+m+l,  in the following 
way. Let Ny=ej above and N#=e#(O . . . . .  1 . . . . .  0, 1 . . . . .  
0), with j<k and N# non-zero in the j-th and k-th com- 
ponents. Using the Nj vectors, Dj(i0) and Cj~(io) can be 
estimated as in (5.5) and (5.6) with e=  1 and a total of  
2m+ 1 price calculations. This is equivalent to the above 
estimates with (5.9) and (5.10). With an additional 
re(m-1) calculations and (5.6), CN(i0) can be estimated 
for each N#. Using (4.4), we then obtain: 

Cjk(i 0) = l/2[Ct~(i 0) - Cjj(i 0) -Ca(J0)], (5.13) 

where N=Njk. Also, by (3.31), Ckj(io)=Cjk(io). Conse- 
quently, the total number of price calculations needed is 
m2+m+ 1. 

As a final comment, note that the partial duration and 
convexity estimates above should be "normalized" to 
satisfy Proposition 5. That is, these values should be 
scaled so that they sum to the estimated duration or 
convexity values, respectively. In practice, relative dis- 
crepancies are typically well under 1 percent before 
scaling. 

b. Price Sensitivity--Direct Yield Curve 
Approach 

Once the partial durations have been calculated, the 
first exercise is one of observation. Because modified 
duration equals the sum of the partial durations, one can 
observe to what extent parallel price sensitivity as mea- 
sured by D(i0) decomposes along the yield curve. In 
general, price sensitivity to nonparallel shifts is greater 
if the partial durations are large, with some positive and 
others negative, rather than relatively uniform of size 
D(io)/m. 

Beyond this informal exercise of  observation, price 
sensitivity can be calculated a number of  ways. By defi- 
nition, the duration value, D(i0), reflects sensitivity to 
parallel yield curve shifts, while the various partial 
durations, Dy(i0), reflect sensitivity to changes in the 
yield curve point by point. Similarly, for a given direc- 
tion vector, N, the .directional duration DN(io) can be 
calculated from (4.3). This value then reflects price sen- 
sitivity to yield curve shifts that are proportional to N. 
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One direction vector of note is N O as defined in 
(4.10). Recall that N O was parallel to D(i0), only with 
unit length. As demonstrated in Proposition 10, this 
vector represents the yield curve shift that produces the 
maximum value of Du(i0) and, consequently, the great- 
est relative change in the price function given INI = 1. 
Similarly, yield curve shifts proportional to N o also pro- 
vide extreme values of DN(i 0) and hence represent yield 
curve directions of maximal relative price sensitivity. 
By Proposition 10, the length of  the total duration vec- 
tor, ID(i0)l, quantifies the amount of this maximal rela- 
tive price sensitivity. 

Another notion of interest is the directional leverage 
function, L(Ai), and in particular, its maximum value, 
L(i0), the durational leverage. This latter value quanti- 
fies the maximum value of the equivalent parallel shift, 
A/e, given any restriction on IAi[, the length of the orig- 
inal shift. As noted in Section 4b, L(io) equals the ratio 
of  ID(i0)[ to ID(io)[, and this maximum is achieved 
when Ai is parallel to D(i0). 

A final related notion of interest is the directional 
multiplier function, M(Ai), and in particular, its maxi- 
mum value, M(io), the durational multiplier. This latter 
value provides a simple quantitative measure of yield 
curve risk. In particular, the durational effect of a non- 
parallel yield curve shift can be MOo) times greater than 
for a parallel shift of the same length and orientation. 
That is, the effective portfolio duration can be as large 
as M(i0)D(i0). As was the case for L(i0), the direction in 
which M(Ai) is maximized is parallel to D(io). 

Given any of these yield curve risk measures, 
ID(i0)l, L(i0), or M(i0), it is clear from Propositions 11 
and 15 that risk will be lessened if the partial durations 
are of uniform size, rather than both positive and nega- 
tive. In particular, all these measures are minimized if 
the partial durations are equal, and none can be too 
great if the partial durations are at least of the same 
sign. In this regard, "barbell" and "reverse barbell" 
duration matching strategies can be quite risky, because 
the resultant partial durations often are large, with some 
positive and others negative. Correspondingly, the 
above risk measures also tend to be large. 

c. Price Sensitivity-Yield Curve Slope 
Approach 

One relatively common generalization of the "paral- 
lel shift" model is the "linear shift" model, that is, 
where the direction vector, L=(I~ . . . . .  lm) is defined by: 

lj = amj + b, (5.14) 

where m r denotes the maturity value of the pivotal yield 
curve point ij. For example, one might have m~ = 0.25, 
m 2 = 0.5, m 3 = 1, and so on. 

