

Article from:

The Financial Reporter

June 2003 – Issue 53

T he advent of Model Regulation XXX,
now passed in most states, has
imposed on the industry a need to
quantitatively evaluate the antici-

pated mortality rates underlying many blocks
of life insurance business. The most common
method of doing this has been developing a
probability distribution for total claims (given
the anticipated mortality for the block being
tested) and seeing where actual claims over a
given period fall. If the actual result is at an
unacceptably high percentile of the predicted
claims distribution, then current anticipated
mortality is rejected in favor of some higher set
of rates.

Developing a closed-form distribution for
aggregate claims, however, can be problematic
when many policies of varying face amounts are
involved. For that reason, the most common
industry method of creating this distribution has
been Monte Carlo testing. In the most common
version of this methodology, each policy in the
block is independently assigned a random num-
ber between zero and one—once per scenario. If

the random number is lower than the anticipat-
ed mortality rate for that policy, that is consid-
ered a “death,” and the face amount for that pol-
icy is tabulated. If the random number is higher,
then that is considered a “survival,” and zero is
entered. For each scenario run, the face amounts
of all “deaths” are summed to give a total claim
amount. The resulting sample, over a large set of
simulations, provides the empirical claims distri-
bution.

This process can create the need for the
generation of quite a large quantity of random
numbers. For a block of 100,000 policies over
10,000 simulations, for example, the require-
ment would be for one billion random numbers.
Occasionally, an actuary faced with such a
requirement could run into a real time crunch.
Is there a way to reduce this random number
requirement, and thus computer run time?

There is, and it was first suggested to me by
my father, Edward Robbins. (He in turn would
credit reading from one of several good 20-plus-
year old Transactions articles that deal with
compounding of distributions in risk theory.
Neither of us has been able to pinpoint exactly
which article inspired his thinking on this.)

To see how run time can be reduced, it is
helpful to think of the one billion required sim-
ulations as though they were done in a spread-
sheet (despite the fact that the testing would
doubtlessly really be done via some program).
In that spreadsheet, the identifiers of the
100,000 policies being tested run down column
A. The face amounts pertaining to each policy
are then entered down the rows of column B.

Then, in each of the next 10,000 columns,
for each of the 100,000 policies, there are a
series of ones and zeros, with a one represent-
ing a death (the generated random number
being less than the anticipated mortality rate
for this policy), and a zero representing sur-
vival. Then at the bottom of each of these
10,000 columns, a sumproduct function is done
between this column of zeros and ones and the
face amount column, producing a total claim
amount in dollars for that trial. The resulting
10,000 total claim amounts become the empiri-
cal distribution for analyzing the actual mor-
tality results over the test period.

More Efficient Monte Carlo Simulations
for Mortality Assumption Testing
by Douglas L. Robbins

20 | The Financial Reporter | June 2003

Editor’s Note: The section’s
Statutory Issues List Serve would
be an appropriate forum for
discussing concepts in this article.

June 2003 | The Financial Reporter | 21

Douglas L. Robbins,

FSA, MAAA, is a

consulting actuary at

Tillinghast-Towers

Perrin in Atlanta, Ga.

He can be reached

at doug.robbins@

tillinghast.com.

Now it is true that the above methodology
is one correct way of forming the required
empirical distribution. But it is not the only cor-
rect way. Distributionally, there is a way to fill
in the 10,000 entries in each row, using far
fewer random numbers.

In the above methodology, each entry in our
one billion-cell grid is a Bernoulli trial. The ran-
dom numbers we are drawing are tested
against the Bernoulli probability density func-
tion (PDF) relevant to the given row’s antici-
pated mortality rate, in order to assign a one or
zero. However, it is clear that if we have an infi-
nite series of repeated Bernoulli trials with the
same probability of success (in this case death),
a geometric distribution will provide the proba-
bility that our first success occurs on precisely
trial number “n.”

For example, say an established NFL quar-
terback can be assumed based on experience to
have a 5 percent chance of throwing an inter-
ception on any given pass. It is then clear that
at any time, the chance of his next pass being
an interception (assuming we don’t know any-
thing else about the type of pass it will be, qual-
ity of defense, etc.) is 5 percent. The chance of
his first interception coming on his second pass
from now, must be 95 percent times 5 percent
equals 4.75 percent. The chance of it being on
his third pass is 95 percent (squared) times five
percent equals 4.51 percent, and so on.

These values form the geometric PDF,
which is defined as P(N=n) = (1-q)^(n-1)*q,
where q is the probability of success (in our case
death) on any given trial. The values of the pdf
can be summed in order to form the cumulative
distribution function (CDF).

Let us now go back to drawing random
numbers. To start filling in our one billion-cell
grid of ones and zeros under the old methodol-
ogy, we used an initial random number and
compared it to the Bernoulli PDF, filling in cell
one. Instead, we now compare it to the CDF of
the Geometric distribution. By the logic above,
the cdf entry pertaining to that random number
can be thought of as the timing of the first
observed death in a series of independent trials,
all with the same probability (the anticipated
mortality for this row).

In other words, say that our q for this row
is actually 1 percent. Our first random number
drawn is 0.5. Under the old methodology, this
would fill only one grid cell, with an entry of
zero (survival). Under the new methodology,
drawing 0.5 from the geometric CDF with a
parameter q = 0.01, produces a result of 69.
This results in us going across the first row of

our grid, filling in 68 zeros and then a one in the
69th cell. (Verbal interpretation: the first
observed death in a large number of identical
trials came on trial number 69. All earlier trials
resulted in survival.)

Only at the 70th cell do we then need a new
draw of a random number. That number is used
to fill in cells starting with the 70th entry on the
top row. Say we draw 0.005. That is clearly a
result of one from our CDF, so cell 70 also gets
an entry of one, and then we start again with
the 71st cell. The next draw might be 0.98, pro-
ducing a result of 389 zeros and then a one in
the 460th cell. The program would continue fill-
ing in values in this way through the end of the
first grid row.

At the end of that row, the program would
have to stop no matter what. The reason is that
the compounding of Bernoulli trials into a
Geometric distribution only works if the trials
have identical q’s. (And except in infrequent
cases, the q will change when starting with a
new policy.) Any CDF result taking things
beyond the end of the row results in just filling
in the remainder of that row with zeros and
then starting over at the next row.

Once the entire grid of 1 billion cells is
filled in with ones and zeros, the stochastic
implications of the grid under this new
methodology are the same as for the old one.
Thus the interpretation of the column totals is
stochastically exactly the same.

What is the expected result of all of this in
terms of run time? Since the expectation for
any geometric trial result is 1/q, the expected
run time for any row would be about q times
the run time required to fill the row in one cell
at a time. In general, overall run time should be
about the average q times the old run time! �

