
Letter from Incoming Editor 2
by Howard Callif

Letter from the Chair 3
by Kevin Pledge

The Microsoft Excel OFFSET Function 4
by Damian A. Birnstihl

Parallel Computing on Multi-Processor
Computers Using Freely Available Tools 8
by N.D. Shyamal Kumar

To Err Is Human; To Correct, Divine 11
by Mary Pat Campbell

T E C H N O L O G Y S E C T I O N
“A KNOWLEDGE COMMUNITY FOR THE SOCIETY OF ACTUARIES” Issue No. 26 • January 2008

CompAct

Inside

CompAct2 CompAct2

Letter from Incoming editor
by Howard Callif

T he Technology section council met at the annual SOA

meeting in Washington, D.C., and discussed plans for the

next year. There was a luncheon for all section members,

and Paula Hodges was presented with a memento for her hard

work and leadership as council chair (see accompanying pic-

ture). A hearty "thank you" to all of the council members for

their hard work and effort for the Technology Section over the

past year.

As part of the transition, I will be taking over as Editor of

CompAct from N. D. Shyamalkumar (a.k.a. Shyamal). Shyamal

has done a superior job as editor, and he will be a tough act to

follow. Our goal is to provide valuable information in every issue,

and Shyamal has done more than his share to ensure that the

newsletter is useful to all of our members. We extend a special "thank you" to him for his hard

work!

We will definitely try to address some major items from the survey of our members in upcom-

ing issues of the newsletter. Several areas stood out as items members wanted to learn more

about: Actuarial software (valuation and pricing), Communication software; Project manage-

ment software; Data warehousing/management, and Grid computing/distributed processing.

We already have someone working on an article on Grid computing for the next issue. We will

be working to provide articles on many of the other topics, but we will need your help.

Addressing some of these topics is difficult, since they require technical and detailed under-

standing of complicated topics. The members of this section have this knowledge, and we need

you to volunteer to "step up" and share it with the community.

For example, a specific suggestion from the survey was to have an independent assessment of

various valuation platforms, and how companies are using each. This could be a comprehen-

sive review of the software, including how it is used "in the field." Although this type of article

would require a significant amount of input and expertise, we could provide a valuable resource

to the actuarial community. We could also review pricing software, either as part of the same

article, or as a separate project. If you are interested or able to provide guidance on this topic,

please contact me, or one of the council members.

We also welcome other suggestions and comments, especially regarding ideas you have on how

this newsletter can provide value to you.

Howard Callif

Howard Callif is a
senior system
architect at COSS in
the Illustrations unit.
He can be reached at
howardc@coss.com.

CompAct 3

2008 is going to be an exciting year for the Technology Section; a number of projects

are underway while at the same time your section council is keen to take on new

challenges.

Three projects that should come to fruition this year are:

• Scenario Manager—the Standard Scenario Format Working Group has agreed on an XML
scenario and developed a utility program to present yield curves and other economic indi-

cators. During 2008 we will be seeking adoption by major software vendors. Contact Steve

Strommen or Carl Nauman if you are interested.

• Rate Table Manager—a number of volunteers are busy validating the tables, while we
investigate a long-term solution for managing this service. Contact Joe Luizzo if you are

interested in helping with this.

• Section Portal—this will help coordinate volunteer activities. We currently have a proof of
concept and this should become a useful tool in the coming year. Contact Paula Hodges if

you are interested in contributing.

Also continuing from last year:

• Technology Education—last year we formed a subcommittee to give input on technolo-
gy education.

In addition, we plan to build on our recent successes:

Publications:

• Four newsletters (January, April, July and October).

• Bi-monthly Tech Update e-mails from the chair.

Networking:

• Providing opportunities for members to network at actuarial meetings.

Education:

• Last year we had our first webinar—this was a great success, I hope we can follow up on

this with more in the coming year.

We welcome your input on these projects and any activities that you feel we should be under-

taking. Also, we always welcome volunteers—it is the enthusiasm and contribution from the

members that make this section what it is.

Please contact me directly if you have any suggestions regarding activities we should be tak-

ing on or if you would like to volunteer.

Letter from the Chair
by Kevin Pledge

Kevin Pledge, FIA,
FSA, is president
and CEO of Insight
Decision Solutions
in Markham,
Ontario. He can
be contacted at
kpledge@

insightdecision.com.

The Microsoft Excel OFFSET Function

by Damian A. Birnstihl

M any of us use Microsoft Excel on a
daily basis. We have mastered the
basics, such as VLOOKUP and

SUMPRODUCT. We can create charts and pro-
fessional looking documents. We may even
have ventured into more advanced features,
like pivot tables and macros. But there are a
number of functions and features of Excel that
despite their power are used infrequently.
One example is the OFFSET function.
Learning and applying this function can signif-
icantly improve your efficiency in creating and
using spreadsheets.

The OFFSET function returns the value in the
cell a specified number of rows and columns
away from a specified starting point. The syn-
tax is OFFSET (reference, rows, cols,
height, width). The reference parameter is
the starting point. Typically, it will be a single
cell, but it can be a range of contiguous cells.
The rows and cols parameters represent how
many rows and columns away from the start-
ing point you want to go. A positive value of
the rows parameter means the target is below
the reference cell, and a negative value
means the target is above the reference cell.
Similarly, a positive value of the columns
parameter means the target is to the right of
the reference call, and a negative value
means the target is to the left of the reference
cell. The height and width parameters are
optional; if omitted, Excel assumes the same
height and width as reference.

For example, OFFSET(B5,2,1) returns the
value two rows below and one column to the
right of the reference cell B5, or in other
words, the value in cell C7. OFFSET(B5,-2,-1)
returns the value two rows above and one col-
umn to the left of cell B5, or in other words,
the value in cell A3.

The real power of OFFSET is realized when it
is used in conjunction with the ROW and COL-

UMN functions. The syntax of these functions
is simple: ROW(reference) and COLUMN(ref-
erence). For example, ROW(F2) returns a
value of two, and COLUMN(F2) returns a
value of six. If the reference parameter is
omitted, the ROW returns the value of the row
in which the formula is typed, and likewise for
COLUMN(). For example, typing =ROW() in
cell A3 returns a value of three, and typing
=COLUMN() in the same cell returns a value
of one.

Now let’s look at an example that combines
the use of OFFSET and ROW. Suppose you
have a spreadsheet containing the months of
the year in cells A2:A13, as shown in Figure
1.

Figure 1

Now suppose you want to reverse the data so
that December is at the top of the list and
January is at the bottom, with the results to
be shown in cells C2:C13. No need to re-type
the data or cut and paste; one simple formu-
la can do the trick. In cell C2 type the formu-
la =OFFSET(A13,2-ROW(),0). Then copy
this formula to cells C3:C13, and you have
the desired result as shown in Figure 2.

CompAct4

Damian A. Birnstihl,
FSA, MAAA is a direc-
tor of actuarial servic-
es with Aetna. He can
be reached at
602.659.1759 or at
Damian.Birnstihl@
SchallerAnderson.com.

A
1 Month
2 January
3 February
4 March
5 April
6 May
7 June
8 July
9 August
10 September
11 October
12 November
13 December

The Microsoft Excel OFFSET Function

CompAct 5

Figure 2

The key is figuring out how to set the param-
eters in the OFFSET function. This can be
done using the following four-step process:

• First, determine what value you want in
each target cell. In this example, we want
cell C2 to have the value “December” from
cell A13, C3 to have the value “November”
from cell A12, etc.

• Second, choose a reference. This can be
any cell on the spreadsheet, but a conven-
ient choice is to use the cell in the original
array that you want to appear in the first
cell of the revised array. In this example
that would be A13.

• Next, determine the offsets from this refer-
ence needed to produce the desired results.
We stated above that we want C2 to contain
the value from cell A13; this is zero rows
below and zero columns to the right of the
reference cell A13. In other words, C2
needs to evaluate to OFFSET(A13,0,0).
Similarly, we want C3 to contain the value
from A12; this is one row above and zero
columns to the right of the reference cell
A13. In other words, C3 needs to evaluate
to OFFSET(A13,-1,0). Following the same
logic, C4 must evaluate to OFFSET(A13,-
2,0). For cells C5:C13 the emerging pattern
holds: in each subsequent cell, the row off-
set decreases by one.

• Finally, look for a relationship between
these offsets and the rows and columns of
the cells in which the formulas will be
entered, and translate the relationship into
a formula. From step 3 we know that the
row offset must be 0 in cell C2, -1 in cell C3,
-2 in cell C4, etc. Notice that each row off-
set can be expressed as 2-ROW(). The col-
umn offset in this example is always zero.
Thus, the desired formula is
OFFSET(A13,2-ROW(),0).

The process of determining the appropriate
parameters becomes second
nature with a little practice.

