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III
Why Did ALM Become

Important?

The central premise of ALM from its early days in
the Redington’s (1952) paper has been the integrated
treatment of assets and liabilities. Yet, only in the last
two and a half decades has this issue acquired great-
er significance in the management of financial in-
termediaries. Early insurance companies, especially
Friendly Societies, were troubled by unpredictability
of their benefit disbursements. As the principles of
actuarial sciences developed, this unpredictability
gave in to a better understanding of cash flows related
to product pricing. Thus, the C-2 risk, which was in-
itially the main concern for the management, has grad-
ually moved to the background. One can, of course,
argue that the features of the insurance products that
facilitate disintermediation are a part of the C-2 risk
but, undoubtedly, these features are very closely re-
lated to the C-3 risk.

The Golden Age of U.S. insurers, the 1950s and
1960s, was characterized by nearly complete knowl-
edge of claim-related cash flows because of actuarial
knowledge, and by predictability of other cash flows
(i.e., lapses, surrenders, new business, investment re-
turns) because of an economic environment providing
stability to those factors (Black and Skipper 1994).
One could say that Golden Age was the ‘‘quiet before
the storm.’’ Subsequent developments have been noted
by Sametz (1987), including:
● Unprecedented levels of inflation, and unpredicta-

bility of the inflation rate.
● Unprecedented levels of volatility of financial mar-

kets, especially interest rates.
● Unprecedented deregulation, consumerism, and

competition.
All of these led to greater efficiency in consumer be-
havior, disintermediation, and change in the insurance
industry position, versus other financial institutions.
These, in turn, resulted in the insurance industry ex-
periencing the common denominator in those three

factors—‘‘the unprecedented’’—which first and fore-
most meant unpredictability of cash flows, or even a
complete makeover of the nature of those cash flows.

For example, annuities, which historically have
been a relatively unimportant part of the life insurance
industry used primarily to provide an income stream
after retirement, acquire new significance as savings
vehicles through the use of single and flexible pre-
mium-deferred annuities, and the recent extraordinary
growth of variable annuities (Tullis and Polkinghorn
1992). In 1982, total annuity reserves of U.S. life
companies exceeded life insurance reserves for the
first time, and by the 1990s they reached twice the
level of life reserves. The popularity of annuities and
other investment-related products in the United States
has been aided by the provisions of the Tax Reform
Act of 1986 (Babbel and Stricker 1987). According to
Asay, Bouyoucos, and Marciano (1993), three major
milestones in the recent history of the life insurance
industry occurred:
● In the early 1980s, the short-term interest rates were

at record highs, causing massive disintermediation
as policyholders fled to higher yield.

● In the mid 1980s, a record decline in the level of
nominal interest rates resulted in refinancing and
prepayments of a large portion of insurers’ portfo-
lios.

● At the end of the 1980s, insurers pursuing higher
yields often were caught taking too much credit risk
in their investment portfolios.
The market nature of insurance products has

changed as well. Ostaszewski (1998) points out that
the historical Paul v. Virginia Supreme Court decision
of 1867, which led to the present system of state reg-
ulation of insurance, appeared to have been based on
the perception of insurance as a private contract be-
tween two local parties (therefore, no interstate com-
merce in insurance, and . . . no federal regulation).
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Even though there are no traded markets in insurance
products, there has been a decisive move towards
competitive pricing of insurance, with mortality pro-
tection becoming nearly a commodity, and catastrophe
futures markets under development.

These changes have resulted in a relative decline of
importance of the C-2 risk, with the sole exceptions
possibly being the catastrophe risks insured by prop-
erty-casualty companies, and economically complex
claim processes faced by the health insurers (recall
that the product features facilitating disintermediation
are very closely tied to the C-3 risk). At the same
time, the relative significance of the C-1 and C-3 risks
has increased. We believe that these two risks are in-
deed becoming integrated, as pointed out in the Chap-
ter 2 discussion of credit risk on bonds derived from
option values. This is reinforced by the RBC formula
for life insurers discussed in that chapter as well.

The immunization approach should help in dealing
with the new situation of insurance firms, but this is
not necessarily the case. The very nature of financial
intermediation may indeed pose an obstacle to suc-
cessful implementation of immunizing strategies. The
classical immunization of Redington (1952; see also
the discussion in Kellison 1991), presented in Chapter
2, began with the approximation:

ƒ(x � �x) � ƒ(x) � ƒ�(x)�x.

