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US GAAP and IFRS are aligning their con-
cepts, principles and rules. This means U.S.
insurance companies will almost certainly

be impacted by any accounting changes that take
place whether they occur domestically or abroad.
The only question is how quickly this will occur.

Recently, the SEC issued for public comment a
proposal to accept from foreign private issuers
financial statements prepared in accordance with
IFRS without any reconciliation to US GAAP.
The SEC has also issued a concept release to
obtain information as to whether U.S. issuers
should have the option to prepare financial state-
ments in accordance with IFRS. In addition, in
August 2007, the FASB issued an invitation to
comment on the International Accounting
Standards Board’s (IASB) Phase II Discussion
Paper (Discussion Paper), entitled “Preliminary
Views on Insurance Contracts,” in order to assess
whether there is a need for a project on account-
ing for insurance contracts and whether or not to
work with the IASB in a joint project.

The landscape of financial reporting here in 
the United States is changing rapidly, especially
with the issuance of FASB Statements No. 157 
and 159. Statement No. 157, Fair Value
Measurements, applies to all existing pronounce-
ments under GAAP that require (or permit) the
use of fair value. It also establishes a framework
for measuring fair value in GAAP, clarifies the
definition of fair value within that framework,
and expands disclosures about the use of fair
value measurements. Statement No. 159, “The
Fair Value Option for Financial Assets and
Financial Liabilities,” including an amendment

of Statement No. 115, “Accounting for Certain
Investments in Debt and Equity Securities,” per-
mits entities to measure certain other items not
included within the scope of Statement No. 157
at fair value. The issuance of Statement No. 159
by the FASB is a big step forward in requiring
fair value reporting. Insurers looking to adopt
Statement No. 159 for their insurance contracts
will be faced with the challenge of determining
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the fair value of those insurance contract liabilities
and are considering the principles in the Discussion
Paper.

Developing an understanding of the current direc-
tion of IFRS for insurance products is imperative for
U.S. accounting and actuarial practitioners. This
IFRS Phase II Discussion Paper Primer has been
designed to provide a summary of the key proposals
and issues that are facing U.S. insurers as this mate-
rial evolves into authoritative guidance.

The Discussion Paper, issued by the IASB in May
2007, contains the IASB’s preliminary views on the
various recognition and measurement components
considered in accounting for insurance contracts and
identifies issues that are still under consideration.
The IASB has invited interested parties to comment
on the Discussion Paper by November 16, 2007.
This process will ultimately lead to an insurance
standard that will replace the current IFRS 4
“Insurance Contracts.”

This article summarizes the main proposals in the
Discussion Paper, and in particular, emphasizes those
issues where the views of the IASB are not uniform-
ly accepted.

Objectives
The Discussion Paper reflects a principles-based
approach with additional high-level and prescriptive
guidance. Insurance contracts are to be subject to the
same general principles as those of other financial
service entities. This approach seeks to ensure consis-
tency of financial statements for insurance, asset
management and banking companies. The revised
platform for insurers should lead to increased com-
parability of financial statements, better identifica-
tion of key value drivers, and enhanced share values
due to improved transparency.

Measurement Model
The proposed measurement model for insurance lia-
bilities rests on three building blocks:

• Explicit, unbiased, market-consistent, probability-
weighted, and current estimates of expected future
cash flows;

• Discount rates consistent with prices observable in
the market place; and

• Explicit and unbiased estimates of the margin that
market participants require for bearing risk (risk
margin) and for providing any services (service
margin).

The expected future cash flows
should be explicit, current and
consistent with observable
market prices, and exclude
entity-specific cash flows.
There is a subtle, but impor-
tant, difference between mar-
ket-consistent and entity-spe-
cific assumptions. Claims
assumptions, for example,
would presumably be the same
for both bases, but expense
assumptions, for instance, may
not be. This is true because the claims experience
relates to the block of business and would be trans-
ferred with the block of business upon sale, but
any entity-specific expense savings that the current
entity enjoys may not be transferred with the
block.

The IASB believes that discounting should be
applied to all liabilities in an effort to enhance
comparability of financial statements. Many U.S.
and Japanese insurers believe that most non-life
insurance liabilities should not be discounted and
they have already expressed this view with the
IASB.

Risk margins convey a level of uncertainty associated
with future cash flows. These margins should be
market-consistent and reassessed at each reporting
date. The IASB has given high-level guidance with
respect to risk margins, but has left the details relat-
ed to their development to the insurance industry.
One example of the high-level guidance is that oper-
ational risk can only be provided for if it is related
directly to the liability itself. Acceptable approaches
currently appear to include cost of capital, per-
centile, Tail Value at Risk, and multiple of standard
deviation.

Service margins represent what market participants
require for providing other services in addition to
collecting premiums and paying claims. These mar-
gins should also be market-consistent. The invest-
ment management function in variable (and pre-
sumably other interest sensitive) contracts is an
example of a service for which an explicit service
margin may be established under this new frame-
work. This concept is generally not considered in
current pricing and embedded value techniques used
by insurance companies.

Developing an understanding of
the current direction of IFRS for
insurance products is imperative
for U.S. accounting and actuarial
practitioners.  
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The primary implementation issue related to both
risk and service margins is how to calibrate them.

Current Exit Value
The IASB is proposing that an insurer measure
insurance liabilities at what it calls “current exit
value.” This represents the amount another party
would reasonably expect to receive in an arm’s-length
transaction to accept all contractual rights and obli-
gations of a liability. Under an exit value measure-
ment framework, there are no requirements to break
even at issue. Such a framework will prove challeng-
ing in terms of determining an appropriate level of
risk margin, since the calibration is a very subjective
process under an exit value framework. In particular,
there is not currently a secondary market to transfer
insurance liabilities. While one could look to recent
acquisitions and reinsurance arrangements, the spe-
cific components rarely, if ever, become public infor-
mation. However, these, combined with the retail
market, could be taken into consideration in a hypo-
thetical model.

A further point to note is that “current exit value”
may or may not be equivalent to “fair value,” as
defined in the IASB’s discussion paper on fair value
measurement (to be used when fair value must be
applied under IFRS). This discussion paper on fair
value measurement is almost a word-for-word copy
of Statement No. 157, which is FASB’s version of
fair value that has already been adopted. At the time
this article is being written, the IASB has noted that
there do not appear to be material differences
between these two concepts, but it intends to explore
this issue more thoroughly.

“Entry value” is another method of risk margin cali-
bration covered in the Discussion Paper. Under the
“entry value” framework, no gain or loss at issue
would arise, since risk margins would be calibrated
to the premium received less acquisition expenses.
The IASB has rejected this approach in favor of cur-
rent exit value, even though the CFO Forum, a dis-
cussion group made up of the Chief Financial
Officers of 19 major European insurers, and
GNAIE, a group made up of North American and
Japanese insurance companies, lobbied for an entry-
value type approach.

Own Credit Standing
The measurement of liabilities should include the
effects, if any, of the credit characteristics of the lia-
bility (insurer’s credit standing). In the Discussion
Paper, the IASB wants the impact of this item to be
disclosed. This issue has been rather controversial to
some actuaries and accountants, although the IASB
does not believe the impact will be large.

To be consistent with a fair value measurement of
other financial instruments, the IASB has said the
creditworthiness of the insurance contracts should
be reflected in the measurement of the liability. The
implicit assumption is that the transfer is to a third
party of similar credit standing. This topic has gen-
erated much discussion—many do not agree with
the rationale of reducing liabilities when a company’s
financial condition deteriorates. However, in a well-
regulated market with guaranty funds, it is not
expected that this will have a significant impact on
the level of reserves ultimately held under IFRS
Phase II. There may be other offsets to this potential
reduction of liabilities that still need to be explored.

For example, if a cost of capital approach is used for
deriving risk margins, an entity’s cost of capital will
increase as credit standing declines, implying a high-
er risk margin and therefore higher liabilities. Also,
actuarial models sometimes already reflect the effects
on pricing of credit standing indirectly via lapse
rates, e.g., for life insurers.

Treatment of Future Renewal Premiums
The Discussion Paper indicates that future premi-
ums would be included in the liability calculation
only to the extent that either:

1. The insurer has an unconditional contractual
obligation to accept premiums whose value is less
than the value of the resulting additional benefit
payments; or
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2. They are required for the policyholder to contin-
ue to receive guaranteed insurability at a price that
is contractually constrained.

This is a controversial issue with respect to North
American style universal life and flexible annuity
products, since current pricing techniques include an
assumption for future expected premiums. If future
expected premiums cannot be taken into account,
there may be a significant loss at issue in today’s
products, largely due to heaped commission struc-
tures.

Unit of Account
The liability, including the determination of risk
margins, should be determined on a portfolio basis.
“Portfolio basis” refers to insurance contracts that are
subject to similarly broad risks and managed togeth-
er as a single portfolio. Determining risk margins on
a portfolio basis means that one must exclude the
benefits of diversification between portfolios.

Deferred Acquisition Costs (DAC)
Under the framework described by the Discussion
Paper, there will be no separate DAC asset to account
for the investment the insurer makes in the customer
relationship. Acquisition costs are to be expensed
when incurred, as they play no direct role in deter-
mining current exit value.

Discretionary Participating Features and
Universal Life Contracts
In the IASB’s current view, policyholder participa-
tion rights consisting of dividends and excess interest
credits for life insurers do not create a liability until
the insurer has an unconditional obligation to poli-
cyholders. A prior claim without an obligation
should not be recognized as a liability; the amount
expected to be paid in the future should be treated as
part of equity. In assessing whether an insurer has a
constructive obligation to pay dividends to partici-
pating policyholders, the IASB will rely on its
Conceptual Framework and IAS 37, “Provisions,
Contingent Liabilities, and Contingent Assets.” This
could potentially be a large issue for U.S. participat-
ing and interest sensitive life and annuity products,
since current pricing takes into account expected
credits to policyholders and not just guaranteed pay-
ments.

Summary
The Discussion Paper provides for significant
changes to financial reporting for insurance contracts
and related activity under IFRS.

The anticipated timeline for
IFRS Phase II for insurers is as
follows:

• An Exposure Draft is expected
to be issued in late 2008.  

• A final standard is expected to
be adopted in late 2009.  

• Implementation is projected
to become applicable for
2011.

Many European companies have been pilot testing a
“current exit” value type standard for several years;
therefore, most of these companies will be prepared.

However, as discussed earlier in this article, the
accounting changes in Europe are having a domino
effect in the United States. While several of the
large U.S.-based insurance companies have been in
tune with the development of the proposed guid-
ance, others appear to be largely asleep at the wheel,
probably because they may not have appreciated
the significance of US GAAP aligning with IFRS.
The current events should be a wake-up call to U.S.
insurers, as preparation for managing under a cur-
rent exit value approach can take several years. The
competitive landscape is changing and action is
required.

The current events should be a
wake-up call to U.S. insurers, as
preparation for managing under
a current exit value approach 
can take several years.  
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As actuaries, we are uniquely concerned with
both measuring the past and projecting the
future. We look at the past in order to get

insight into the future, but we can’t assume that the
past will always continue into the future.