A word of caution is in order.
The formula in the preceding
example may no longer produce
the desired results if rows are
inserted into the spreadsheet.
This can be seen by inserting a
row at the top of the spread-
sheet. Ideally, this action would not cause our
results to change. In fact, inserting a row
does indeed cause our resulting list to start at
November instead of December. However, this
can easily be avoided. In the example, we
used a row offset of 2-ROW(). The fixed value
two was appropriate before the row was
inserted, but is not appropriate afterwards.
So instead of a fixed value, we can reference
the cell itself. If you’re working the example
on your computer, delete the row that you
added, and in place of the original formula in
cell C2, type in =OFFSET(A13,ROW(C2)-
ROW(),0) and copy this formula to cells
C3:C13. Now that the fixed reference has
been replaced with a ROW reference, insert-
ing rows at the top of the spreadsheet will not
affect the results. Note that I have “anchored”
both A13 and C2 using dollar signs.

Now, let’s look at a similar example using
OFFSET and COLUMN. Suppose you have the
spreadsheet shown in Figure 3.

(continued on page 6)

… there are a number of
functions and features of
Excel that despite their
power are used infrequently.

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

CompAct6

Figure 3

Our task is to reverse the list and put the
results in cells A3:E3. In cell A3, type =OFF-
SET(E1,0,COLUMN(A3)-COLUMN()), and
then copy this formula to cells B3:E3. This
produces the desired result as shown in
Figure 4.

Figure 4

Next, let’s take the original list in Figure 3 and
convert it from a 1x5 array into a 5x1 array,
or in other words convert the row of data into
a column with Alpha at the top and Echo at
the bottom, and let’s put the results in cells
G1:G5. We’ll use the four-step process intro-
duced earlier to guide us:

• We want cell G1 to contain the value “Alpha”
from cell A1, G2 to contain “Bravo” from B1,
etc.

• We choose A1 as the reference since it
contains the desired value in the first target
cell, G1.

• G1 must evaluate to OFFSET(A1,0,0), G2
must evaluate to OFFSET(A1,0,1), G3
must evaluate to OFFSET(A1,0,2), etc.

• We see that the row offset is always zero
and that the column offset is the current
row minus one. Thus, the formula to type
into G1 and to copy to G2:G5 is =OFF-
SET(A1,0,ROW()-ROW(G1)).

Now that we’ve looked at some basic exam-
ples, let’s look at some more advanced appli-
cations of OFFSET. Suppose we have the 3x5
array shown in Figure 5, and suppose that we
want to transpose it to a 5x3 array and put
the result in cells G1:I5.

Figure 5

Using the four-step process:

• We want the first row of the original array to
become the first column of the resulting
array, and likewise for the second and third
rows of the original array.

• A convenient choice for the reference is cell
A1.

• G1 must evaluate to OFFSET(A1,0,0). We
want cell H1 to contain the value from cell
A2, so H1 must evaluate to
OFFSET(A1,1,0). Similarly, we want cell
G2 to contain the value from cell B1, so G2
must evaluate to OFFSET(A1,0,1). If nec-
essary, look at some additional cells until
the pattern becomes evident.

• From the previous step, we note that the
row offset relates to the column in the
transposed array and that the column offset
relates to the row in the transposed array.
The formula is =OFFSET(A1,COLUMN()-
COLUMN(G1),ROW()-ROW(G1). Type
this formula in cell G1 and then copy the
formula to cells G1:I5 to obtain the desired
result as shown in Figure 6.

Figure 6

I hope that you are beginning to see the
power of the OFFSET function. But it can do
more than just flip arrays. For our final exam-
ple, we will look at a practical example of how
OFFSET can be used along with SUM.
Consider the hypothetical claim triangle in
Figure 7.

Figure 7

Here, each column represents an incurred
month and each column represents a month
of payment. Now suppose that we want to
build a table of cumulative paid claims by

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

The Microsoft Excel OFFSET Function • continued from page 5

CompAct 7

incurred month as shown in Figure 8. This
table can be built with a single formula!

Figure 8

For example, cell J3 represents claims
incurred in August and paid through lag 2,
i.e., October. The value is 30 + 50 + 80 =
160. Figure 9 shows the calculations neces-
sary to produce the desired results. This is
just an intermediate step that we will use as
a guide to determine the appropriate OFFSET
formula.

Figure 9

So, in each case we want to sum starting at
an offset, an equal number of rows and
columns from cell B2, with both the row and
column offset determined by the row within
the array. Further, each summation is over an
nx1 range, where n is determined by the col-
umn within the array. We also note that the
lower right half of the array is blank because
these represent payment months in the

future. We can even make our formula
account for this by using an IF statement.
Here is the formula:

=IF(ROW()-ROW(H2)+COLUMN()-COL-
U M N ($ H $ 2) > 3 , " " , S U M (O F F S E T
($ B $ 2 , R OW () - R OW ($ H $ 2) , R OW () -
R O W ($ H $ 2) , C O L U M N () -
COLUMN(H2)+1,1)))