For such yield curve shifts, the associated directional 
duration and convexity functions are readily calculated 
by Proposition 8. For example, the directional duration 
is given by: 

DL(i o) = a ]~mpf l  0) + bD(io). (5.15) 

That is, the directional duration naturally splits into two 
first-order components. The first component, YmDj(i0), 
reflects price sensitivity to yield slope changes, while 
the second component, D(i0), reflects price sensitivity to 
parallel yield changes as expected. 

Similarly, the directional convexity is calculated to 
be: 

CL(i 0) = aZZYmlmkC#(io) + 2abZ]~mjC#(i  o) 
+ b2C(i0). (5.16) 

Here we have used the symmetry of COo); that is, C~k = 
Cki. Unlike duration, the directional convexity splits into 
three components, reflecting quadratic sensitivities to 
slope and level changes, as well as a mixed slope/level 
sensitivity term. Analogous to (5.15), the pure parallel 
shift component is simply convexity, while the slope 
terms reflect weighted sums of partial convexities. 

An alternative "slope" model involves a reparametri- 
zation of  the yield curve. Rather than interpreting the 
yield curve as the vector i=(i  I . . . . .  ira), a yield slope vec- 
tor, s=(s i . . . . .  sin), is defined as follows: 

s, = i,; sj = i j -  ij_,,j = 2 . . . . .  m. (5.17) 

Clearly, sj reflects the increase (or decrease) in the 
yield curve between the (j - 1)-st and the j-th rate. This 
change is often referred to as the "slope" between the 
respective yield points. / 

From (5.17) we have that s=Ai, where A is a linear 
transformation and s and i are column matrices. This 
transformation is given by: 
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A =  

1 0 0 0 ... 0 0 
-1 1 0 0 ... 0 0 
0 -1 1 0 ... 0 0 

0 0 0 0 . . . - 1  1 

(5.18) 

That is, A= (aik), where 

{i, a~ = - j = k + 1, (5.19) 
otherwise. 

Because A is linear, shifts in the yield rate vector 
readily translate into shifts in the yield slope vector. 
That is, 

As = A Ai. (5.20) 

Also, A is invertible, with: 

I 000...00 

1 I 0 0...0 0 

I I I 0...0 0 
A -I  ~.~ 

1 1 1 1 . . . 1 1  

(5.21) 

That is, A-~=B, where: 

1 j > k  
bJk = 0 otherwise. (5.22) 

Based on this transformation, the various approxima- 
tion formulas in Section 3 can be converted from func- 
tions of Ai to functions of  As. 

For example, we have from (3.28): 

P(i o + Ai)/P(i0 = 1 - D(io)Ai + l/2AirC(io) Ai. (5.23) 

Here, the duration term is rewritten in matrix form 
rather than as a dot product, with D(io) treated as a row 
matrix. Substituting Air= [A-~As] r and using the prop- 
erty of  transpose that (XY) r = yrxr ,  we get: 

P(i o + Ai)/P(i o) = 1 - D,(io)AS + l/2AsrC,(io) As, (5.24) 

where As is given by (5.20) and: 

D,(i o) = D(io)A -I, (5.25) 

Cs(i0) = (A-l)rC(i0)A -~. (5.26) 

Here, Ds(i 0) and Cs(i0) are the total duration vector and 
total convexity matrix, respectively, defined in the con- 
text of the yield slope vectors. 

A calculation shows that the total duration vector is 
given by: 

Ds(~)  - D i ( i o ) , ~ D j ( i o )  . . . . .  D .  (i0) . ( 5 . 2 7 )  
2 

That is, the relative sensitivity of the price function to 
the j-th slope, ASj, is the sum of the partial durations 
from the j-th to the m-th value. The sensitivity of  the 
price function to AS~ equals the duration D(~), since ASx 
= Aij, and for this yield curve parametrization, Ai~ 
determines the change in the "level" of  the yield curve. 

Analogously, the total convexity matrix reflects sums 
of partial convexities as follows: 

co (io), (5.28) 
a=jb=k  

where the j k - th  term quantifies the sensitivity of the 
price function to the product of the j-th and k-th slopes, 
that is, AsyAs k. The sensitivity to (As,) 2 is the convexity 
C0o). 

