

Article from:

CompAct

January 2008 – Issue 26

Parallel Computing on Multi-Processor
Computers Using Freely Available Tools
N. D. Shyamal Kumar

Increasing computational prowess is driving
the demand for more realistic modeling and is
also partly responsible in regulation becoming
less simplistic. But this increasing prowess in
the future is going to be delivered by increas-
ing the number of processing units rather than
by increasing the clock speed. This trend is
already seen with new workstations usually
having two or more computing cores. Hence it
is imperative that quants acquire parallel com-
puting skills. In this article we show that it
takes little to write parallel code to implement
embarrassingly parallel algorithms, which is
exciting given the prevalence of problems
yielding to such algorithms. In one such prob-
lem that we discuss here, to our surprise, on
a dual core processor we were able to get a
speedup greater than two—close to 2.6 in
fact! And all of this using only freely available
tools for the Windows® operating system.

Programming Paradigm: In this article we
will constrain ourselves to shared memory
parallel computing, i.e., parallel computing
where all threads have access to the same
shared memory. The discussion of distributed
memory parallel computing, the paradigm for
grid computing, will be left for another article.
Moreover, we will further restrict our attention
to the use of the OpenMP API, which is based
on the fork and join execution model. This
execution model, see Figure 1, is one where
the main thread spawns out multiple worker
threads to simultaneously execute sections of
code that can be run in parallel, thus speeding
up the overall computation. This will be made
clearer below when we discuss the implemen-
tation of the solution to our problem. The
OpenMP site is at http://www.openmp.org
where one can find useful tutorials (especial-
ly, see [3]), list of books on OpenMP, etc.

Actuarial Problem: The computational prob-
lem we consider is the calculation of the
break-even survivorship benefit for the dis-
ability product from the Danish market con-
sidered in [1]. The age-to-65 product is sold
to healthy (able) insureds with an annual pre-
mium rate (assumed to be paid continuously)
of DKK 10,000, with a premium waiver while
the insured is disabled (or invalid), a death
benefit at time t defined to be the benefit
reserve at that time for a healthy insured, and
a survivorship benefit of S payable at the end
of the term of the product. Figure 2 depicts
the multi-state model underlying the product
with disability rate (·) and mortality rates
µ(·) and (·) for the able and disabled,
respectively. The motivation for this product
with a strong savings element was to enable
insurance companies to compete with banks
and other savings institutions, which were
only allowed to sell products with an element
of insurance (the waiver of premium is includ-
ed in this product for this sole purpose). This
product has didactic value as many companies
did not price the product using the correct
reasoning, see [1]. The approach taken in [1]
is that of using Thiele’s differential equation to
derive a double-integral expression for S.
Here we will adopt a different approach which
will lead to a simple Monte-Carlo solution.

CompAct8

N.D. Shyamalkumar
ASA, an assistant
professor of
statistics &
actuarial science
at the University of
Iowa. He can be
contacted at
shyamal-kumar
@uiowa.edu

Figure 1: Fork and Join Model

Figure 2: The Multi-State Model Underlying
the Product
Embarrassingly Parallel Algorithm: It is not
difficult to see that the survivorship benefit S
in the above problem is the same as in the
following problem: consider an age-to-65
product sold on a healthy (able) insured for a
premium at the annual rate of DKK 10,000,
carrying a survivorship benefit of S and a
waiver of premium while the insured is dis-
abled; Disability rate is (·) (as above), and
unlike the original product the rate of recov-
ery is taken to be (·) and mortality is
ignored (see Figure 3). Since mortality is
ignored, S is equal to the expected value of
the accumulated premiums. This characteri-
zation of S lends itself to Monte-Carlo simula-
tion of S. Hence we will be able to achieve a
speedup almost equal to the number of
processors (i.e., by dividing the number of
simulation runs equally among the proces-
sors). Algorithms achieving such speedups
are termed embarrassingly parallel.

Caveat for Simulation in Parallel: Unlike
sequential simulation where independence of
the pseudo-random numbers is more or less
guaranteed, one has to take extra care to
ensure this in the parallel setting. For one,
often pseudo-random number generators are
by default initialized using the system clock
and this could make many if not all of the
simulations carried out on different proces-
sors to be identical. A well tested C package
that helps to create and easily manage inde-
pendent streams is RNGStreams, written by
Pierre L’Ecuyer. For details and to download
the library, see the webpage at

http://www.iro.umontreal.ca/˜lecuyer/myftp
/streams00/c. Since the hazard rates pertain
to the Makeham distribution, we used the
algorithm as given in [2] to simulate the ran-
dom occupation time in each state. This algo-
rithm uses two independent exponential vari-
ables, and we generated these from uniforms
using the log transform.

