
ACTUARIAL TECHNOLOGY TODAY | 7Copyright © 2020 Society of Actuaries. All rights reserved.

 JULY 2020
ACTUARIAL TECHNOLOGY TODAY

TECHNOLOGY
SECTION

Building a Modularized
and Reusable Formula
Table Code in Moody’s
Axis Using Formula Link
By Bryon Robidoux

Editor’s note: This article is articulating coding principles. While the
examples are illustrated on one platform, Axis, the principles articulat-
ed here are general and valid across all platforms. The analysis was not
influenced in any way by any particular company or platform.

When I ask actuaries about Moody’s Axis, I get the im-
pression that people think it’s a black box system
without the ability to customize pragmatically, but

this couldn’t be farther from the truth. Axis allows actuaries to
customize its routines with VB.NET, which is a standard .NET
Microsoft programming language. This article will be focused
on maximizing the reuse of code using features available within
Moody’s Axis specifically targeted at using Formula Link.

AN INTRODUCTION TO MOODY’S AXIS
Non-Axis users may need a frame of reference for its two ma-
jor components: Enterprise Link (E-Link) and the dataset. The
dataset is the model, such as variable annuity or life insurance
valuation model. E-Link has a very Windows Explorer feel.
E-Link’s main goal is to manage the collection of the organi-
zation’s models and orchestrate their execution. E-Link can be
automated with scripts to externally manipulate datasets and
customize orchestration using Axis Jobs and E-Link scripts,
respectively. For example, actuaries can write scripts to load in
assumptions from a database with Axis Jobs for multiple datasets
and then run each dataset’s calculations using E-Link scripts.

One of the most important enhancements to E-Link in the last
year or so is Formula Link. This extension builds reusable li-
braries that can be shared among multiple datasets and E-Link
scripts. From E-Link’s point of view, the dataset is like a big zip

file full of Axis proprietary and user-created files. From within
the dataset’s interface, it contains formula tables, code snippets,
and other components which are not important for this article.

Formula Table Introduction
Within a formula table, the user can write specialized code. A
formula table can be defined for many different calculation types.
The calculation type will dictate the Axis specific variables and
functions that are available for use in the custom code. A code
snippet is a special formula table that can be used within any
calculation type. The caveat is that it will not expose in the user
interface what variables and functions are available because the
variables and functions available will not be resolved and linked
until runtime. This may seem like an issue or disadvantage, but
actually, it is their greatest strength and gives them maximum
reusability. It definitely makes them a little more challenging to
use, though. Just note, the less specific the code is on what it
does, the more versatile and reusable the code will be.

Now each formula table only supports Axis Script by default.
Back in the day, Axis Script only supported VBA \ VB6 code.
When formula tables were updated to support VB.NET, the
precompiler was enhanced to force modelers to still code in the
VB6 style to maintain backward compatibility for Axis’s func-
tionality. This evolution of formula tables has a major impact on
their behavior because the Axis Script has different and much
more restrictive syntax rules relative to VB.NET. As a person
that has spent many years focused on improving coding methods
in Axis, it is highly recommended to only use Axis Script for very
simple products. As the complexity of the products increases,
the more difficult it is to write clean and maintainable code. It
is recommended for the organization to invest in the modeler’s
productivity and purchase Formula Link.

ACTUARIAL TECHNOLOGY TODAY | 8Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

The Problem
Now let’s go one step further and pretend that these functions
were developed by one modeler that has moved onto another
company. Shortly thereafter, a stakeholder reports an issue with
a particular set of policies in product A. The new modeler deter-
mines the issue to be in the first 23 lines of FTA. She only chang-
es FTA not realizing the redundancy or not wanting to cause an
impact for products B. Maybe it was correct that the first 23
lines differ for product A and they should be changed. Maybe
the code needs to be the same for A and B, so it is wrong only to
change A. At best, the code is unclear. At worst, the modeler has
just created an unintended model divergence that should not ex-
ist. The business requirement may be lost to the sands of time or
not very clear itself. This is why it is important to write code that
is very explicit on its intent. It should be written in a fashion that
readers in the future can quickly assess what it’s doing without
having to find the original documentation. The code is not just
for the compiler! It is also for the actuary to read.

The Option 1 Solution
How can development methods be improved to avoid this issue?
The best way to prevent this situation is to create three code
snippets called A, B, and Common. In each code snippet, A and
B put a method called Calc on the Functions and Variables tab.
They all must have the same signature.