One of the most common misunderstandings about
actuaries is that we forecast the future. In fact, we
project the future, we don’t forecast it. The problem
is, sometimes we forget this.

History 101
Many years ago I was involved in pricing the first
GICs. Not directly, but in an oversight capacity. We
looked at various scenarios—I think it was the first
steps in a stochastic model and I can still remember
some of the conversations. We noted early that a
hump pattern (an increase in interest rates followed
by a decrease) was good, so long as the decrease elim-
inated capital losses when the GIC ended. We also
noted that a straight increase in interest rates was
bad. Very bad.

We discussed this: what happens if interest rates go
up to 12 percent, half a percent a year from when we
priced it? “That can never happen,” was the
response—and it seemed reasonable. After all, this
was around 1975 and interest rates since WWII had
been stable, increasing slightly, for many years.
Surely interest rates could never go so high—the
government would do something first. Well, you
know how that worked out. The government decid-
ed that curbing inflation was more important than
keeping interest rates down.

There have been lots of other times when the crystal
ball was cloudy:

• Buy Junk Bonds (Executive Life)
• Invest in Mortgages and Real Estate

(Confederation Life)
• Assume normal lapses on lapse supported business

(Long-term Care and Canadian Term-to-100)

But the classic example is Long-Term Capital
Management. Every actuary should read “When
Genius Failed,” the story of this failure. For those
unfamiliar with this, the Long-Term Capital
Management hedge fund had Nobel Prize winners

(among them Scholes, as in Black-Scholes) and
many other extremely bright and successful people.
Their fatal flaw was they believed their models.

They thought they had diversified their risks. They
had invested in securities in many countries; if one
went down, the others would provide stability. But
then came the Asian Flu and the Russian crisis and
suddenly EVERY country’s securities went under.
Then their competitors got wind and started moving
against them. So the company would have collapsed
if the banks hadn’t bailed them out. There was a
more complete article on this in The Actuary back in
August.

The Future
So you might be wondering why this all matters to
financial reporting actuaries. It matters because there
are proposals in the market that don’t seem to have
learned these lessons.

For instance, the International Accounting
Standards Board is suggesting that it’s OK to accrue
future expected profits on the day a policy is issued.
The American Insurance Industry generally opposes
gains at issues, the Academy Task Force on IFRS
generally opposes it in all but the rarest circum-
stances, but some accountants and regulators on the
international front seem less concerned.

“Surely there are times you know you’re going to
make a profit” some have said, even though the
future remains as cloudy as ever. “Our models show
that we’ll have gains” others say, stubbornly believing
their models will turn out to be real.

We’ve seen gains at issue before. Enron used it.
Many sub-prime lenders used it. What makes us
think it makes sense for insurance policies? If I were
allowed to issue only one required piece of guidance
for life accounting, “no gain at issue” would be it.
Another issue involves adjusting for portfolios with
diversified risk. “We can reduce our required capital
because we have diversified our risks. If we lose
money on mortality on our life insurance, our annu-
ities will bale us out!” they claim, ignoring that the
people with annuities have different demographics
than those with life insurance and that the mortality
changes may occur at ages that affect the two busi-

The Siren Call of Models—Beware of the
Rocks
by Henry W. Siegel
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nesses differently. “When things go wrong, all corre-
lations approach 1” should be a lesson learned from
Long-Term Capital Management but some regula-
tors seem willing to go along with a diversity credit.

The Society announced on the day I am writing this
that they’ve completed “a research project that
explored the covariance and correlation among vari-
ous insurance and non–insurance risks in the context
of risk based capital.” I was happy when I saw this
announcement since I think it’s an area that shrieks
for further research, but further examination showed
a problem. There’s a bibliography and a theoretical
mathematical model, but there is no data to actually
determine if any covariance or correlation exists!
This is not a criticism of the SOA, but how can one
argue for a diversity credit if there’s no data to deter-
mine if it exists?

As actuaries, we need to avoid falling in love with our
models. It’s easy to become entranced with them
because as actuarial students, our job was often to
feed those models and we don’t always step back and
look at the whole picture. How many times have you
lamented the inability of beginning students to
notice when the model has produced something
obviously wrong?

So as actuaries we need to be conscious that the
future is uncertain.  No surprise there, I hope. Also,
as actuaries we are uniquely qualified to explain that
to those who do believe a model is real. I urge all
Section Members to adopt this as a personal goal.

Given all the above, it may surprise you that I am
confident about one aspect of the future. This is my
final column as Section Chair and I am confident
that the Section will continue to thrive. As I have
said before, we are in a period of exhilarating change,
when all the financial reporting paradigms we’ve
known will be changing. Whatever replaces them,
financial reporting actuaries will be even more essen-
tial in the future.

Finally, I want to thank the intrepid editor of the
Financial Reporter, Rick Browne, for putting up
with my “Just in time” style of writing. If you haven’t
written for the Financial Reporter, pick up a key-
board and send Rick an article.

And always remember:

Insurance accounting is too important to be left
to the accountants!

Financial Reporter | December 2007 7

$

>> ... Chairperson’s Corner



T he IASB Discussion Paper on Insurance
Contracts presents the preliminary view that
insurance liabilities should be valued at “cur-

rent exit value” for GAAP financial reporting pur-
poses.  See the article in this issue “An International
Financial Reporting Standards (IFRS) Phase II
Discussion Paper Primer” by Tara Hansen and Mark
Freedman for a more detailed examination of the
preliminary views expressed in the Discussion Paper.
Some of the implications of those views may be sur-
prising. A few are enumerated below.