Comments on the Code and Tools: We
decided to program in C (see listing) and use
the MinGW (Minimalist GNU for Windows)
packaged GNU compilers, see
http://www.mingw.org.
For code using the OpenMP API one will also
need the pthreads library which can be found
at ftp://sourceware.org/pub/pthreads-
win32/prebuilt-dll-2-8-0-release/.The OpenMP
paradigm allowed us to write parallel code in
such a way that it compiles as a sequential
program without the -fopenmp compiler
option. The C code of this project is available
on request from the author.

The sequential part of the code is comprised
of the lines of code excepting the pragma
compiler directives and the code in between
#ifdef and #endif pre-processor conditionals.
We observe that the key lines of this part of
our code are those from lines 50-69. These
simulate the accumulated amount of premi-
ums paid by a single insured. This is repeat-
ed for NRUNS number of insureds in order to
reduce estimation error.

Now, moving on to the parts of the code that
help parallelize the simulation, we notice that

Parallel Computing on Multi-Processor …

(continued on page 10)

CompAct 9

Figure 2: Multi-State Model Underlying
the Product

Figure 3: The Reduced Multi-State Model
Driving the Algorithm

CompAct10

between the first pre-processor conditionals
we include the OpenMP library and between
the second we set the number of threads.
The first pragma directive on line 39 implies
that the code between lines 40-70 will be run
by each thread, and that all threads will be
sharing the global variable delta while keep-
ing private copies of all the variables
declared within the section. Moreover, the
reduction clause creates for each thread its
own copy of mean (resp., var) for the dura-
tion of the parallel section, and at the end of
the parallel section, unlike private variables
which are simply released, the values in
these copies will be merged (in our case
added) and stored in the global variable
mean (resp., var).

The call to the function
RngStream.CreateStream on line 44 ensures
that each thread has its own independent
pseudo random number generator, and that
these generators are mutually independent
of each other. In order to achieve these goals
the function RngStream.CreateStream uses a
static variable to store its state, and hence is
not (and cannot be) thread safe. For this rea-
son, this function call is encapsulated in a
pragma omp critical directive that allows a
thread at a time to make the function call.
The last pragma directive on line 48 splits the
range of the loop index equally among the
threads (load balancing options are available
too), and this is the part that achieves a
speedup equal to exactly the number of
processors.

Results: The computations were done on an
Intel® Core™ 2 Duo Processor E6600
(2.4GHz, 4MB shared L2 Cache) box with
4GB RAM and running the Windows Vista™
Enterprise OS. The value of S was estimated
with a relative error less than 10 basis points
by simulating the accumulated premiums for
100 million insureds. The code was run five
times with each value for the number of
threads listed in Table 1, wherein we report
the observed mean running times. It was
expected that with two threads we will get a
speedup of close to, but less than, two. The

surprises in Table 1 were that we achieved a
final speedup far greater than two (likely due
to threading allowing more efficient usage of
different units of Core™ 2 Duo), and that this
required using many more than two threads.
In summary, we have found that it is easy to
implement embarrassingly parallel algo-
rithms using the OpenMP API, solely employ-
ing tools freely available on the Web, with the
reward being a speedup by a factor close to
the number of processors—or possibly even
greater as in the case of Intel® Core™ 2.

Acknowledgement: I thank Luke Tierney and
Kate Cowles for their enjoyable course on
High Power Computing (at the U. of Iowa)
which exposed me to many of the technolo-
gies discussed in this article. Also, I thank
the actuarial science students in my topics
course whose interest motivated me to bring
this article to its final form. :

References

[1] Ramlau-Hansen, Henrik (1990). Thiele’s
Differential Equation as a tool in Product
Development in Life Insurance, Scandinavian
Actuarial Journal, 1990:97-104.

[2] Pai, Jeffrey S. (1997). Generating Random
Variates with a given Force of Mortality and
finding a suitable Force Of Mortality by
Theoretical Quantile-Quantile Plots. Actuarial
Research Clearing House,1997(Vol. 1), 293-
312.