“A function signature (or type signature, or method signature)
defines input and output of functions or methods. A signa-
ture can include: parameters and their types, a return value, and
type, exceptions that might be thrown or passed back.”1

Then in code snippet A, copy and paste the five lines that spe-
cialized for FTA and save. Do the same process for code snippet
B using FTB as displayed below. (Do not worry at this point if
code snippets won’t compile.) (See Fig. 2)

If the organization has upgraded to Formula Link, the formula
table contains three tabs for code development: Formula Text,
Functions and Variables, External Declarations and Classes. The
Axis Script becomes the Formula Text tab after the upgrade. The
Functions and Variables, External Declarations, and Classes tabs
are far more compatible with VB.NET coding style. The three
tabs do have different syntax rules, which lead to preferred cod-
ing behaviors that should be addressed.

It is encouraged to do most coding on the Functions and Vari-
ables, External Declarations and Classes tabs because they will
force writing in functions and classes for better modularization.
Only use Formula Text tab for calling functions created in the
other two tabs and declaring constants because the Formula Text
tab has heavy manipulation during pre-compilation. This ma-
nipulation makes writing clean code and using .NET language
features very difficult or impossible. It is highly recommended
to use Visual Studio as the debugger to immensely improve the
modeler’s productivity.

LOGIC PROLIFERATION AND CODE
DIVERGENCE WITHIN THE DATASET
A common problem I have witnessed—which leads to logic pro-
liferation and code divergence—is multiple formula tables hav-
ing mostly identical code. (Code divergence is when different
blocks of code should behave the same, but they don’t because
they are copies of each other and only a subset of the copies have
been modified or enhanced.) To demonstrate, let’s have two for-
mula tables called FTA and FTB. Let’s pretend that each formu-
la table represents products A and B, respectively, and contains
51 lines of code each on the Formula Text tab. The first 23 and
the last 23 lines are identical between both formula tables, but
the middle five lines are slightly different for products A and B,
which are displayed in Figure 1.

FIGURE 1
PRODUCTS A AND B CODE DIFFERENCES

 ‘FTA ‘FTB

 ‘Common init. for 23 lines ‘Common init. for 23 lines

 Const myArray() As Integer = {1,2,3,4} Const myArray() As Integer = {1,4,8,10}

 Dim reserve as Double Dim reserve as Double

 reserve=0 reserve=0

 For Each item In myArray For Each item In myArray

 reserve += 2 * item + 3 reserve += 2.5*item+3.5

 Next Next

 ‘Common Summary 23 lines ‘Common Summary 23 lines

ACTUARIAL TECHNOLOGY TODAY | 9Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

FIGURE 2
CODE SNIPPETS A AND B

 ‘Code Snippet A ‘Code Snippet B

 Public Function Calc(ma() As Integer) As Double Public Function Calc(ma() As Integer) As Double

 Dim reserve as Double=0 Dim Reserve as Double=0

 For Each item In ma For Each item In ma

 reserve += 2 * item + 3 reserve += 2.5 * item + 3.5

 Next Next

 Return reserve Return reserve

 End Function End Function

In the Common code snippet on the Functions and Variables tab, as displayed below, create a sub routine called Common. Within
the Common sub routine, move the first set of 23 lines from FTA, call the Calc function that has the same signature as the Calc
functions that are in code snippets A and B, move the last set of 23 lines from FTA and save. (Do not worry that this will not compile
at this point because it is missing the definition of Calc. It is all part of the plan.) (See Fig. 3)

FIGURE 3
CODE SNIPPET COMMON

 ‘Code Snippet Common

 Public Sub Common(myArray() As Integer)

 ‘Common init. for 23 lines

 Dim reserve As Double = Calc(myArray)

 ‘Common Summary 23 lines

 End Sub

Next, delete all the previous code in FTA and FTB from all tabs and save because it will now be replaced. In the Functions and
Variables tab of FTA and FTB, do what is displayed in Figure 4.

