

Article from

Actuarial Technology Today

May 2020

ACTUARIAL TECHNOLOGY TODAY | 6Copyright © 2020 Society of Actuaries. All rights reserved.

 MAY 2020
ACTUARIAL TECHNOLOGY TODAY

MODELING
SECTION

Guerrilla Automation
With R:
R Automation Despite Resource
Constraints
By Timothy Quast

Guerrilla warfare is a type of asymmetric warfare wherein
a smaller, less powerful military uses unconventional tac-
tics to fight a stronger, more traditional military. It often

involves a higher level of mobility, with nimbleness making up
for the military’s lack of resources. We can draw an analogy in
business. When a problem calls for a traditional technological
solution, but no such solution is currently in-place, actuaries
may require a low-cost, nimble approach to meeting the needs
of their stakeholders.

That’s where R comes in. R is a free and open source program-
ming language with a powerful and continually expanding set of
libraries and packages. It is highly versatile and compatible with
a wide variety of other systems. In this article, I will walk through
a hypothetical use-case for R that highlights R’s advantages.
Example code will be interspersed throughout the article. The
full code, complete with example excel files can be accessed via
Github at the following URL: https://github.com/TimothyQuast/
Guerrilla_Automation

If you download the repository and would like to follow along, I
highly recommend installing RStudio for free from Rstudio.com.
A rudimentary understanding of R will be helpful in following
along, but it is not essential.

THE USE-CASE
Let’s suppose that our stakeholder has a large number of files in
Excel throughout their network drives with financial informa-
tion. They would like to be able to summarize all the financial
information and trace the lineage of each subcomponent. Spe-
cifically, let’s say that they want to support numerous account
balances using the actuarial workpapers that feed them. They

want to break each balance into pieces, with each piece corre-
sponding to one actuarial workpaper, which contributes to that
balance. Doing so would be extremely valuable for audit purpos-
es and reasonableness testing.

The actuarial workpapers are stored in Excel in a regular format
in different places throughout the stakeholder’s network drives,
with a variety of teams contributing to the same account balanc-
es. Moreover, the workpapers represent an aggregated version of
the actuarial results, so they aren’t overly granular. But they are
granular enough to make a manual solution infeasible. How do
we get the data we need to support the account balances?

The proper, traditional method is a big fancy subledger contain-
ing the supporting balances along with metadata that traces each
balance. But let’s say the stakeholder doesn’t have a big, fancy
subledger yet. Further, let’s say that the stakeholder wants the
balances supported soon—sooner than a big, fancy subledger
can be developed. We need a temporary solution to solve the
problem quickly. In such a conundrum, one might try automat-
ing the task with R!

https://github.com/TimothyQuast/Guerrilla_Automation
https://github.com/TimothyQuast/Guerrilla_Automation
http://Rstudio.com

ACTUARIAL TECHNOLOGY TODAY | 7Copyright © 2020 Society of Actuaries. All rights reserved.

Guerrilla Automation With R: R Automation Despite Resource Constraints

Excel Files/Workpaper 1.xlsx

R is suitable for the task for several reasons:

• It’s free! It can be used for such a task without requiring
investment dollars or licensing.

• It’s open source with a broad user base. Developers are
continually producing marvelous new packages that can
solve tough problems, making R extremely versatile.

• It’s highly compatible. The variety of packages and the
non-proprietary nature of the system make it uniquely capa-
ble of interacting with other systems, such as Excel.

• It’s suitable for rapid prototyping. R is elegant and fairly
high-level, allowing the user to do a lot with just a little code.

R has some disadvantages too:

• It’s less efficient. R doesn’t do as well as other languages in
terms of processing efficiency. That’s why it’s important that
the workpapers are already aggregated. If they were extremely
granular, with a high volume of data, then R might struggle.

Figure 1
Example Problem

Account Number Amount
A0000 15368
A1111 6973
A2222 13909
A3333 3349
A4444 7725
A5555 9504
A7777 15486
A8888 8472
A9999 2992

Account Number Amount
A0000 4747
A1111 0
A2222 5228
A3333 0
A4444 4741
A5555 4445
A7777 9560
A8888 0
A9999 0

Excel Files/Ledger Balances.xlsx

• There’s a learning curve. Like all programming languag-
es, R must be learned. It might be difficult for new person-
nel to learn the language, making the process less portable.

• It has a copyleft license. R is usable for any commercial
purpose, but the license requires that any derivative works
be under a compatible open source license. In other words,
you cannot distribute proprietary software that uses R: it
would have to be open source. This is not a problem as long
as we are internal or we are charging for labor (instead of
software licensing).