Credit Standing
As the Discussion Paper is currently written, the
impact of an insurer’s credit standing will be a factor
in the discount rate for its liabilities. If the credit
standing were to decrease, it would cause liability
values to decrease, increasing income and surplus.
Conversely, if credit standing were to improve, it
would cause liability values to increase, reducing
income and surplus. It may be difficult to explain
these gains when there is a credit downgrade, gener-
ally thought of as a “negative” event, or the losses
when there is a credit upgrade, which is generally
considered a “positive” event.

Earnings Volatility
Another implication is the potential for earnings
volatility. It may not be surprising that if there is
duration, convexity or hedging mismatch between
the assets and liabilities there could be earnings
volatility from changes in interest rates or other cap-
ital market fluctuations. However, even where assets
and liabilities are well matched, there could be
volatility if some assets are accounted for in the
income statement on a basis other than fair value (or
a similar measure). After all, current accounting does
not require changes in fair values of securities or
most other financial instruments to flow through net
income. And certain invested assets, such as real
estate, are not even eligible for a fair value option.

Earnings volatility might also emerge from other
sources, even if liabilities are duration matched and
well hedged. All of an insurer’s liabilities would
reflect its own credit standing. Invested assets, how-
ever, typically have diverse credit ratings, not neces-
sarily equal to the insurer’s. Thus, if there were a
non-parallel shift in credit spreads, the asset and lia-
bility values would not move consistently, creating
earnings volatility.

For example, assume an insurer has an AA rating.
And assume that AA credit spreads relative to the
risk-free rate increase by 10 basis points. Further,
assume that the credit spreads on invested assets
increase by an average of 20 basis points. Even if
assets and liabilities were otherwise well matched and
properly  hedged, the non-parallel shift in credit
spreads would cause the asset fair values to decrease
more than the liability current exit values, generating
a potentially large loss.

This could occur if there is a perception in the mar-
ket that an insurer’s credit standing has changed,
even if no change has actually occurred. An example
could be presented from recent events, as follows.
Assume that during the recent sub-prime credit cri-
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sis some insurers were perceived by the market to be
exposed to sub-prime credit risk. The credit spreads
for their own obligations would have increased, even
if in reality they had no such exposure. This
increased credit spread, however, would likely have
been considered consistent with observed market
cash flows, and thus may have been required to be
reflected in discounting those insurers’ liabilities.
This would have generated a reduction in the cur-
rent exit value of an insurer’s liabilities, generating
potentially large gains, whether or not the insurer’s
creditworthiness was actually impacted. If those
credit spreads reversed in subsequent periods, the
gains would reverse, producing large losses. In
essence, the market’s view of a company’s credit risk
would likely be deemed “correct” for purposes of
valuing the liabilities, whether or not that view was
accurate.

Also, changes in liability experience and assumptions
would create earnings volatility, similar to current
DAC unlocking on FAS 97 contracts. For example,
if current estimates of future mortality were to
change, that change would impact the current exit
value of the liabilities immediately, and would
impact net income. However, there would be no cor-
responding change in invested assets (although rein-
surance assets might be impacted). Depending on
the direction of the change in liability current exit
value, a large gain or loss could result. These gains or
losses could be greater than the impacts currently
seen from DAC unlocking on FAS 97 contracts,
because DAC unlocking impacts are mitigated by
the amortization ratio, which is typically less than
100 percent. With current exit value changes, there
would be no such mitigation. And under current exit
value these changes would also impact contracts cur-
rently accounted for under FAS 60 under US GAAP.

Gain or Loss at Issue
Gains or losses at issue are another possibly surprising
impact. Under current GAAP, gains generally do not
occur upon issuance of a contract. Losses upon issue
are rare, and are generally limited to situations where
acquisition costs are not recoverable, or where the
present value of expected benefits and expenses under
the contract exceed the present value of premiums.

Under the IASB preliminary view, gains at issue
would be permitted (although the IASB indicates

that they expect this to be rare), and losses may occur
even if expected premiums are adequate to cover
expected benefits and expenses. This may happen if
the premiums are adequate to cover benefits and
expenses, but not adequate to cover benefits and
expenses plus a risk margin consistent with that of
other market participants.

Another situation where a loss may occur at issue is
when an insurer has a particularly efficient expense
structure and builds the resulting low expenses into
its pricing, generating a low premium relative to the
rest of the market. Because the market level of
expenses is higher than that of the insurer, the insur-
er may need to assume those higher expenses when
determining its liability value. And where those
expenses are higher than what was assumed in deter-
mining the premium, there may be a resulting loss at
issue. Of course, if the insurer’s own expected low
expenses do materialize, the insurer will realize high-
er profits as those expenses emerge.

Furthermore, the IASB preliminary view restricts the
recognition of future premiums on a contract, unless
one of three conditions is met:

1. The insurer can compel premium payment;
2. Including the premiums and associated benefits

increases the liability value; or
3. The insured must pay the premium to retain

guaranteed insurability.

This would seem to preclude recognition of future
premiums on most universal life contracts in excess
of the minimum amount needed to cover contractu-
al charges. It would also seem to preclude recogni-
tion of any future premiums on most variable annu-
ity contracts that are classified as insurance contracts.
Any such excess premiums would be considered an
unrecognized customer relationship intangible.

This provision appears to make losses on issue of
these contracts likely. After all, premiums in excess of
the bare minimum to keep the contract in force are
generally assumed in pricing the contract. Thus,
those premiums typically include elements to recov-
er acquisition costs. If those premiums cannot be
recognized, a loss at issue may result.
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Similar concerns may apply to lapse-supported prod-
ucts. The beneficial policyholder behavior, in this
case lapsation, may not be recognizable under the
preliminary views. Therefore, even likely future laps-
es may need to be excluded from the liability valua-
tion. This could also generate losses at issue.