FIGURE 4
FORMULA FOR TABLE A AND B

 ‘Formula Table A ‘Formula Table B

 IncludeScriptFromTable(“A”) IncludeScriptFromTable(“B”)

 IncludeScriptFromTable(“Common”) IncludeScriptFromTable(“Common”)

 Public Sub CalcProd() Public Sub CalcProd()

 Const myArray() As Integer= {1,2,3,4} Const myArray() As Integer = {1,4,8,10}

 Common(myArray) Common(myArray)

 End Sub End Sub

Lastly, on the Formula Text tabs of FTA and FTB place the following function call:
FormulaTable.CalcProd()

ACTUARIAL TECHNOLOGY TODAY | 10Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

FIGURE 5
COMMON CODE SNIPPET’S CALCULATE METHOD

Public Class Common

 Public Sub Calculate(theProduct As IProduct)

 ‘Common init. for 23 lines

 Dim reserve As Double = theProduct.Reserve()

 ‘Common Summary 23 lines

 End Sub

End Class

Within the same Common code snippet and External Decla-
rations and Classes tab, create an interface IProduct that has
one method called Reserve, which has the same signature as the
functions in code snippets A and B. (An interface is a special
class that contains methods that do not have any implementa-
tion. The reader can think of them as defining a set and its be-
havior. The classic example of an interface is the shape, which
can have a method draw. Each implementation of an interface,
such as circle and square, will define the specifics of how to draw
it.) (See Fig. 6)

FIGURE 6
RESERVE SNIPPET

Public Interface IProduct

 Function Reserve() As Double

End Interface

The pre-compiler will merge the two snippets together at com-
pile time, and each formula table will work as it originally did,
and the redundancy is removed. (At this point, FTA and FTB
should compile. If the user of the dataset wants to see the results
of the merge, they will have to debug the code.) This is a really
neat feature of Axis, which is typically not available in .NET.
Anyone familiar will C++ will recognize this as a poor man’s stat-
ic polymorphism.

“The word polymorphism means having many forms.
Typically, polymorphism occurs when there is a hierarchy
of classes, and they are related by inheritance. C++ poly-
morphism means that a call to a member function will
cause a different function to be executed depending on the
type of object that invokes the function.”2

In this case, the type of the object that invokes the function is
code snippet A or B.

Solution Option 2—Avoid Code Snippets and Use
Classes Instead
Now let’s imagine that the actuaries developing models are in-
timidated by the static polymorphism described above because
they cannot look at the formula table and directly read the code
without debugging. Is there another way to accomplish this level
of reuse? Yes. The External Declarations and Classes tab allows
users to create classes using dynamic polymorphism.

Hence, the actuary could create a code snippet called Common
and write a class called Common on the External Declarations
and Classes tab. It would contain a method called Calculate,
which takes a parameter of an interface of type IProduct. The
Calculate method comprises all the code from the Common
code snippet’s Calc method from Figure 3. (See Fig. 5)

ACTUARIAL TECHNOLOGY TODAY | 11Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

In FTA, create a subclass A that implements IProduct on the External Declarations and Classes tab and do the same for FTB. Each
subclass A and B contains the code that is in the Calc methods of code snippets A and B, respectively, mentioned above. The results
of the transformation are displayed in Figure 7.

FIGURE 7
IMPLEMENTATION OF IPRODUCT

IncludeScriptFromTable(“Common”) IncludeScriptFromTable(“Common”)

Public Class A Public Class B

 Implements IProduct Implements IProduct

 Private Dim myArray={1,2,3,4} Private Dim myArray={1,4,8,10}

 Public Function Reserve() As Double _ Public Function Reserve() As Double _

 Implements IProduct.Reserve Implements IProduct.Reserve

 Dim reserve as Double=0 Dim Reserve as Double=0

 For Each item In myArray For Each item In myArray

 reserve += 2 * item + 3 reserve += 2.5*item + 3.5

 Next Next

 Return reserve Return reserve

 End Function End Function

End Class End Class

In FTA on the Functions and Variables tab, create a method called CalcProd, which will instantiate a Common object and an A
object and pass the A object to the Calculate method of the Common object. Do the same for FTB. This is displayed in Figure 8.
(An instantiated class is called an object.)

FIGURE 8
CALCPROD METHOD

‘Formula Table A ‘Formula Table B

Public Sub CalcProd() Public Sub CalcProd()

 Dim mediator = New Common() Dim mediator = New Common()

 Dim prod = New A() Dim prod = New B()

 mediator.Calculate(prod) mediator.Calculate(prod)

End Sub End Sub

Now, to make the static and dynamic polymorphism examples equivalent, write the following line FTA and FTB on the Formula
Text tabs.