This has led to the strategy:

S�(i) � 0, i.e., A�(i) � L�(i) (3.1)

to protect the surplus value, or

A(i)
d ln� �L(i) d ln(A(i)) d ln(L(i))

� 0, i.e., � (3.2)
di di di

to protect surplus ratio.
It is well known from calculus that the condition

(3.1) gives the critical point of the surplus as a func-
tion of the interest rate. A continuous function attains
a local minimum at a critical point if its second de-
rivative is positive, and a local maximum if its second
derivative is negative. Therefore, if condition (1) is
satisfied and additionally

S�(i) � 0, (3.3)

then the surplus function will have a local minimum
at the current level of i, and any change in i will ben-
efit the intermediary. This is equivalent to

2 2d A d L
� . (3.4)2 2di di

We will term this second derivative with respect to i,
the dollar convexity of a financial instrument. Simi-
larly, if Equation (3.2) is satisfied and additionally

A(i)2d ln� �L(i)
� 0, (3.5)2di

then the ratio of assets to liabilities will have a local
minimum at the current level of i, similarly benefiting
the financial intermediary in case of any changes in
interest rates. This, in turn, is equivalent to

2 2d ln(A(i)) d ln(L(i))
� . (3.6)2 2di di

This second derivative of the logarithm of the price
of a financial instrument with respect to i is convenient
to use in the problem as defined here. We will call it
M2 (M-squared, or measure of dispersion) or loga-
rithmic convexity. The second derivative of the loga-
rithm of the price with respect to the force of interest
(under flat yield curve assumption), will be called

(Macaulay measure of dispersion, or Macaulary2MM

logarithmic convexity). The standard measure of con-
vexity (Boyle 1992) of P(i) is:

21 d P
C � . (3.7)2P di

The immunizing condition (3.6) can also be written in
terms of convexity as defined in Equation (3.7), as
Equation (3.6) is stated with the assumption that du-
rations of assets and liabilities are set equal to each
other. However, convexity, as defined by Equation
(3.7), increases with coupon for bonds of the same
duration, while logarithmic convexity does not. Log-
arithmic convexity generally increases as dispersion of
a security’s cash flows increases (a notion we will
return to later).

This naturally leads to the full classical immuni-
zation model, which can be summarized as follows.

To protect the absolute surplus level, set:

(i) A�(i) � L�(i), that is, dollar duration of assets
equal to the dollar duration of liabilities, and

(ii) d2A /di2 � d2L /di2, that is, choose assets with
more dollar convexity than the liabilities.

To protect the surplus ratio level, set:
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(i) d ln(A(i)) /di � d ln(L(i)) /di, that is, duration of
assets equal to the duration of liabilities, and

(ii) d2 ln(A(i)) /di2 � d2 ln(L(i)) /di2, that is, choose
assets with more logarithmic convexity than the
liabilities.

These ideas seem to imply that the life of an insurer,
or a banker, can be made very simple indeed. Why,
then, such an unprecedented level of anxiety about the
interest rate risk, why the insolvencies in the early
1990s, and why all the renewed interest in the interest
rate risk? One might be immediately tempted to ask:
Why is this strategy of minimization of surplus pur-
sued at all? Isn’t it unnatural to seek the minimum
point of one’s wealth? As it turns out, this is not
so—immunization in practice means pursuit of the
point of maximum wealth, and, to a degree, maximum
interest rate risk. Thus, the claim of a simple life
through immunization has been greatly exaggerated.
Additionally, immunization, as specified above, rests
on conditions under which riskless arbitrage oppor-
tunities exist, making the approach quite unrealistic.

Before proceeding with a more formal examination,
let us try to understand better what convexity means.
It is defined as the opposite of the rate of change of
duration with respect to the interest rate i (or the sec-
ond derivative of the logarithm of the price). As noted
in Chapter 2, if the security analyzed has a price P(i),
and it produces certain cash flows CFt at times t in
the future, we have:

dP
�t�1� CF (�t)(1 � i) (3.8)� tdi t�0

and

dP
�t�1tCF (1 � i)� td(ln P) di t�0� � � . (3.9)
�tdi P CF (1 � i)� t

t�0

The dollar convexity of this security equals:

2d P
�t�2� t(t � 1)CF (1 � i) . (3.10)� t2di t�0

We can immediately see that for a security with de-
terministic cash flows its dollar convexity must be
positive. What is less obvious from formula (3.10) is
the relationship between dollar convexity and the ac-
tual cash flows. When is convexity large, and when is
it small? This is easiest to see first for the P � P(�)
functional relationship of the price of a financial in-
strument to the force of interest (instantaneous for-
ward rate, assuming flat yield curve). Then we will

analyze it for the price P � P(i) as the function of the
interest rate. If the cash flows are deterministic CFt at
times t in the future, then