[3] van der Pas, Ruud (2005). An Introduction to
OpenMP. Available at
http://www.nic.uoregon.edu/iwomp2005/iwo
mp2005_tutorial_openmp_rvdp.pdf

Parallel Computing on Multi-Processor … • continued from page 9

C Code to Calculate the Endowment Amount

#include <stdio.h> /* Standard C input/output library */

#include <math.h> /* C library for math functions like log, pow etc.. */

#include <hr_time.h> /* hr_time.c - Support for Timing; http://cplus.about.com/od/howtodoth-
ingsin1/a/timing.htm */

/*

* RNGStreams - Library for Multiple Streams of Random Numbers.

* http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/c/

*/

#include "RNGStream.h"

#include "SRandom.h" /* Provides rmakeham for Generating from Makeham */

#ifdef _OPENMP

#include <omp.h> /* OpenMP Library */

#endif

#define AGE 30

#define TERM 35

#define INTEREST 0.045 /* Annualized Interest */

/* Makeham Hazard Rate: A + B * exp(C*t) */

#define AMU 0.0005 /* MU - Hazard Rate for Mortality */

#define CMU 0.08749823558

#define ASIGMA 0.0004 /* SIGMA - Hazard Rate for Mortality */

#define CSIGMA 0.1381551353

d e f i n e BSIGMA 0.00021877616 /* pow(1 0 . 0 , (0 . 0 6*AGE-5.46)) */

d e f i n e BMU 0.001047128548051 /* pow(1 0 . 0 , (0 . 0 3 8*AGE-4.12)) */

#define NRUNS 100000000 /*No. of Runs*/

int main()

{

double delta=log(1.0+INTEREST), mean=0, var=0;

#ifdef _OPENMP

int nthreads;

printf("Please Enter the Number of Threads You Wish to Use: ");

scanf("%d",&nthreads);

omp_set_num_threads(nthreads);

printf("The Number of Threads Used: %i\n", nthreads);

#endif

stopWatch t;

startTimer(&t);

#pragma omp parallel default(none) shared(delta) reduction(+:mean,var)

{ /* Parallel Section */

RngStream g;

#pragma omp critical

{

CompAct 11

Parallel Computing on Multi-Processor …

CompAct12

g = RngStream_CreateStream (""); /* One Thread at a Time */

}

int j;

double time_to_term, tsigma, tmu, bmu, bsigma, premium;

#pragma omp for

for (j=0;j<NRUNS;j++) {

premium=0;

time_to_term=TERM;

tsigma=0;

tmu=0;

bmu=BMU;

bsigma=BSIGMA;

/* Generate the Premium Paid by a Single Insured*/

while (time_to_term>0.000000001){

/* Insured in Able State*/

bsigma=bsigma*pow(10.0,(0.06*(tmu+tsigma))); /* Shift Hazard Rate Sigma */

tsigma=rmakeham(&g, ASIGMA, bsigma, CSIGMA); /* Generate Time in Able State */

if (tsigma> time_to_term) tsigma=time_to_term;

premium=premium+pow(1.0+INTEREST,time_to_term)-pow(1.0+INTEREST,time_to_term-tsigma);

time_to_term=time_to_term-tsigma;

if (time_to_term>0) { /* Insured in Disabled State */

bmu=bmu*pow(10.0,(0.038*(tmu+tsigma))); /* Shift Hazard Rate Mu */

tmu=rmakeham(&g, AMU, bmu, CMU); /* Generate Time in Disabled State */

if (tmu> time_to_term) tmu=time_to_term;

time_to_term=time_to_term-tmu;

}

}

/* Increment the sum and sum of squares */

mean=mean+premium;

var=var+premium*premium;

}

} /* End of Parallel Section */

mean=10*mean/NRUNS/delta; /* Point Estimate of the Endowment Amount in Thousands*/

var=(100*var/NRUNS/(delta*delta)-mean*mean)/NRUNS; /*Its Estimated Variance */

stopTimer(&t);

printf("Elapsed Time: %g \n", getElapsedTime(&t));

printf("A Point Estimate: %6.3f\n", mean);

printf("Its Std. Error: %10.8f\n", sqrt(var));

printf("A 99.9%% CI: (%6.3f,%6.3f)\n", mean-3.090232*sqrt(var), mean+3.090232*sqrt(var));

}

Parallel Computing on Multi-Processor … • continued from page 11