FormulaTable.CalcProd()

Advanced Topic and Full Disclosure
The astute reader may have noticed that I put the IncludeScriptFromTable call in the External Declarations and Classes tabs of the
formula tables. This was no accident. Remember when I mentioned in the introduction of formula tables that different tabs have
different syntax rules due to the evolution of the formula tables and code snippets? The behavior that I expected is that the pre-com-
piler would line up the the tabs of the code snippets with the tabs of the formula tables and then merge the code snippet code with
formula table code. This would ensure that all the code stays in its homogenous tab and gets compiled correctly, regardless of which
tab the IncludeScriptFromTable call is made from in the formula table.

ACTUARIAL TECHNOLOGY TODAY | 12Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

But instead, the precompiler looks at the tab that the Include-
ScriptFromTable call was made from in the formula table. It then
merges all the code snippet code into this one tab and compiles all
the code. The code that was on a different tab in the code snippet
versus the tab the IncludeScriptFromTable call in the formula ta-
ble will fail to compile because an incompatible version of syntax
rules will be applied. This is why the directions are very specific
in the examples on the tab that the IncludeScriptFromTable call
is located.

This has some undesired consequences because this means that
multiple tabs cannot be used within the code snippets because
one of the tabs would have compilers’ errors because the syntax
rules wouldn’t match up. This means that if the common code
grew and multiple tabs were needed to best express and abstract
the concepts, they would have to be put into multiple code snip-
pets. This really forces the actuary to make less readable code
to overcome this issue, which makes the static polymorphism
appear a little less slick. I am hoping that in the future, Moody’s
will change the behavior so that placement of the IncludeScript-
FromTable call can be in any tab and not impact the rules of the
compilation of the code within the code snippet.

OPTION 1 VS. OPTION 2
When should the actuary use static polymorphism versus dy-
namic polymorphism? The advantage of the dynamic polymor-
phism is that it is more transparent, which is always a good thing.
There is still an issue, though. It can never be simple! The real
determination of which method to use is the frequency at which
the calculation will be called. If the code is called for every sce-
nario, policy, time point, and whatever, then the system is al-
locating and deallocating memory at this frequency. This can
be computationally expensive and time-consuming or can cause
memory to become fragmented. These issues can be solved by
declaring classes as static so that the instantiated classes keep
their state between formula table calls. This causes another is-
sue; the actuary is in the memory management business deciding
when objects should be created and destroyed. Depending on
the situation then, the run could crash due to a lack of memory.
(For example, assume the Common class had a list that need-
ed to be reset on a periodic, predictable basis. If a bug existed,
the list might not be reset properly and grow unbounded.) The
advantage of the static polymorphism is that the actuary can un-
derstand the polymorphism, but Axis is responsible for all the
memory. Axis has the DIM_STATIC_VARIABLE to hold static
between formula table calls to replace the need for the list used
in the dynamic polymorphism example. Memory management
is very difficult to implement correctly, so it is best to delegate
it away to Axis because the platform is focused on the problem.
The difficulty of memory is why static polymorphism is pre-
ferred, and C++ lost its popularity.

RESULTS OF REFACTORING
This pattern of separating common from specialized code can
be repeated over and over again. It is highly recommended to

avoid coding directly in formula tables so that the above pattern
is encouraged. It has many advantages:

1. It clearly defines the parts of the algorithm that are common.

2. It specifies exactly where code variations occur.

3. If the algorithm is wrong in the common code, it can be
changed in one location and fix everything at once.

4. It allows the code to be compressed as much as possible.

5. It allows the code to be divided into smaller and smaller
pieces for better maintenance and comprehension.

6. It can be easily extended for a future product C, and so on,
by creating the code snippet and following the pattern.

LOGIC PROLIFERATION AND CODE
DIVERGENCE AMONG THE DATASETS
The redundancy and logic proliferation might be caught with-
in one model, but now imagine the variations exist in different
models. There is no native tool from within the dataset that
can overcome it. Luckily in September 2019, Formula Link
code snippets were introduced to save the day! The only code
that would change from handling redundancy within a dataset
versus among datasets is to change line 4 from IncludeScript-
FromTable(“Common”) to IncludeScriptFromFormulaLinkTa-
ble(“Common”) in each of the FTA and FTB formula tables dis-
played above. Lastly, the code snippet would have been removed
from the dataset and saved in Formula Link.