Typing this formula into cell H2 and copying it
to cells H2:K5 produces the desired result.
Note that this formula uses the optional
height and width parameters in the OFFSET
function. Let’s evaluate the formula in cell J3
to see how it works. In J3 the formula is eval-
uated as follows:

=IF(3-2+10-8>3,””,SUM(OFFSET(B2,3-
2,3-2,10-8+1,1)))

=IF(3>3,””,SUM(OFFSET(B2,1,1,3,1)))

=SUM(C3:C5)

=160

As you can see, the OFFSET function is both
powerful and efficient for manipulating arrays
of data. We have looked at several examples
of how OFFSET can be used along with ROW,
COLUMN, and SUM to reverse, transpose, and
sum arrays with a single formula. Master the
use of OFFSET and you may never have to cut
and paste again! :

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

A B C

1 Month

2 January December

3 February November

4 March October

5 April September

6 May August

7 June July

8 July June

9 August May

10 September April

11 October March

12 November February

13 December January

A B C D E

1 Alpha Bravo Charlie Delta Echo

A B C D E

1 Alpha Bravo Charlie Delta Echo

2

3 Echo Delta Charlie Bravo Alpha

A B C D E

1 10 40 70 100 130

2 20 50 80 110 140

3 30 60 90 120 150

G H I

1 10 20 30

2 40 50 60

3 70 80 90

4 100 110 120

5 130 140 150

A B C D E

1 July August September October

2 July 10

3 August 20 30

4 September 40 50 60

5 October 70 80 90 100

G H I J K

1 Incurred Month Lag 0 Lag 1 Lag 2 Lag 3

2 July 10 30 70 140

3 August 30 80 160

4 September 60 150

5 October 100

G H I J K

1 Lag 0 Lag 1 Lag 2 Lag 3

2 July =B2 =B2+B3 =B2+B3+B4 =B2+B3+B4+B5

3 August =C3 =C3+C4 =C3+C4+C5

4 September =D4 =D4+D5

5 October =E5

Parallel Computing on Multi-Processor
Computers Using Freely Available Tools
N. D. Shyamal Kumar

Increasing computational prowess is driving
the demand for more realistic modeling and is
also partly responsible in regulation becoming
less simplistic. But this increasing prowess in
the future is going to be delivered by increas-
ing the number of processing units rather than
by increasing the clock speed. This trend is
already seen with new workstations usually
having two or more computing cores. Hence it
is imperative that quants acquire parallel com-
puting skills. In this article we show that it
takes little to write parallel code to implement
embarrassingly parallel algorithms, which is
exciting given the prevalence of problems
yielding to such algorithms. In one such prob-
lem that we discuss here, to our surprise, on
a dual core processor we were able to get a
speedup greater than two—close to 2.6 in
fact! And all of this using only freely available
tools for the Windows® operating system.

Programming Paradigm: In this article we
will constrain ourselves to shared memory
parallel computing, i.e., parallel computing
where all threads have access to the same
shared memory. The discussion of distributed
memory parallel computing, the paradigm for
grid computing, will be left for another article.
Moreover, we will further restrict our attention
to the use of the OpenMP API, which is based
on the fork and join execution model. This
execution model, see Figure 1, is one where
the main thread spawns out multiple worker
threads to simultaneously execute sections of
code that can be run in parallel, thus speeding
up the overall computation. This will be made
clearer below when we discuss the implemen-
tation of the solution to our problem. The
OpenMP site is at http://www.openmp.org
where one can find useful tutorials (especial-
ly, see [3]), list of books on OpenMP, etc.

Actuarial Problem: The computational prob-
lem we consider is the calculation of the
break-even survivorship benefit for the dis-
ability product from the Danish market con-
sidered in [1]. The age-to-65 product is sold
to healthy (able) insureds with an annual pre-
mium rate (assumed to be paid continuously)
of DKK 10,000, with a premium waiver while
the insured is disabled (or invalid), a death
benefit at time t defined to be the benefit
reserve at that time for a healthy insured, and
a survivorship benefit of S payable at the end
of the term of the product. Figure 2 depicts
the multi-state model underlying the product
with disability rate (·) and mortality rates
µ(·) and (·) for the able and disabled,
respectively. The motivation for this product
with a strong savings element was to enable
insurance companies to compete with banks
and other savings institutions, which were
only allowed to sell products with an element
of insurance (the waiver of premium is includ-
ed in this product for this sole purpose). This
product has didactic value as many companies
did not price the product using the correct
reasoning, see [1]. The approach taken in [1]
is that of using Thiele’s differential equation to
derive a double-integral expression for S.
Here we will adopt a different approach which
will lead to a simple Monte-Carlo solution.