The drawbacks are not overwhelming, and it won’t cost us any-
thing but time to try, so let’s figure out how to solve our prob-
lem with R. I’ve constructed an example problem (which you
can find in the GitHub repository) using four Excel files (see
Figure 1). Ledger Balances.xlsx contains the “ledger balanc-
es” we are trying to support. Three workpaper files contain the
“workpapers” that support the “ledger balances.” Pretend that
the workpaper files are located in disparate places throughout
the stakeholder’s network drives!

Excel Files/Workpaper 3.xlsx

Account Number Amount
A0000 9836
A1111 0
A2222 8508
A3333 3349
A4444 0
A5555 0
A7777 5926
A8888 8472
A9999 0

Account Number Amount
A0000 785
A1111 6973
A2222 173
A3333 0
A4444 2984
A5555 5059
A7777 0
A8888 0
A9999 2992

Excel Files/Workpaper 2.xlsx

ACTUARIAL TECHNOLOGY TODAY | 8Copyright © 2020 Society of Actuaries. All rights reserved.

Guerrilla Automation With R: R Automation Despite Resource Constraints

Figure 2
Input Files Chronicled

Filepath Sheet Range
Excel Files/Workpaper 1.xlsx Sheet1 B4:C13
Excel Files/Workpaper 2.xlsx Sheet1 B4:C9001
Excel Files/Workpaper 3.xlsx An Unusual Sheet Name C4:D13
Excel Files/Workpaper 3.xlsx A Mistaken Sheet Name C4:D13
Excel Files/Workpaper 3 Mistaken Filename.xlsx An Unusual Sheet Name C4:D13

Excel Files/Input Control.xlsx

You can also manually verify that the account number totals in the
three workpapers sum to the ledger balance totals, but then what’s
the point of automating it? Notice that the workpapers keep the
data in a regular format, but Workpaper 3.xlsx has the data in dif-
ferent cells and it has an unusual sheet name! These differences are
intentional, and we will handle them in our solution.

THE SOLUTION
The first step to solving any problem is simple: get organized!
I start by chronicling the input files in the Excel Files/Input
Control.xlsx spreadsheet (see Figure 2).

I typically prefer to use absolute file paths, but I set this up with
relative paths so that it will work on other machines. The first
three rows here contain correct information. The last two con-
tain errors in the sheet name and file name, respectively. This
can happen if, for example, the process is run on a monthly basis,
and the file-naming conventions for a workpaper change from
one month to the next. I included them to demonstrate R’s abili-
ty to deal with these complications. Two things to note:

• The range for Workpaper 2 is unnecessarily large. This is a
useful tactic when the numbers of rows changes from month
to month and you want to ensure that you capture all the data.
We eventually remove the resulting empty rows from our data.

• There are no errors in the Range column. A runtime error
in the Range column would be captured in the same way as
file/sheet name errors, but a logical error (i.e., if we entered
the range incorrectly) could create challenges. It is possible to

dynamically determine the correct range for each sheet, but
doing so is a bit trickier, and beyond the scope of this article.

Next, we start using R. We rely on three packages: readxl (Wick-
ham & Bryan 2018), writexl (Ooms, 2018), and dplyr (Wickham
et al., 2020). If you have Rstudio installed, you can follow along
in the GitHub repository by opening the file Guerrilla Automa-
tion.Rproj and then opening the file Guerrilla Automation.R
from the same instance of Rstudio. You can run the whole process
from start to finish by calling either the main or the output_re-
sults functions. Note that you can install the requisite packages
using the following code. You also need to source the R script file:

install.packages(c(“readxl”,”writexl”,
“dplyr”))
source(‘Guerrilla Automation.R’)

Step 1 is to import the Input Control data. We do this in the
import_input_control function with the following lines:

input_control = read_excel(filepath, sheet =
“Input Control”, range=”B4:D9001”)
input_control = data.frame(input_con-
trol[!is.na(input_control$Filepath),])

Note that the range parameter is excessively large. This helps
if you have to add new files to the input control. The second
line converts input_control to a data frame and removes the
NA values at the end of the data (which occur because of the
excessive range). The input_control data frame now looks as
shown in Figure 3:

Guerrilla Automation With R: R Automation Despite Resource Constraints

ACTUARIAL TECHNOLOGY TODAY | 9Copyright © 2020 Society of Actuaries. All rights reserved.

Step 2 is to loop through the input_control data frame and use
read_excel on the parameters in each row. We do this in the
gather_input_data function. We also handle our erroneous ex-
ample rows in the Input Control using a tryCatch. Similar to
how we removed the extraneous rows from the Input Control,

Figure 3
Input_Control Data

Filepath Sheet Range
Excel Files/Workpaper 1.xlsx Sheet1 B4:C13
Excel Files/Workpaper 2.xlsx Sheet1 B4:C9001
Excel Files/Workpaper 3.xlsx An Unusual Sheet Name C4:D13
Excel Files/Workpaper 3.xlsx A Mistaken Sheet Name C4:D13
Excel Files/Workpaper 3 Mistaken Filename.xlsx An Unusual Sheet Name C4:D13

input_control

we also removed the extraneous rows from Workpaper 2. I’ve
omitted the code for Step 2 because it is rather lengthy, but it re-
sults in a list of two data frames. One is an augmented version of
input_control and the other is called input_data. I assign these
data frames to input_list via:

input_list[[“input_control”]]

Figure 4
Data Frames

Figure 5
Data Frames

input_list[[“input_data”]]

Guerrilla Automation With R: R Automation Despite Resource Constraints

ACTUARIAL TECHNOLOGY TODAY | 10Copyright © 2020 Society of Actuaries. All rights reserved.

input_list = list()
Code omitted
input_list[[“input_control”]] = input_
control
input_list[[“input_data”]] = input_data

Now they are as shown in Figures 4 and 5.

Note the two extra columns in input_control. We can use these
to track which files imported successfully and what went wrong
with the files that failed.

Step 3 is to summarize the data. We do this in the aggregate_in-
put_data function using elegant dplyr functions. We store our
results in a list called aggregate_list. We keep the old input_list
along with our new summary.

aggregate_list = list()
aggregate_list[[“input_control”]] = input_
list[[“input_control”]]
aggregate_list[[“input_data”]] = input_
list[[“input_data”]]
aggregate_list[[“summary”]] = data.frame(in-
put_list[[“input_data”]] %>%
group_by(`Account Number`) %>% sum-
marise(Amount = sum(Amount)))

The summary now appears as shown in Figure 6.

Figure 6
Input_Data Summary

Account Number Amount
A0000 15368
A1111 6973
A2222 13909
A3333 3349
A4444 7725
A5555 9504
A7777 15486
A8888 8472
A9999 2992

aggregate_list[[“summary”]]

Note that these values are exactly the same as the ones we started

with in Ledger Balances.xlsx. Huzzah!

Step 4 is to output the results to Excel. We do this in the out-

put_results function using the writexl package as follows:

write_xlsx(aggregate_list, “./Excel Files/R

Output/Results.xlsx”)

Now, we’re back in Excel! In the file Excel Files/R Output/Re-
sults.xlsx, we have a tab for each data frame. I chose to output
the results into a new Excel file. This prevents issues that occur
when you are trying to write to a file that is currently open. If
you open the Results.xlsx file and run the process again, you
should get an error. One way to prevent this is to include a time
stamp in the file name via:

write_xlsx(aggregate_list, paste(“./Excel

Files/R Output/Results “,

format(Sys.time(), “%Y%m%d %s”), “.xlsx”,

sep=””))

Now we can easily see which files were imported successfully,
and we can trace each ledger balance back to the files that con-
tributed to it. Our approach to automating data gathering has a
lot of flexibility. Here’s a few other things we could do with our
solution:

1. Add additional identifier columns to Input Control.xlsx,
which can provide helpful splits to our aggregate data.

2. Add functionality that dynamically detects the appropriate
range for each input file.

3. Automate the task of comparing the resulting summary to
the original ledger balance.

4. Iteratively correct Input Control.xlsx using the input_
control tab in Results.xlsx until all of the rows contain
correct information.

As you can see, R offers a lot of power and compatibility as a free
and open source system. I enjoy using R in both business and as
a hobby because of its elegance and versatility. It is a great re-
source for rapidly developing solutions that can meet the needs
of your stakeholder. That’s all folks. I hope you enjoyed this
“R-ticle” and found it most helpful! ■

Timothy Quast, ASA, is an assistant actuary at AIG.
He can be contacted at timothy.quast@aig.com.

REFERENCES

Hadley Wickham and Jennifer Bryan (2018). readxl: Read Excel Files. R package ver-
sion 1.1.0. https://CRAN.R-project.org/package=readxl

Jeroen Ooms (2018). writexl: Export Data Frames to Excel ‘xlsx’ Format. R package
version 1.0. https://CRAN.R-project.org/package=writexl

Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2020). dplyr: A
Grammar of Data Manipulation. R package version 0.8.5. https://CRAN.R-project.
org/package=dplyr

 https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=writexl
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