This way the user can keep the common code in a centralized
location that is visible to all models. The unique variations of
each model are stored in the dataset and injected into the code
at compile time. For example, imagine that the common code
was an economic scenario generator (ESG) that both a Fixed
Indexed Annuity and Variable Annuity dataset would need for
projecting liability values. They could keep the common code
of interacting with the ESG in Formula Link and keep all the
specifics of how the liability needed to interact with it inside
the dataset. Code snippets in Formula Link give the modeler
the ability to avoid copying regardless of where the redundancy
exists—which is exactly what good software engineering princi-
ples dictate.

Now for Transparency
Now that the beauty of Formula Link was addressed with code
snippets, the difficult side of using Formula Link needs to be
exposed. The “Formula” in Formula Link comes from the ability
to write code outside the dataset. The purpose is to allow the
user to:

1. Write reusable Dynamic Link Libraries (DLL) within the
Moody’s environment using object-oriented C# or VB.NET
classes; and

ACTUARIAL TECHNOLOGY TODAY | 13Copyright © 2020 Society of Actuaries. All rights reserved.

Building a Modularized and Reusable Formula Table Code in Moody’s Axis Using Formula Link

2. to link-in external libraries’ DLLs that were written outside
of Axis.

Bullet 2 is an awesome feature, and its potential will be shown in a
future Modeling Section article, “The Importance of Centraliza-
tion of Actuarial Modeling Functions – Part 4 DevOps and Auto-
mated Model Governance.” Bullet 1 is where the difficulties arise.

The difficultly with Formula Link has to do with using the For-
mula Link library classes directly. Formula Link library classes
cannot directly call the functions or variables inside the dataset.
There is no library that can be referenced to expose them. (This
limitation is for justified technical reasons beyond the scope of
this article.) In order to get a hold of the internal dataset func-
tions and variables, the developer has to pass them to the Formu-
la Link library classes directly. Passing functions requires using
function pointers and lambda expressions, which are advanced
programming skills. The library gets cumbersome and difficult
to understand if it requires tons of parameters, especially func-
tions as parameters. This is why it is highly recommended to
use Formula Link code snippets over calling the Formula Link
classes directly. When the formula table in the dataset calls the
Formula Link code snippet(s), the dataset’s pre-compiler will
link all the datasets functions and resolve the dependencies. Fol-
lowing this rule of thumb will greatly reduce the complexity of
the code and increase its readability.

The last suggestion is to set the dataset and Formula Link to
Option Strict, which shuts off the ability to do implicit type con-
version. This feature is especially important when using Formu-
la Link because the types in the Formula Link library are not re-
solved until runtime. Hence, the dataset would compile and start
a run, but possibly stop running due to a type mismatch error.
The Option Strict will prevent this from happening because it

will find the type mismatch during compilation. The directions
on how to set Option Strict can be found in the knowledge base.

CONCLUSION
In conclusion, this article focused on code reusability and mod-
ularization by using code snippets. The art of coding is to be
able to encapsulate the changes between similar concepts and
then inject the variations. The injection of differences is accom-
plished through polymorphism, of which there are two types:
static polymorphism or dynamic polymorphism. The static poly-
morphism is the modeler’s only option without Formula Link.
(The reason that static polymorphism wasn’t shown using Axis
Script is that Axis Script is so verbose.) The preference was on
using static polymorphism because dynamic polymorphism can
be computationally expensive and tricky to implement. Regard-
less of which method is used, it is important to write clear code
so that future developers can understand its intent and therefore
reduce confusion. The methods shown will help reduce redun-
dancy of code in the model and make it easier to maintain. n

ENDNOTES

1 https://developer.mozilla.org/en-US/docs/Glossary/Signature/Function

 2 https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm

Bryon Robidoux, FSA, CERA, is a lead and
corporate actuary, Actuarial Transformation at
The Standard. He can be reached at Bryon.
Robidoux@standard.com “

https://developer.mozilla.org/en-US/docs/Glossary/Signature/Function
https://www.tutorialspoint.com/cplusplus/cpp_polymorphism.htm
mailto:Bryon.Robidoux%40standard.com%20?subject=
mailto:Bryon.Robidoux%40standard.com%20?subject=

	Building a Modularizedand Reusable FormulaTable Code in Moody’sAxis Using Formula LinkBy Bryon Robidoux