��tP(�) � CF e . (3.11)� t
t�0

If

dP
��ttCF e� td� t�0D � � � (3.12)M ��tP CF e� t

t�0

is the duration with respect to force of interest (Ma-
caulay duration), and

21 d P
C � (3.13)M 2P d�

is the convexity measure with respect to force of in-
terest (termed here Macaulay convexity), and we de-
fine:

��tCF etw � (3.14)t ��tCF e� t
t�0

then

2d (ln P) 2 2� M � C � DM M M2d� (3.15)
2 2 2� t w � D � (t � D ) w ,� �t M M t

t�0 t�0

providing an analogue of the concept of variance of
probability of distribution (as the weights wt sum up
to one), and illustrating that the logarithmic convexity
increases with dispersion of cash flows. In fact, Equa-
tion (3.15) demonstrates that, in a manner similar to
probability distributions, it is the dispersion around the
duration value that determines the size of convexity,
or, more precisely, it determines the sensitivity of the
duration measure to changes in interest rates. The
‘‘probability weights’’ are provided by the relative
weights of present values of cash flows in relation to
the overall present value of the security. Note also that
Macaulay convexity equals

2 2C � M � DM M M

and it is the second moment of the said probability
distribution, thus increasing with both dispersion and
the square of Macaulay duration.

Let us now turn our attention to the convexity mea-
sure with respect to the interest rate. We can calculate
directly, that



Asset-Liability Integration22

�t�1(�t)CF (1 � i)� td(ln P) t�0� ,
�tdi CF (1 � i)� t

t�0

and
2d (ln P)

2di

�t�2 �tt(t � 1)CF (1 � i) CF (1 � i)� �� �� �t t
t�0 t�0

�t�1 �t�1� tCF (1 � i) tCF (1 � i)� �� �� �t t
t�0 t�0

� 2

�tCF (1 � i)�� �t
t�0

�tt(t � 1)CF (1 � i)� t1 t�0� 2 �t(1 � i) CF (1 � i)� t
t�0

2
�ttCF (1 � i)� t1 t�0� 2 �t(1 � i) CF (1 � i)� t� �

t�0

1 1 1 2� C � D � DM M M2 2 2(1 � i) (1 � i) (1 � i)

On the other hand, from (3.10) we see that convexity
is:

2d P
2di

C �
P

�tt(t � 1)CF (1 � i)� t1 t�0� (3.16)2 �t(1 � i) CF (1 � i)� t
t�0

1 1
� C � D .M M2 2(1 � i) (1 � i)

Therefore
2d (ln P) 2 2� M � C � D , (3.17)2di

providing a perfectly analogous, to that for the force
of interest, interpretation of M2, as the measure of
dispersion, and convexity increasing with both disper-
sion of cash flows and their duration. For practical
purposes, we therefore need to remember that more
dispersed cash flows tend to be more convex, and
longer duration cash flows tend to be more convex. In
particular, of the following two portfolios
(1) Bullet (a single cash flow at duration D), and

(2) Barbell (two cash flows, one before duration D,
one after it, with the duration of the combined
portfolio equal to D);

the barbell portfolio offers more convexity. Thus, the
traditional convexity measure increases with the in-
crease in the coupon of a bond with the same maturity,
but this is greatly influenced by the fact that C is equal
to the sum of logarithmic convexity and the square of
duration, with the square of duration falling with an
increase in the coupon (if maturity remains unchan-
ged). Overall, of two patterns of payments with the
same present value and the same duration, one can
expect greater convexity from the pattern with a
greater dispersion of cash flows. This simple obser-
vation bears some significance to the insurance busi-
ness, especially life insurance.

Before we proceed to the analysis specific to the
life insurance industry, let us summarize the key re-
lationships between various measures of interest rate
sensitivity:

2d ln P2 2M � � C � D ,M M M2d�

1 1
D � D , C � (C � D ),M M M21 � i (1 � i)

2d ln P 12 2M � � (C � D � D )M M M2 2di (1 � i)
2� C � D .

It is also quite interesting to observe that there is one
more interpretation of convexity, which illustrates the
effect of dispersion of cash flows on convexity. Let us
write At � CFt(1 � i)�t. Note that:

2d (ln P) 1
�2 2di (1 � i)

2t A A � tA� � �� �� � � �t t t
t�0 t�0 t�0

tA � tA A� � �� � � �� �t t t
t�0 t�0 t�0 1

�2 2(1 � i)
A�� �t

t�0

2A t A � sA tA� � � �� �� � � �� �s t s t
t�0 t�0 t�0 t�0

2

A�� �t
t�0

1 1
� D �M2 2(1 � i) (1 � i)
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2t A A � stA A� � � �s t s t
t s�t t s�t