A mechanism which might have the opposite effect
is the IASB’s preliminary view on the restriction of
recognition of dividends (on participating contracts)
and interest credits in excess of minimum guarantees
(on UL contracts) to those which the insurer has a
legal or constructive obligation to pay. It is not
entirely clear how strong the expectation for pay-
ment of the dividend or interest credit would need to
be in order to be recognized. If dividends and inter-
est credits that were assumed in pricing cannot be
recognized in the liability valuation, this could gen-
erate a gain at issue.

Business Combinations
Assets and liabilities acquired in a business combina-
tion are required to be initially measured at fair value
under FASB Statement No. 141, and under IFRS 3
for entities following IASB standards. As of the
issuance of the Discussion Paper, the IASB had not
identified any significant differences between current
exit value as described in the Discussion Paper and
fair value. If that remains the case, then current exit
value, as described in the Discussion Paper, may
become the valuation basis for insurance contracts
acquired in business combinations—a development
that could have interesting implications.

For example, if a company is acquired in a competi-
tive bidding process, the fair value of the acquired
assets net of the current exit value of the acquired lia-
bilities may well exceed the purchase price. After all,
all the other companies that participated in the bid-
ding process would have required receiving more
assets from the selling company. But in situations
where an entire company is acquired, the resulting
difference could be considered a goodwill asset.

If only a block of insurance contracts is acquired,
however, rather than an entire company, there would
be no goodwill. Under the preliminary views
expressed in the Discussion Paper, any difference
between the purchase price and the net of the fair

value of acquired assets over current exit value of
acquired liabilities would be considered a loss (or
gain, if applicable) at the time of the transaction.

Summary
The preliminary views expressed in the IASB
Discussion Paper on insurance contracts may gener-
ate some surprising and, perhaps, disturbing results.
Because future accounting standards for entities cov-
ered by the IASB and by FASB may be impacted by
the results of this project, interested actuaries should
follow these developments closely and make them-
selves heard in the process.
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T he recent FASB Statement 157—Fair Value
Measurement—describes, among other modi-
fications to the current fair value methodology,

addition of risk margins for the risks other than cap-
ital market risks. In particular, for investment guar-
antees on variable annuities, GMxB’s (e.g.,
Guaranteed Minimum Accumulation Benefit—
GMAB, Guaranteed Minimum Withdrawal
Benefit—GMWB), which are subject to fair value
accounting (FAS 133), one major risk category is
policyholder behavior risks.

This paper describes a methodology to calculate risk
margins attributable to these types of risks. While
examples will focus on policyholder behavior risk for
GMxB’s, the approach may be extended to a broad-
er range of non-market risks and other insurance
products.

For purposes of the risk-neutral liability value calcu-
lation (a current, widely used FAS 133 method), cer-
tain assumptions are made about future policyhold-
er behavior. Let’s call this set of assumptions the
baseline. The policyholder behavior risks arise from
a chance that corresponding assumptions will be dif-
ferent from the baseline assumptions and will
adversely impact the value of guarantees. Such risks
create an uncertainty about future liability cashflows
and clearly affect the liability transfer price, or “exit
value,” described by FAS 157.

Systematic vs. Idiosyncratic Risks
One question is what type of risks should be consid-
ered: a systematic deviation from the baseline or a
random noise with the mean being the baseline
assumption.

In the capital markets world, CAPM assigns com-
pensation in form of higher risk premium only for
non-diversifiable or systematic risks. Systematic risks
are the risks simultaneously affecting the entire cap-
ital markets. Idiosyncratic risks are risks specific to
individual assets.

To extend this approach to policyholder behavior
risks, an example of systematic risk would be the risk
of a large number of policyholders simultaneously
switching to a lower lapse “regime.” A random noise
type of a risk, where lapse experience each period fluc-
tuates around the mean assumed in pricing for each
policy/cohort, is an example of an idiosyncratic risk.

In terms of its impact on the fair value of liabilities,
the systematic behavior risk of this nature may result
in more severe outcomes than a random fluctuation
type of risk. Note that a simple application of the
CAPM principles suggests that diversifiable risks
should be excluded from the margin calculation.
Random noise types of risks seem to be of such
nature.

While it’s not suggested to exclude idiosyncratic
behavior risks from the margin calculation entirely,
the focus here is going to be on systematic risks.

Wang Transform
One possible methodology for the calculation of risk
margins is a technique called Wang transform (Wang
2000, Wang, et al, 1997). For an arbitrary insurance
risk  X, where X is, for example, a distribution of
insurance losses, Wang transform describes a distor-
tion to the cumulative density function (CDF) F(X).
The distorted CDF F*(X) then can be used to deter-
mine price of risk, where the premium equals the
expected value of X.

In a context of GMxB-specific risks, e.g., behav-
ior risks, each observation of the variable X can
be viewed as a market-consistent value of liabili-
ties corresponding to a certain state, represented
by a set of policyholder behavior assumptions.
Thus, a range of possible sets of policyholder
assumptions will translate into a distribution of
liability values, where each of them will corre-
spond to a market-consistent (risk-neutral) value
under a given set of behavior assumptions. In par-
ticular, the value corresponding to the baseline set
of assumptions is the baseline value of liabilities,
as determined using the current FAS 133
methodology.

Wang transform as applied to non-market risks of
GMxB formulaically is as follows:

where X – distribution of fair value of liability result-
ing from stochastic nature of non-market risks;
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F*(X)  —  transformed, or “pricing” distribution.
Expected value under the transformed distribution E(X) equals the new price adjusted by
the risk margin.

For normally distributed risks, Wang transform applies a concept of Sharpe ratio from
the capital markets world. However, it can also extend the concept to the skewed 
distributions.