The total duration vector and convexity matrix 
defined in (5.27) and (5.28) could have been calculated 
directly from Definition 3.5 by defining the price func- 
tion directly in terms of s. In particular, given P(i), let 
the price function R(s) be defined by: 

R(s) = P(A-ts). (5.29) 

Then Ds(i0) as defined in (5.27) is just the total duration 
vector of  R(s) evaluated at s o = Ai 0. Similarly, Cs(i0) is 
the total convexity matrix of  R(s). 

6. Summary 
The traditional fixed income model for price, and its 

summary sensitivity measures of  duration and convex- 
ity, assume parallel yield curve shifts. When the yield 
curve moves accordingly, this model works well. For 
other types of shifts, this model can fail to predict the 
magnitude of  the price change, and even its direction. 
Such events provide a sobering insight to classical 
hedging and immunization strategies, which rely on this 
parallel shift assumption. 

As a first step toward generalizing the classical theo- 
ties, this paper has developed the subject of  multivariate 
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duration analysis, whereby a model for price sensitivity 
to arbitrary yield curve shifts was defined and its prop- 
erties were investigated. 

For any fixed yield curve shift assumption, which is 
identified with a vector N, the price function is easily 
modeled, and familiar approximations to the change in 
price, AP, result. Instead of traditional duration and con- 
vexity, however, these approximations reflect "direc- 
tional" duration and convexity measures. In addition, 
AP was seen to satisfy an exponential identity (Proposi- 
tion 1) that provided alternative approximations to AP 
that could be used alone, or in combination with the 
more traditional approximations (Proposition 2), for 
additional insight to the magnitude and direction of the 
change in price. 

This identity also provided a methodology for investi- 
gating under what conditions various approximations 
would be exact (Proposition 3), and provided a frame- 
work for investigating the limiting result when the tradi- 
tional formulas were applied to ever finer subdivisions of 
a given yield curve shift (Proposition 4). 

A more general model was then investigated in 
which N was not fixed and the yield curve shift, Ai, was 
explicitly modeled as multivariate. Partial durations and 
convexities then provided natural first- and second- 
order sensitivity measures, and the traditional parallel 
shift measures were shown to be summations of the cor- 
responding partial measures (Proposition 5). Also, the 
earlier exponential identity and associated approxima- 
tions were seen to have natural extensions to this envi- 
ronment (Proposition 6). In this general setting, the 
shortcomings of the traditional model exemplified ear- 
lier were easily analyzed and understood. 

The total duration vector, or vector of partial dura- 
tions, and corresponding total convexity matrix are eas- 
ily calculated for a portfolio (Proposition 7) from its 
component instruments. The resulting measures pro- 
vide a natural characterization of the yield curve sensi- 
tivities developed earlier. For example, the directional 
duration and convexity values are readily calculated 
from the corresponding partial values (Proposition 8), 
while sharp bounds for the resulting directional values 
also reflected these values (Propositions 10, 11, 12). In 
the process, the length of the total duration vector, 
[l)(i0)[, was seen to provide a summary measure of 
potential duration risk (Proposition 10). 

The concept of equivalent parallel shift, Ai e, was 
then introduced as an alternative approach to under- 

standing and investigating duration risk, while the 
durational leverage, L(i0), provided an alternative sum- 
mary measure of this risk in this context (Proposition 
14). When L(i0) is large, even small nonparallel shifts 
can be leveraged into large equivalent parallel shifts, 
with correspondingly large price effects. The durational 
multiplier, M(i0), provided a technical adjustment to 
L(i0) to correct for the inherent difference in units 
between nonparallel shifts and traditional parallel 
shifts. 

Applications were pursued in Section 5. Using fixed 
cash flows and a spot rate yield curve for illustration, 
the classical duration and convexity formulas decom- 
pose in an intuitive way into the corresponding partial 
duration and convexity counterparts. 

For interest-sensitive cash flows, where the price 
function is implicitly estimated using an option-pricing 
or other model rather than explicitly described by math- 
ematical formula, the derivative-based formulas for 
duration and convexity cannot be used directly, How- 
ever, finite difference approximations to the various 
duration and convexity measures were shown to be nat- 
ural generalizations of common approximations for the 
traditional measures. 

While any yield curve basis is workable in theory, 
throughout this paper the recommended basis was the 
collection of yield curve drivers on a typical bond yield 
curve, that is, yields at 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, 
and 30 years. Other bond yields are typically interpolated 
from these market-based observed variables, and all spot 
rates correspondingly derived from this completed yield 
curve. Consequently, the price function can be modeled 
in terms of these 10 or so variables, and all observed 
price changes related to changes in these values. 

Finally, a number of the implications of this multi- 
variate duration analysis for portfolio yield curve sensi- 
tivity were also developed. 
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