2

A�� �t
t�0

1 1
� D �M2 2(1 � i) (1 � i)

2(t � s) A A� � s t
t s�t

2

A�� �t
t�0

1
� D .M2(1 � i)

This formula, because of the expression (t � s)2, again
reinforces the fact that the dispersion of the cash flows
is, in addition to duration, a key consideration for con-
vexity. Note that the above also shows that:

2d ln P2M �M 2d�
2 �s �t(t � s) CF (1 � i) CF (1 � i)� � s t

t s�t� ,2

�tCF (1 � i)�� �t
t�0

providing another illustration of the dispersion
concept (see also Ostaszewski and Zwiesler, 2002).
The above formula is effectively an interpretation of
(3.15), because, for two independent identically dis-
tributed random variables S and T.

As pointed out at the beginning of this chapter,
early insurance companies were troubled by the un-
predictability of their claim flows, but as the industry
matured, liabilities cash flows have matured, stabi-
lized, and, as a consequence, become more dispersed.
In view of that evolutionary pattern, the insurance in-
dustry’s increased concern about the interest rate risk
is, to a great degree, caused by the maturity of the
industry and greater dispersion of its combined port-
folio liabilities cash flows. The insurance industry can
be viewed as a net ‘‘provider of convexity’’ in the
national economy.

Griffin (1995) points out that, in view of this situ-
ation, it may be wise for life insurers to pursue strat-
egies of buying convexity, i.e., purchasing securities
whose sensitivity of duration to interest rates is posi-
tive and high. He lists securities that can be purchased
by an insurance firm seeking to increase the convexity
of its portfolio. They include:
● Puttable bonds, or bonds that give holders the right

to redeem the bond at par at some point in time.

These bonds are relatively rare, and a notable (yet
unavailable to insurers) large issue of them are the
special issue U.S. Treasury Bonds held by the So-
cial Security System trust funds.

● Bond warrants, which give the holder the right to
purchase at par a fixed-coupon corporate bond dur-
ing a specified period.

● Adjustable rate preferred stocks.
● Interest rate caps, which give the right to receive

payments when a selected interest rate index is
above a specified level, and floors, which give the
right to receive payments if the index is below a
certain level.

● Options on Treasury, agency, and corporate bonds,
as well as futures contracts on Treasury bonds, and
on interest rate swaps.
The purchase of such securities is costly, again in-

dicating that the common goal of the two classical
immunization approaches of acquiring assets with
greater convexity than liabilities makes this method-
ology somewhat inappropriate for insurance enter-
prises. If, however, one pursues immunization while
being ‘‘short convexity,’’ the very same models indi-
cate that the strategy of duration matching maximizes
interest rate risk, at least locally (i.e., with respect to
small changes in interest rates). Shiu (1990) points out
that, under certain conditions, this local maximization
of risk may turn out to be global; that is, an immu-
nized company may lose part of its surplus under any
parallel yield curve shift. Of course, the assumption
of a flat yield curve—identical annual interest rates
regardless of maturity of cash flows—is unrealistic. In
fact, as pointed out by Boyle (1978) and Milgrom
(1985), this assumption would result in arbitrage op-
portunities. But classical immunization rests precisely
on the pursuit of arbitrage; it is a strategy in which
the asset purchase is entirely funded from liability
and, once executed, brings a riskless profit to the in-
surance firm under any (parallel) shift in the yield
curve.

Shiu allows the force of forward interest rates � �
�(t) to vary with maturity, and analyzes the surplus S
of an enterprise under conditions of varying interest
rates, with the change in interest rates � � �(t) also
being a function of time. Let Nt be the net cash flow
of the enterprise at time t, and we have:

t�� �(s)ds0S(�) � N e , and (3.18)� t
t�0

t�� (�(s)��(s))ds0S(� � �) � N e . (3.19)� t
t�0

Define
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t�� �(s)ds0n � N e (3.20)t t

and
t�� �(s)ds0ƒ(t) � e . (3.21)

Then

S(� � �) � S(�) � n (ƒ(t) � 1). (3.22)� t
t�0

Using Taylor’s formula with integral remainder, we
have:

t

ƒ(t) � ƒ(0) � tƒ�(0) � � (t � w)ƒ�(w)dw
0 (3.23)

t

� 1 � t�(0) � � (t � w)ƒ�(w)dw.
0

Therefore

S(� � �) � S(�) � ��(0) tn� t
t�0

t

� n � (t � w)ƒ�(w)dw. (3.24)� t
0t�0

Define x� � max(x,0). Applying the Fubini Theorem
to interchange the order of integration and summation,
we obtain:

t

n � (t � w)ƒ�(w)dw� t
0t�0

�

� n � (t � w) ƒ�(w)dw (3.25)� t �
0t�0

�

� � n (t � w) ƒ�(w)dw.�� �t �
0 t�0

If the cash flows satisfy one of the following condi-
tions for positive w:

n (t � w) � 0 (3.26)� t �
t�0

or

n (t � w) � 0, (3.27)� t �
t�0

then by the Mean Value Theorem for integrals, there
is a number x � 0 such that

�� n (t � w) ƒ�(w)dw�� �t �
0 t�0

�

� ƒ�(�) � n (t � w) dw. (3.28)�� �t �
0 t�0

The integral on the right-hand side of Equation (3.28)
can be simplified further by yet another application of
the Fubini Theorem:

�� n (t � w) dw�� �t �
0 t�0

�

� n � (t � w) dw (3.29)� t �
0t�0
t 2t

� n � (t � w)dw � n .� �t t
0 2t�0 t�0

Therefore

1 2S(� � �) � S(�) � ��(0) tn � ƒ�(�) t n .� �t t2t�0 t�0

(3.30)

If an immunizing condition equivalent to dollar du-
ration matching

tn � 0 (3.31)� t
t�0

is imposed, then

1 2S(� � �) � S(�) � ƒ�(�) t n . (3.32)� t2 t�0

By Equation (3.29), is positive if Equation2t n�t�0 t

(3.26) holds, and negative if Equation (3.27) holds.
Also,

2ƒ�(s) � ƒ(s)((�(s)) � ��(s)), (3.33)

so that the sign of ƒ�(�) is the same as the sign of
(�(s))2 � ��(s). Therefore Shiu’s generalization of
Redington’s immunization is as follows:

To preserve the absolute surplus level, one should
structure the cash flows in such a way that
● (i.e., the dollar duration of assetstn � 0�t�0 t

equals the dollar duration of liabilities), and
● the product is as large as possible.2ƒ�(�) t n�t�0 t

In particular, if the function �(s), representing the
yield curve change, is constant, corresponding to a
parallel yield curve shift, ƒ�(�) is positive. This means
that, for such a change in yield curve, one should im-
munize by setting asset and liabilities dollar durations
equal, while satisfying condition (3.26). On the other
hand, if condition (3.27) is satisfied, the effect of dol-
lar duration matching will be exactly the opposite of
that normally desired in immunization—any parallel
shift in yield curve will result in the deterioration of
surplus.

Shiu (1990) demonstrates one important case when
such deterioration is indeed assured. If � n � 0t�0 t

(i.e., there is no net investment), and (i.e.,� tn � 0t�0 t

dollar durations of assets and liabilities are matched),
then:
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1 2S(� � �) � S(�) � S(� � �) � ƒ�(�) t n .� t2 t�0

(3.34)

The immunizing conditions for the sequence {nt} im-
ply that, unless it consists of zeros only, it must have
at least two sign changes. If there are exactly two sign
changes forming the pattern �, �, �, then for each
convex function ƒ, (Goovaerts, De� n �(t) � 0t�0 t

Vylder, and Haezendock 1984, p. 202, lemma 4) and
consequently the inequality (3.27) is satisfied. One
case when this pattern of signs is exhibited is when
an insurance company issues single-premium imme-
diate-annuity policies and invests all premium in a
noncallable and default-free bond (assuming that the
bond is of shorter maturity than that of the eventual
annuity cash flow payout—and, of course, such as-
sumption is nearly always true, as people live longer
than bonds). Such a company will lose surplus under
any parallel shift of the yield curve if it pursues the
strategy of matching dollar duration of assets and li-
abilities.

As we can see, the result of duration matching as
an ALM strategy can turn out to be exactly the op-
posite of the desired effect. Instead of being immu-
nized, the company may end up being fully exposed
to interest rate risk. For a moment, let us consider
these liabilities cash flows as independent of interest
rates. When choosing its investment baseline, the en-
terprise faces a harsh reality of modern capital markets
which says that a typical fixed-income security avail-
able for purchase does not have the amount of con-
vexity exhibited by its liabilities. Let us examine this
by graphing logarithms of the prices of units of a 30-
year annuity deferred by five years and a 15-year non-
callable default-free 8% bond, both issued at par
at the force of interest of 8%. This is presented in Fig-
ure 3.

The annuity exhibits somewhat greater convexity.
The asset-liability portfolio of corporate bonds (for a
moment assumed noncallable and default free) and an-
nuities, will, on a net basis, tend to have negative con-
vexity. There is often a perception among some
practitioners of the art and science of investing insur-
ance company assets that negative convexity is always
a result of interest rate options embedded in insurance
company products and assets. However, it is important
to stress that negative convexity of the asset-liability
portfolio will manifest itself even in a simple portfo-
lio, as suggested by Shiu (1990), that is, immediate
annuities certain that is backed by noncallable default-
free corporate bonds, which do not contain any em-
bedded options.