Basically, the distribution F(x) describes the real world set of probabilities attributable to
a range of possible outcomes, while F*(x) describes risk-adjusted probability distribution 
for the range of outcomes.

Essentially, Wang transform makes the probability of severe outcomes higher by
reducing their implied percentile. This bears similarity with the risk-neutral valuation 
technique for the capital market instruments. Indeed, Wang transform replicates the 
results of risk-neutral pricing, Black-Scholes formula in particular, under a set of
additional conditions, such as market completeness, availability of the risk-free asset,
etc. Results of CAPM is another special case of the Wang transform.

Wang transform enables us to calculate a margin to the fair value of liabilities using 
notions of price of risk, usually denoted by � (lambda), and a measure of risk which is
determined by the entire distribution. Possible methods to estimate lambda will be 
discussed later in the article.
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Case 1: Normal Distribution
Consider two normal loss distributions, Distribution
1 and Distribution 2, with same means equal 1 and
standard deviations equal 0.5 and 1, respectively.

If the price was determined as an expectation of loss-
es, the two risks would’ve had the same price equal
to the mean.

However, Distribution 2 is clearly more risky and, as
a compensation for risk, should command a higher
price.

This is consistent with the CAPM efficient frontier
theory where a riskier asset would have higher
expected return. Since both distributions are normal
and have same means, standard deviation can be
used as a measure of risk here, similarly with the
CAPM approach. An assumption of risks normality
is also an underlying assumption of the CAPM.

Now, apply Wang transform to the original loss dis-
tribution in order to get the pricing distribution, i.e.,
the one that can be used to get price as expected
value of losses.

For normal distribution, F(X) with mean and stan-
dard deviation and , the transformed distribu-
tion F*(X) is also normal, however with the parame-
ters and .

Thus, the price as an expectation of the transformed
distribution is expressed simply as: 

Where – is the price of the margin, calculated
as expected value of the transformed distribution.

See the graph below showing the transform for the
two normal distributions:

Assume that the state with the unshocked policy-
holder behavior assumptions corresponds to the
mean result of the loss distribution: E[X] = Baseline
Risk-Neutral value, the risk-neutral value correspon-
ding to the baseline set of policyholder assumptions.

So the margin for additional non-market risk equals
just ,

Value with margin = Risk-Neutral Value + .
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Assume that the state with the unshocked policyholder behavior assumptions
corresponds to the mean result of the loss distribution: E[X] = Baseline Risk-Neutral 
value, the risk-neutral value corresponding to the baseline set of policyholder 
assumptions.

So the margin for additional non-market risk equals just � �[X], 

Value with margin = Risk-Neutral Value + �� �� [X].

Thus, risk margin is proportional to the standard deviation of a normally distributed risk.
Under the normality assumption, a distribution with higher standard deviation will have
higher risk margin, which in this example is Distribution 2.

This result is analogous to the CAPM/Sharpe ratio conclusion which assigns a higher 
compensation to a risk with higher standard deviation of return, that is, standard 
deviation is a measure of risk.

Case 2: Long-tailed distribution – Lognormal
The normal distribution, being a two-tailed symmetrical distribution with a range of
outcomes from -� to +�, is not a very realistic one for modeling behavioral risks. If one
thinks of a range of policyholder behavior outcomes, e.g., rider utilization scenarios, it’s
reasonable to assume an extremely efficient behavior will increase the value of liabilities
quite significantly. Intuitively, perfectly efficient behavior scenarios should be low
probability events, perhaps with lower probabilities than normal distribution implies. Such
scenarios will define the right tail of the liability value distribution due to variability in 
policyholder behavior.

On the other hand, the left tail of the distribution will be impacted by extremely inefficient
behavior scenario types. An example of perfectly inefficient behavior is for example an
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Case 1: Normal Distribution.
Consider two normal loss distributions, Distribution 1 and Distribution 2, with same
means equal 1 and standard deviations equal 0.5 and 1, respectively.
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If the price was determined as an expectation of losses the two risks would’ve had the 
same price equal to the mean.

However, Distribution 2 is clearly more risky and, as a compensation for risk, should 
command higher price.

This is consistent with the CAPM efficient frontier theory where a riskier asset would 
have higher expected return. Since both distributions are normal and have same means,
standard deviation can be used as a measure of risk here, similarly with the CAPM
approach. An assumption of risks normality is also an underlying assumption of the 
CAPM. 

Now, apply Wang transform to the original loss distribution in order to get the pricing 
distribution, i.e., the one that can be used to get price as expected value of losses.
For normal distribution, F(X) with mean and standard deviation 7 and �, the transformed 
distribution F*(X) is also normal, however with the parameters 7+�� and �. 

Thus, the price as an expectation of the transformed distribution is expressed simply as:

E*[X] = E[X] + � �[X], 

Where E*[X] – is the price of the margin, calculated as expected value of the 
transformed distribution.

See the graph below showing the transform for the two normal distributions:
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for example, a distribution of insurance losses, Wang transform describes a distortion to
the cumulative density function (CDF) F(X). The distorted CDF F*(X) then can be used 
to determine price of risk, where the premium equals the expected value of X. 

In a context of GMxB-specific risks, e.g., behavior risks, each observation of the variable 
X can be viewed as a market-consistent value of liabilities corresponding to a certain 
state, represented by a set of policyholder behavior assumptions. Thus, a range of
possible sets of policyholder assumptions will translate into a distribution of liability
values, where each of them will correspond to a market-consistent (risk-neutral) value 
under a given set of behavior assumptions. In particular, the value corresponding to the 
baseline set of assumptions is the baseline value of liabilities, as determined using the 
current FAS 133 methodology.