CompAct8

N.D. Shyamalkumar
ASA, an assistant
professor of
statistics &
actuarial science
at the University of
Iowa. He can be
contacted at
shyamal-kumar
@uiowa.edu

Figure 1: Fork and Join Model

Figure 2: The Multi-State Model Underlying
the Product
Embarrassingly Parallel Algorithm: It is not
difficult to see that the survivorship benefit S
in the above problem is the same as in the
following problem: consider an age-to-65
product sold on a healthy (able) insured for a
premium at the annual rate of DKK 10,000,
carrying a survivorship benefit of S and a
waiver of premium while the insured is dis-
abled; Disability rate is (·) (as above), and
unlike the original product the rate of recov-
ery is taken to be (·) and mortality is
ignored (see Figure 3). Since mortality is
ignored, S is equal to the expected value of
the accumulated premiums. This characteri-
zation of S lends itself to Monte-Carlo simula-
tion of S. Hence we will be able to achieve a
speedup almost equal to the number of
processors (i.e., by dividing the number of
simulation runs equally among the proces-
sors). Algorithms achieving such speedups
are termed embarrassingly parallel.

Caveat for Simulation in Parallel: Unlike
sequential simulation where independence of
the pseudo-random numbers is more or less
guaranteed, one has to take extra care to
ensure this in the parallel setting. For one,
often pseudo-random number generators are
by default initialized using the system clock
and this could make many if not all of the
simulations carried out on different proces-
sors to be identical. A well tested C package
that helps to create and easily manage inde-
pendent streams is RNGStreams, written by
Pierre L’Ecuyer. For details and to download
the library, see the webpage at

http://www.iro.umontreal.ca/˜lecuyer/myftp
/streams00/c. Since the hazard rates pertain
to the Makeham distribution, we used the
algorithm as given in [2] to simulate the ran-
dom occupation time in each state. This algo-
rithm uses two independent exponential vari-
ables, and we generated these from uniforms
using the log transform.

Comments on the Code and Tools: We
decided to program in C (see listing) and use
the MinGW (Minimalist GNU for Windows)
packaged GNU compilers, see
http://www.mingw.org.
For code using the OpenMP API one will also
need the pthreads library which can be found
at ftp://sourceware.org/pub/pthreads-
win32/prebuilt-dll-2-8-0-release/.The OpenMP
paradigm allowed us to write parallel code in
such a way that it compiles as a sequential
program without the -fopenmp compiler
option. The C code of this project is available
on request from the author.

The sequential part of the code is comprised
of the lines of code excepting the pragma
compiler directives and the code in between
#ifdef and #endif pre-processor conditionals.
We observe that the key lines of this part of
our code are those from lines 50-69. These
simulate the accumulated amount of premi-
ums paid by a single insured. This is repeat-
ed for NRUNS number of insureds in order to
reduce estimation error.

Now, moving on to the parts of the code that
help parallelize the simulation, we notice that

Parallel Computing on Multi-Processor …

(continued on page 10)

CompAct 9

Figure 2: Multi-State Model Underlying
the Product

Figure 3: The Reduced Multi-State Model
Driving the Algorithm

CompAct10

between the first pre-processor conditionals
we include the OpenMP library and between
the second we set the number of threads.
The first pragma directive on line 39 implies
that the code between lines 40-70 will be run
by each thread, and that all threads will be
sharing the global variable delta while keep-
ing private copies of all the variables
declared within the section. Moreover, the
reduction clause creates for each thread its
own copy of mean (resp., var) for the dura-
tion of the parallel section, and at the end of
the parallel section, unlike private variables
which are simply released, the values in
these copies will be merged (in our case
added) and stored in the global variable
mean (resp., var).

The call to the function
RngStream.CreateStream on line 44 ensures
that each thread has its own independent
pseudo random number generator, and that
these generators are mutually independent
of each other. In order to achieve these goals
the function RngStream.CreateStream uses a
static variable to store its state, and hence is
not (and cannot be) thread safe. For this rea-
son, this function call is encapsulated in a
pragma omp critical directive that allows a
thread at a time to make the function call.
The last pragma directive on line 48 splits the
range of the loop index equally among the
threads (load balancing options are available
too), and this is the part that achieves a
speedup equal to exactly the number of
processors.