But the practitioners are also correct. This negative
convexity position will be reinforced if the insurer’s
assets have embedded option-like derivatives that tend
to decrease the value of the asset and shorten its du-
ration as interest rates fall, or have the opposite effect
as interest rates rise. Similarly, if the liabilities’ port-
folio contains embedded option-like derivatives, then
that tend to increase the market value of the liability,
and lengthen its duration, as interest rates fall, The
effect is opposite as interest rates rise, but the insur-
ance company loses again: as rates rise, depreciation
of assets value is greater than that of liabilities value.

What are these features that cause such unpleasant
convexity consequences? On the liabilities side, the
insurers are short (i.e., have sold) the following op-
tions:
● Life insurance and annuity policies must provide

certain guarantees to policyholders, as required by
the NAIC Standard Nonforfeiture Law. A policy-
holder surrendering a policy must receive certain
portions of premiums already paid, accumulated
with an interest rate which is usually bounded from
below by the minimum interest rate guarantee. Such
a guarantee is equivalent to the policyholder having
the right to purchase a bond paying the minimum
guaranteed interest rate, that is, a bond call. Poli-
cyholders also hold a bond put, as expressed by the
right to surrender the policy in exchange for a cash
value, or to exchange the policy for an annuity
without tax consequences (this is particularly im-
portant in the case of tax-free 1035 exchanges of
deferred annuities). Finally, policyholders often
have the right to borrow funds from their life pol-
icies, and tend to utilize those rights quite effi-
ciently as interest rates rise.

● Many deferred annuities offer interest rates that
vary with a market index, or are adjusted in re-
sponse to changes in the interest rates offered by
competitors. Dividends paid by traditional life in-
surance policies also are subject to similar market
pressures. Universal life policies were created
solely for the purpose of being able to offer com-
petitive market-related interest rates. All of these
features of life and annuity products, combined
with expectations and better information available
to consumers, tend either to create options in prod-
ucts or increase the efficiency of exercising existing
options.

● Many property-casualty (P&C) policies provide re-
placement cost protection or offer coverage linked
to inflation in some other fashion. If, after a policy
is issued the market value of the insured property
or liability judgments increase, this is generally re-
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FIGURE 3
ANNUITIES HAVE A LOT OF CONVEXITY

f 

-0.3

-0.2

-0.1

-0.0

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

.01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .11 

Delta 

Annuity 

15 Yr Bond

lated to inflation and the resulting higher nominal
interest rate. Thus, despite the rise in interest rates,
the insurer will not experience a decline in the mar-
ket value of liabilities by effectively offering an
‘‘inflation option’’ in addition to the standard P&C
coverage. However, if interest and inflation rates
fall, the insurer will find itself offering excessive
coverage, which would result in moral hazard—the
insured having the right to put the item or event
insured to the insurance company at above its mar-
ket value.
On the asset side of the balance sheet, insurers tend

also to be short options in the following ways:
● Life insurers are large purchasers of corporate

bonds, which tend to contain calls or other refi-
nancing provisions. As interest rates fall, bonds will
be called, and the insurer will not experience the
expected price appreciation of the bond, receiving
only the stated exercise price. As interest rates rise,
options will be out of the money and will not be
exercised.

● P&C insurers tend to be large purchasers of munic-
ipal securities, which also often contain refinancing
provisions.

● Insurers have large holdings of mortgages and
mortgage-backed securities. When interest rates
fall, borrowers tend to prepay or refinance their
mortgages. However, when interest rates rise, bor-
rowers tend to postpone prepayments and hold on
to their mortgages, thus extending the duration of
pass-through securities as well.
Therefore, the net position of an insurer typically

resembles that of the short straddle (Babbel and
Stricker 1987). A straddle (Hull 1993) is an option
strategy of purchasing a call and a put at the same
exercise price equal to the current price of a security.
Insurers tend to write (i.e., issue) bond options, which
are equivalent to interest rate options, both calls and
puts. This creates a short position in both bond puts
and calls, i.e., a short straddle. As a result, the rela-
tionship of assets and liabilities to interest rates has
the shape resembling the one presented in Figure 4.
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FIGURE 4
NEGATIVE CONVEXITY OF A SURPLUS

The graphs of natural logarithms of prices would also
produce similar shapes.

Why do insurance companies put themselves in
such a predicament? They are paid for the options
they write, in two forms: (1) additional yield on their
assets, when compared to noncallable assets, and (2)
the ability to credit lower yield to their products than
the yields earned on otherwise similar market instru-
ments.