Wang transform as applied to non-market risks of GMxB formulaically is as follows:

where X – distribution of fair value of liability resulting from stochastic nature of non-
market risks; 
F(x) – original “loss” cumulative density function. X’s are ranked from the lowest loss
(best result) to the highest,
�� cumulative distribution function for standard normal;
�

-1
� inverse of �;

�— market price of risk, a parameter.
F*(X)  —  transformed, or “pricing” distribution.
Expected value under the transformed distribution E(X) equals the new price adjusted by
the risk margin.

For normally distributed risks, Wang transform applies a concept of Sharpe ratio from
the capital markets world. However, it can also extend the concept to the skewed 
distributions.

Basically, the distribution F(x) describes the real world set of probabilities attributable to
a range of possible outcomes, while F*(x) describes risk-adjusted probability distribution 
for the range of outcomes.

Essentially, Wang transform makes the probability of severe outcomes higher by
reducing their implied percentile. This bears similarity with the risk-neutral valuation 
technique for the capital market instruments. Indeed, Wang transform replicates the 
results of risk-neutral pricing, Black-Scholes formula in particular, under a set of
additional conditions, such as market completeness, availability of the risk-free asset,
etc. Results of CAPM is another special case of the Wang transform.

Wang transform enables us to calculate a margin to the fair value of liabilities using 
notions of price of risk, usually denoted by � (lambda), and a measure of risk which is
determined by the entire distribution. Possible methods to estimate lambda will be 
discussed later in the article.
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Thus, risk margin is proportional to the standard
deviation of a normally distributed risk. Under the
normality assumption, a distribution with higher
standard deviation will have higher risk margin,
which in this example is Distribution 2.

This result is analogous to the CAPM/Sharpe ratio
conclusion which assigns a higher compensation to a
risk with higher standard deviation of return, that is,
standard deviation is a measure of risk.

Case 2: Long-tailed distribution –
Lognormal
The normal distribution, being a two-tailed sym-
metrical distribution with a range of outcomes from

to , is not a very realistic one for modeling
behavioral risks. If one thinks of a range of policy-
holder behavior outcomes, e.g., rider utilization sce-
narios, it’s reasonable to assume an extremely effi-
cient behavior will increase the value of liabilities
quite significantly. Intuitively, perfectly efficient
behavior scenarios should be low probability events,
perhaps with lower probabilities than normal distri-
bution implies. Such scenarios will define the right
tail of the liability value distribution due to variabil-
ity in policyholder behavior.

On the other hand, the left tail of the distribution
will be impacted by extremely inefficient behavior
scenario types. An example of perfectly inefficient
behavior is for example an assumption of zero rider
utilization rate. But under this assumption the liabil-
ity value will be naturally capped by present value of
fees with the minus sign. Thus, a distribution with a
longer tail for higher losses and with outcomes limited
by the lowest (best result: e.g., no claims) value should
be more realistic.

One such distribution with some well-behaved prop-
erties is lognormal. Here is how it compares with the
normal distribution:

The distributions shown on the graph have same
mean and standard deviations. However, the lognor-
mal has “fatter” right tail for high losses. We’ll see
below that Wang transform assigns higher risk mar-
gin to the lognormal distribution in this example.
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CDF per Wang transform is also distributed lognor-
mally. If the original F(X) is lognormal with param-
eters and , the transformed distribution F*(X) is
also lognormal with parameters and .

The mean of the lognormal distribution equals:
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So the liability value with the margin, calculated as
the mean of the transformed distribution, equals:
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Again, assuming that the expected value under the
original, “real world” loss distribution corresponds to
the baseline liability value, E[X] = Baseline Risk-
Neutral value, we’ll get the following result:

Value with margin = Risk-Neutral Value*e .
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quite significantly. Intuitively, perfectly efficient behavior scenarios should be low
probability events, perhaps with lower probabilities than normal distribution implies. Such
scenarios will define the right tail of the liability value distribution due to variability in 
policyholder behavior.
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Thus, lognormally distributed losses resulted in a
slightly higher price.

Note that both mean and standard deviation of the
original loss distributions were the same.

Margin adjustment to the price is as follows:
Normal: New Value = Old price + 
Lognormal (-.11, 0.47): New Value =
Old Price x Exp

As mentioned before, Wang transform increases prob-
abilities of severe outcomes.

As an example, consider the 99.5th percentile of our
original lognormal distribution L( -.11, 0.47) which
equals 3.02. Under the original distribution, proba-
bility of an outcome in excess of 3.02 is 0.5 percent.
The Wang transform changed the original lognormal
to the lognormal with parameters L( 0.03, 0.47).
The transformed distribution assigns higher proba-
bility to the outcomes greater than 3.02, equal 1.14
percent.

Recommendation for GMxB’s Risk
Margin Calculation
In practice, modeling non-market risks stochastical-
ly is a difficult task, both computationally and in
terms of underlying assumptions. Take as a special
case policyholder behavior. Multiple parameters
need to be estimated to describe stochastic processes
for lapse, partial withdrawal, rider utilization, can-
cellation, optional step-ups, etc. Usually, there is very
little historical information available for such types
of calibration. If each of these risks is modeled sto-
chastically, even in its simplest form, at least an esti-
mate for the standard deviation of each risk should
be needed. The resulting liability value distribution
is likely to be of some arbitrary shape other than a
well-behaved distribution. However, there is no rea-
son to believe such a distribution will be any better
in terms of its predictive power.

At the same time, a set of “worst case” type of behav-
ior assumptions may be defined as part of sensitivity
analysis by pricing actuaries and the liability value
estimated.