Results: The computations were done on an
Intel® Core™ 2 Duo Processor E6600
(2.4GHz, 4MB shared L2 Cache) box with
4GB RAM and running the Windows Vista™
Enterprise OS. The value of S was estimated
with a relative error less than 10 basis points
by simulating the accumulated premiums for
100 million insureds. The code was run five
times with each value for the number of
threads listed in Table 1, wherein we report
the observed mean running times. It was
expected that with two threads we will get a
speedup of close to, but less than, two. The

surprises in Table 1 were that we achieved a
final speedup far greater than two (likely due
to threading allowing more efficient usage of
different units of Core™ 2 Duo), and that this
required using many more than two threads.
In summary, we have found that it is easy to
implement embarrassingly parallel algo-
rithms using the OpenMP API, solely employ-
ing tools freely available on the Web, with the
reward being a speedup by a factor close to
the number of processors—or possibly even
greater as in the case of Intel® Core™ 2.

Acknowledgement: I thank Luke Tierney and
Kate Cowles for their enjoyable course on
High Power Computing (at the U. of Iowa)
which exposed me to many of the technolo-
gies discussed in this article. Also, I thank
the actuarial science students in my topics
course whose interest motivated me to bring
this article to its final form. :

References

[1] Ramlau-Hansen, Henrik (1990). Thiele’s
Differential Equation as a tool in Product
Development in Life Insurance, Scandinavian
Actuarial Journal, 1990:97-104.

[2] Pai, Jeffrey S. (1997). Generating Random
Variates with a given Force of Mortality and
finding a suitable Force Of Mortality by
Theoretical Quantile-Quantile Plots. Actuarial
Research Clearing House,1997(Vol. 1), 293-
312.

[3] van der Pas, Ruud (2005). An Introduction to
OpenMP. Available at
http://www.nic.uoregon.edu/iwomp2005/iwo
mp2005_tutorial_openmp_rvdp.pdf

Parallel Computing on Multi-Processor … • continued from page 9

C Code to Calculate the Endowment Amount

#include <stdio.h> /* Standard C input/output library */

#include <math.h> /* C library for math functions like log, pow etc.. */

#include <hr_time.h> /* hr_time.c - Support for Timing; http://cplus.about.com/od/howtodoth-
ingsin1/a/timing.htm */

/*

* RNGStreams - Library for Multiple Streams of Random Numbers.

* http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/c/

*/

#include "RNGStream.h"

#include "SRandom.h" /* Provides rmakeham for Generating from Makeham */

#ifdef _OPENMP

#include <omp.h> /* OpenMP Library */

#endif

#define AGE 30

#define TERM 35

#define INTEREST 0.045 /* Annualized Interest */

/* Makeham Hazard Rate: A + B * exp(C*t) */

#define AMU 0.0005 /* MU - Hazard Rate for Mortality */

#define CMU 0.08749823558

#define ASIGMA 0.0004 /* SIGMA - Hazard Rate for Mortality */

#define CSIGMA 0.1381551353

d e f i n e BSIGMA 0.00021877616 /* pow(1 0 . 0 , (0 . 0 6*AGE-5.46)) */

d e f i n e BMU 0.001047128548051 /* pow(1 0 . 0 , (0 . 0 3 8*AGE-4.12)) */

#define NRUNS 100000000 /*No. of Runs*/

int main()

{

double delta=log(1.0+INTEREST), mean=0, var=0;

#ifdef _OPENMP

int nthreads;

printf("Please Enter the Number of Threads You Wish to Use: ");

scanf("%d",&nthreads);

omp_set_num_threads(nthreads);

printf("The Number of Threads Used: %i\n", nthreads);

#endif

stopWatch t;

startTimer(&t);

#pragma omp parallel default(none) shared(delta) reduction(+:mean,var)

{ /* Parallel Section */

RngStream g;

#pragma omp critical

{

CompAct 11

Parallel Computing on Multi-Processor …

CompAct12

g = RngStream_CreateStream (""); /* One Thread at a Time */

}

int j;

double time_to_term, tsigma, tmu, bmu, bsigma, premium;

#pragma omp for

for (j=0;j<NRUNS;j++) {

premium=0;

time_to_term=TERM;

tsigma=0;

tmu=0;

bmu=BMU;

bsigma=BSIGMA;

/* Generate the Premium Paid by a Single Insured*/

while (time_to_term>0.000000001){

/* Insured in Able State*/

bsigma=bsigma*pow(10.0,(0.06*(tmu+tsigma))); /* Shift Hazard Rate Sigma */

tsigma=rmakeham(&g, ASIGMA, bsigma, CSIGMA); /* Generate Time in Able State */

if (tsigma> time_to_term) tsigma=time_to_term;

premium=premium+pow(1.0+INTEREST,time_to_term)-pow(1.0+INTEREST,time_to_term-tsigma);

time_to_term=time_to_term-tsigma;

if (time_to_term>0) { /* Insured in Disabled State */

bmu=bmu*pow(10.0,(0.038*(tmu+tsigma))); /* Shift Hazard Rate Mu */

tmu=rmakeham(&g, AMU, bmu, CMU); /* Generate Time in Disabled State */

if (tmu> time_to_term) tmu=time_to_term;

time_to_term=time_to_term-tmu;