Are the payments received sufficient to justify the
additional risks undertaken? There are two answers to
this question. On the industrywide scale, over the long
run, they must be, otherwise the industry would no
longer exist. But in an individual company case,
proper management of the enterprise requires devel-
oping a methodology for addressing this question.
This is, in fact, the central issue of ALM. It ties into
the key problem of modern finance concerning valu-
ation of securities, especially contingent claims, be-
cause the short-straddle position is not only caused by
the excess of convexity of liabilities over that of as-
sets, but, overwhelmingly, by the options on both sides
of the balance sheet. We will return to the relationship
of that question to insurance company management in
later chapters.

At this point, let us once again review immunization
as a technique of ALM, but now let us be fully aware
of the short straddle model. If we now position the
two graphs in Figure 4 in such a way that that the
slopes of their tangents are parallel (which implies

equal dollar durations, or in the case of graphs of price
logarithms, equal durations), then we will position
ourselves exactly at the point of maximum of surplus
(or surplus ratio). This must be a local maximum, be-
cause duration matching implies that dollar duration
(or duration) of surplus is zero, and the first-order con-
dition is satisfied, while negative convexity implies
that the second derivative of surplus (or logarithm of
the ratio A/L) is negative, so that the second-order
condition for a maximum is met. Any small change
in interest rates results in economic losses. Shiu’s
(1990) results further imply that, in certain circum-
stances, the maximum is global, and even a large
change in the interest rates in the form of a parallel
shift of the yield curve will lead to economic losses.
At this point one can only ponder why anyone would
pursue such a strategy.

Some additional details lurk beneath. Imagine an
enterprise pursuing immunization as its basic strategy
in the form of duration matching. This is, indeed, the
popular approach to the problem, and many actuaries
have heard the request from their investment portfolio
managers to just give the investment department the
duration of liabilities, and the investment people will
handle it from there.

If Figure 4 is a proper (although necessarily sim-
plified) illustration of the structure of the asset-
liability portfolio of the enterprise, then let us examine
the consequences of a sharp downturn in the overall
level of interest rates on the portfolio. For the sake of
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simplicity, assume also that the firm does not have any
risk of asset default. A sharp downturn in the level of
interest rates can occur in an overall economic down-
turn in the country, for example, in the United States
in the early 1990s. As a result of it, the firm suffers
loss of surplus but, in addition to that, finds itself hold-
ing assets of significantly shorter duration than its li-
abilities. In the United States, this becomes especially
pronounced if the original asset portfolio contained
callable bonds and prepayable mortgages or mort-
gage-backed securities. The insurance company ends
up holding much more cash than expected and fewer
bonds and mortgages. Even if duration matching is
not the investment baseline, the very existence of large
amounts of cash will force the firm to extend duration
through new securities purchases.

This is even more pronounced given the commit-
ment to duration matching. The insurance firm will
buy bonds and mortgages to satisfy new duration re-
quirements. It will be just as unlikely to buy enough
convexity to produce an overall positive convexity as-
set-liability portfolio. If the interest rates turn up again
(as they do in an economic recovery, and did in the
United States in 1994), the firm will again suffer ec-
onomic loss, and cannot return to higher rates in ex-
actly the same position as when the initial downturn
in rates started. There is a common perception of ac-
tuaries as people who value stability. This may be,
after all, correct.

One could argue that the issue in the above story
lay in the company’s inability to respond quickly
enough to changing circumstances. As indicated in
Chapter 2, immunization is a strategy that requires
adjustments with the passage of time. It is formulated
based on the parameters given at a current time. Is
there a way to make it into a continuous ALM pro-
cess? If the financial process describing capital asset
prices is continuous and frictionless, and one or more
state variables exist whose values specify all relevant
information for investors, then Boyle (1978) proved
that in the case of one state variable, continuous im-
munization can be achieved by continuously rebalanc-
ing the portfolio to maintain the asset duration equal
to the liability duration. Duration is then defined as
the logarithmic derivative with respect to the state
variable. Boyle’s model assumes that the asset and
liability cash flows are deterministic, and it does not
require consideration of second-order conditions. Sim-
ilar continuous immunization was developed by Al-
brecht (1985) for a process described by several state
variables. Nevertheless, as pointed out by Shiu
(1991a, 1991b) as long as immunization assumes a
riskless strategy with no net investment and certain

profits, it rests on a riskless arbitrage and, thus, re-
mains internally inconsistent.

To address some weaknesses of the classical im-
munization, Ho (1990) and Reitano (1991a, 1991b)
developed a multivariate generalization of duration
and convexity. They replaced the single interest rate
parameter i by a yield curve vector � (i1, . . . , in),

→
i

where the coordinates of the yield curve vector cor-
respond to certain set of ‘‘key’’ rates. Reitano (1991a)
says: ‘‘For example, one might base a yield curve on
observed market yields at maturities of 0.25, 0.5, 1,
2, 3, 4, 5, 7, 10, 20 and 30 years.’’ The price function
is then viewed as P(i1, . . . , in), and instead of ana-
lyzing derivatives with respect to one interest rate
variable, one could use multivariate calculus tools to
study the price function. There is one, quite signifi-
cant, objection that could be raised with respect to this
approach immediately. When analyzing a function of
two variables ƒ(x,y) we implicitly assume that the var-
iables x and y are independent of each other, that is,
that each of them has its derivative with respect to the
other equal to zero. This is definitely not the case
when various maturity interest rates are considered.
Nevertheless, one can study such multivariate models
for the purpose of better understanding their impli-
cations.

The negative partial logarithmic derivatives of P(i1,
. . . , in) are then termed partial durations (Reitano
1991a, 1991b), or key-rate durations (Ho 1990). The
total duration vector is then defined as:

1 	P 	P
P�(i , . . . , i ) � � , . . . , .� �1 n P(i , . . . , i ) 	i 	i1 n 1 in

(3.35)

One can also introduce the standard notion of direc-
tional derivative of P(i1, . . . , in) in the direction of a
vector � (
1, . . . , 
n):

→



	P 	P→
→P� (i , . . . , i ) � 
 � , . . . , . (3.36)� �
 1 n 	i 	i1 n

Note that the dot refers to the dot product of the vec-
tors. The second derivative matrix can also be used to
define the total convexity:

P�(i , . . . , i )1 n

P(i , . . . , i )1 n
21 	 P

� . (3.37)	 
P(i , . . . , i ) 	i 	i 1�k,l�n1 n k l

One can now view the surplus of an insurance firm as
a function of the set of key interest rates chosen

→
S � S(i , . . . , i ) � S( i ), (3.38)1 n

and use multivariate calculus for two immunization
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algorithms, directly analogous to the one-dimensional
case:
● To protect the absolute surplus level, set the first

derivative (gradient) equal to zero
→

S�( i ) � 0, (3.39)

and make the second derivative (Hessian) matrix
positive definite.

● To protect the relative surplus level (i.e., surplus
ratio), set:

→ →
A�( i ) L�( i )

� � � , (3.40)
→ →

A( i ) L( i )

with the symbols A, L referring to assets and liabili-
ties, respectively.

This approach, though creative and ingenious, does
not eliminate the key problem of immunization strat-
egies, namely that they do not eliminate interest rate
risk, but rather tend to maximize it because the
second-order conditions are unattainable in practice,
resulting in strategies that only address the first-order
conditions.

As pointed out by Milgrom (1972) and Shiu (1991a,
1991b), in practice, multivariate immunization will in-
deed lead to exact cash flow matching; as indepen-
dence of the interest rate variables implies that cash
flows at their respective maturities cannot be repli-
cated by cash flows at other maturities. This can be
easily shown by observing the following: Given a pos-
itive partial derivative of the liabilities with respect to
a given key rate, if the assets have no cash flows of
exactly that maturity, the partial derivative of their

market value with respect to that key rate is zero, and
immunization is impossible. If there are cash flows of
that maturity from the asset, the first-order condition
of immunization will force them to have exactly the
same cash flows as the liabilities. Does this observa-
tion extend to the standard duration measure? Not ex-
actly. The standard duration measure assumes, in a
sense, that there is an underlying interest rate to which
spot rates at various maturities respond. It does not
require a contradictory assumption of independence of
various spot rates.

Is there any value then in calculating key rate du-
rations as presented above? They do represent sensi-
tivities of financial instruments with respect to certain
changes in the yield curve, and, as such, they do con-
vey some information. For example, the gradient vec-
tor formed from partial durations of the surplus does
indicate the direction of change in interest rates to
which such surplus is most sensitive (this follows
from a well-known property of the gradient vector
shown in elementary calculus).

The message from these stories is that insurance
enterprise management requires consistent economic
valuation of the cash flows. Immunization does not
work in theory, because it assumes violation of the
principle of no arbitrage, and it does not work in prac-
tice, because conditions beyond simple comparison of
durations of assets and liabilities generally cannot be
met, or are not consistent with the nature of the in-
surance enterprise. The answer, instead, lies in valu-
ation of the cash flows of the business. This should
come as no surprise, as such is precisely the message
of modern finance about the valuation of any firm
(Chew 1993).