}

}

/* Increment the sum and sum of squares */

mean=mean+premium;

var=var+premium*premium;

}

} /* End of Parallel Section */

mean=10*mean/NRUNS/delta; /* Point Estimate of the Endowment Amount in Thousands*/

var=(100*var/NRUNS/(delta*delta)-mean*mean)/NRUNS; /*Its Estimated Variance */

stopTimer(&t);

printf("Elapsed Time: %g \n", getElapsedTime(&t));

printf("A Point Estimate: %6.3f\n", mean);

printf("Its Std. Error: %10.8f\n", sqrt(var));

printf("A 99.9%% CI: (%6.3f,%6.3f)\n", mean-3.090232*sqrt(var), mean+3.090232*sqrt(var));

}

Parallel Computing on Multi-Processor … • continued from page 11

(continued on page 14)

H ow error-riddled are your spread-

sheets? How much can a simple

Excel flub cost your company? When

you do make a mistake, how likely are you to

catch it?

Though we often work with specialized soft-

ware, Excel is the central tool for most of us,

easily adaptable and giving us results faster

than much more complicated and targeted

programs. However, the danger for material

error is there, and the bad news is it’s well-

nigh impossible to escape error. Even worse,

Excel errors can cause large financial dam-

age: at the European Spreadsheet Risks Web

site, they’ve got a page of spreadsheet error

horror stories. As an example: a Canadian

power company took a 24-million-dollar loss

in 2003 when a cut-and-paste error led to a

mispriced bid. This is not a one-off event: as

of September 2007, the EUSPRIG has 89

news stories, dating back to 1995, of sub-

stantial spreadsheet errors. Minor mistakes

don’t show up in newspapers.

Of course, we’re experts, so our spreadsheet

errors are rare—right? Let’s go to the

research and see.

Ray Panko, a professor at the University of

Hawaii and a researcher into error rates in

spreadsheets, has found that in audit

research of spreadsheet errors, 94 percent of

spreadsheets reviewed had errors, and about

5 percent of cells in the reviewed spread-

sheets contained errors. Some of these errors

are immaterial, such as minor typos, but the

most insidious type of errors are the ones

least likely to be found: omission errors,

where something is missing; and logic errors,

where the model or calculation is just plain

wrong. We are very unlikely to discover the

errors in our own thinking (the source of logic

errors), and it’s very hard to see that some-

thing is not there without explicitly looking for

it.

We may think, “Sure, those studies show high

error rates, but that’s because they’re looking

at the spreadsheets of a bunch of schmoes ...

most likely MBA students.” OK, yes, some of

the research subjects were MBA students, but

in controlling for expertise level, error rates

were similar for novices and experts. Even

when the spreadsheet task was greatly sim-

plified, the cell error rate was 2 percent for a

very artificial situation, as opposed to opera-

tional spreadsheets from real businesses.

Spreadsheets used in business often were

much more complicated, involving links to

other files and macros doing a great deal of

the calculations.

The reason for novice error rates is simple:

they don’t know what they’re doing. But what

about us experts? The problem there is we

may underestimate the likelihood of error.

It’s hard to detect what you don’t expect. If

you do only the most cursory of error checks,

because you are confident about what you’ve

done, it’s highly unlikely that you’ll discover

that you set up your model incorrectly.

Someone else may not catch the error

because they don’t know enough about the

spreadsheet to understand when you’ve

made a mistake. So it’s a bind: other people

might be more inclined to consider the possi-

bility of an error, but they are unable to find

it from ignorance; you would be able to find

it, but you’re overconfident about your work.

CompAct 13

To Err Is Human; To Correct, Divine
by Mary Pat Campbell

Mary Pat Campbell is a
senior actuarial associ-
ate for TIAA-CREF in
New York, N.Y. She
can be contacted at
marypat.campbell@
gmail.com

The good news is that there are ways to mit-

igate the errors, and to reduce your chances

for error. At the end of the article, I’ve pro-

vided links to resources I’ve found to be very

helpful. The most helpful of all the articles is

Philip Bewig’s article “How do you know your

spreadsheet is right?” If you do nothing else,

check that one article out. Some of the sites

and articles focus on error rates and types of

error; don’t discount these—if you know how

material errors are most likely to occur,

you’re more likely to catch them or prevent

them.

From reading these papers, there seem to be

three main ideas that greatly reduce error

rate initially and improve error detection:

• Think before you create. Plan your model

structure in advance, and consider extreme

values that should break your model (you

can use those for testing later). Work out

the logic in advance, not on the fly. This will

result in better structured spreadsheets

and reduce the likelihood of logic errors.

• Expect errors as you work. In lab research,

when people were made aware of how

common spreadsheet errors were, they

were much more likely to catch their

errors, especially material ones. People

who expect errors examine spreadsheets

more carefully, perform more stress tests,

and make error-checking part of their rou-

tine. Keeping your “spreadsheet ego” in

check is a must.

• Work in groups. Research has found that

there is a great improvement in error

detection when spreadsheets are reviewed

in groups. We can be blind to our own

errors but very able to see the mistakes of

others. As well, different people may be apt

to find different types of errors, so that in

combination they improve the overall

error-correction rate. Panko’s research has

found a statistically significant improve-

ment in error detection when people work

in groups of four (a two-thirds improve-

ment in the error-detection rate); working

in pairs did not improve detection to a sig-

nificant extent.

The sources listed have even more practical

and technical ideas (data validation, cell pro-

tection, named ranges, R1C1 notation, and

more), but the central concept is to be mind-

ful and to be humble.

Spreadsheets have become part of the quan-

titative sea we swim in—let’s make sure

they’re our Queen Mary, and not our Titanic.

Helpful tips:

“How do you know your spreadsheet is

right?” http://www.eusprig.org/hdykysir.pdf

“52 ways to prevent spreadsheet problems”

http://www.mailbarrow.com/services_excel_
prevent.php

“Block that Spreadsheet Error!”

https://www.aicpa.org/PUBS/jofa/aug2002/
callahan.htm

Other Sources:

European Spreadsheet Risks Interest Group:

http://www.eusprig.org/

To Err Is Human; To Correct, Divine • continued from page 13

CompAct14

Ray Panko’s Spreadsheet Research:

http://panko.shidler.hawaii.edu/SSR/index.htm

Other spreadsheet error news stories:

http://www.eusprig.org/stories.htm

Ray Panko, “What We Know About

Spreadsheet Errors”, January 2005.

http://panko.shidler.hawaii.edu/SSR/Mypape
rs/whatknow.htm

Tuck School at Dartmouth: Spreadsheet

Engineering Research Project

http://mba.tuck.dartmouth.edu/spreadsheet/
product_pubs.html

Systems Modelling Ltd., Spreadsheet

Research Resources

http://www.sysmod.com/sslinks.htm#Research :

To Err Is Human; To Correct, Divine

CompAct 15

Joe Alaimo (left), winner of the CompAct 2006-2007 “Article of the

Year Prize,” is presented an iPod Nano from Section Chair Kevin

Pledge for his two-part series on Illustration Software Testing.

Winner of the CompAct Article of the Year
Prize 06-07

Nariankadu D. Shyamalkumar
CompAct Editor
Assistant Professor
Statistics and Actuarial Science
241 Schaeffer Hall
The University of Iowa
Iowa City, IA 52242-1409
phone: 319.335.1980
fax: 319.335.3017
e-mail: shyamal-kumar@uiowa.edu

Technology Section Council
Kevin Pledge, Chairperson
Tim Pauza, Vice Chairperson
Joseph Liuzzo, Secretary/Treasurer

Council Members
Van Beach, Web Site Coordinator
Carl Nauman, Scenario Generator
Timothy Rozar, Communications
Coordinator
Carl Desrochers
Holly Loberg
David Minches

Other Volunteers
Howard Callif, Newsletter Editor
Matthew Wilson, Newsletter Sub-Editor
(Web Technologies)
Robert LaLonde, 2008 Spring Meeting
Program Committee Coordinator
Paula Hodges, Past Section Chairperson
and Education Subcommittee
Coordinator

SOA Staff

Staff Partner
Meg Weber
mweber@soa.org

Staff Support
Susan Martz
smartz@soa.org

Staff Editor
Sam Phillips
sphillips@soa.org

Graphic Designer
Julissa Sweeney
jsweeney@soa.org

Facts and opinions contained in these
pages are the responsibility of the per-
sons who express them and should not
be attributed to the Society of Actuaries,
its committees, the Technology Section
or the employers of the authors. Errors
in fact, if brought to our attention, will be
promptly corrected.

Copyright© 2008 Society of Actuaries. All rights reserved.
Printed in the United States of America.

Technology Section Newsletter
Issue Number 26
January 2008

Published quarterly by the
Technology Section of the Society
of Actuaries

World Wide Web: www.soa.org

475 N. Martingale Road Suite 600
Schaumburg, Illinois 60173
www.soa.org