Fitting Distributions
Moreover, there may be a certain probability
assigned to a state described by a set of shocked pol-
icyholder behavior assumptions. For example, such
estimates may be needed for economic capital calcu-
lation purposes.

In any case, making an assumption of the probabili-
ty of such “shocked behavior” would define a point
on the tail of the liability value distribution due to an

uncertain nature of policyholder behavior. Along
with the assumption that the baseline set of behavior
assumptions corresponds to the mean value of the
liability distribution, this defines two points on the
liability CDF.

For two-parameter distributions, such as normal or
lognormal, defining two points on the probability
distribution curve is sufficient to find the distribu-
tion parameters.

Assume, as an example, that the “shocked behavior”
liability value corresponds to the 99.5th percentile.
We’ll show below how the mean and the 99.5th per-
centile, can be used to uniquely identify parameters
of the normal or lognormal distributions Ì and Û.

Normalizing Distribution
Real life distributions of liability market values may
span over a wide range of outcomes. However, the
lognormal distribution we’ve considered so far, with
parameters =-0.11 and =0.47, denote it L(-0.11,
0.47),  has its domain between [0; ], as any lognor-
mal distribution. In order to map the results of a real
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– real life outcome variable,
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Here are the main steps of the derivation of parame-
ters A and B. The mean of the lognormal distribu-
tion:

Mean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or
approximately four standard deviations away from
the mean, and variance (standard deviation squared)
of the lognormal distribution equals:

Variance

Since the real life distribution is just a linear trans-
form of the original distribution, the same relation-
ship between the mean and 99.5th percentile must
hold: four standard deviations apart.

8 

Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:

2

2�
�+

= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:

)1(
222
�=

+ ��� eeVariance

Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:

��

�
���

eiceOrigeinicewithM *PrargPr 2

2

==
++

Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin

}1{**2arg �= ��
� einM   (2) 

8 

Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:

2

2�
�+

= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:

)1(
222
�=

+ ��� eeVariance

Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:

��

�
���

eiceOrigeinicewithM *PrargPr 2

2

==
++

Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin

}1{**2arg �= ��
� einM   (2) 

8 

Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:

2

2�
�+

= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:

)1(
222
�=

+ ��� eeVariance

Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:

��

�
���

eiceOrigeinicewithM *PrargPr 2

2

==
++

Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin

}1{**2arg �= ��
� einM   (2) 

8 

Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:

2

2�
�+

= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:

)1(
222
�=

+ ��� eeVariance

Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:

��

�
���

eiceOrigeinicewithM *PrargPr 2

2

==
++

Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin

}1{**2arg �= ��
� einM   (2) 

8 

Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:

2

2�
�+

= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:

)1(
222
�=

+ ��� eeVariance

Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:

��

�
���

eiceOrigeinicewithM *PrargPr 2

2

==
++

Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin

}1{**2arg �= ��
� einM   (2) 

8 

Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:

2

2�
�+

= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:

)1(
222
�=

+ ��� eeVariance

Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:

��

�
���

eiceOrigeinicewithM *PrargPr 2

2

==
++

Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin

}1{**2arg �= ��
� einM   (2) 

7 

Note that both mean and standard deviation of the original loss distributions were the 
same. 

Margin adjustment to the price is as follows:

Normal: New Value = Old price + � �[X] 

Lognormal (-.11, 0.47): New Value = Old Price x Exp(� �[X])

As mentioned before, Wang transform increases probabilities of severe
outcomes. 

As an example, consider the 99.5th percentile of our original lognormal distribution L( -
.11, 0.47) which equals 3.02. Under the original distribution, probability of an outcome in
excess of 3.02 is 0.5 percent. The Wang transform changed the original lognormal to the 
lognormal with parameters L( 0.03, 0.47). The transformed distribution assigns higher 
probability to the outcomes greater than 3.02, equal 1.14 percent.

Recommendation for GMxB’s Risk Margin Calculation
In practice, modeling non-market risks stochastically is a difficult task, both
computationally and in terms of underlying assumptions. Take as a special case
policyholder behavior. Multiple parameters need to be estimated to describe stochastic
processes for lapse, partial withdrawal, rider utilization, cancellation, optional step-ups,
etc. Usually, there is very little historical information available for such types of
calibration. If each of these risks is modeled stochastically, even in its simplest form, at
least an estimate for the standard deviation of each risk should be needed. The resulting 
liability value distribution is likely to be of some arbitrary shape other than a well-
behaved distribution. However, there is no reason to believe such a distribution will be 
any better in terms of its predictive power.

At the same time, a set of “worst case” type of behavior assumptions may be defined as
part of sensitivity analysis by pricing actuaries and the liability value estimated.

Fitting Distributions.
Moreover, there may be a certain probability assigned to a state described by a set of
shocked policyholder behavior assumptions. For example, such estimates may be
needed for economic capital calculation purposes.

In any case, making an assumption of the probability of such “shocked behavior” would 
define a point on the tail of the liability value distribution due to an uncertain nature of
policyholder behavior. Along with the assumption that the baseline set of behavior 
assumptions corresponds to the mean value of the liability distribution, this defines two 
points on the liability CDF.

For two-parameter distributions such as normal or lognormal, defining two points on the 
probability distribution curve is sufficient to find the distribution parameters.

Assume as an example that the “shocked behavior” liability value corresponds to the 
99.5th percentile. We’ll show below how the mean and the 99.5th percentile, can be used
to uniquely identify parameters of the normal or lognormal distributions C and �. 
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Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:
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= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:
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Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:
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Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin
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Therefore, standard deviation of the original distri-
bution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the
lognormal distribution.
Price with the margin equals:

Price with Margin                     Orig Price

Going back to the real life distribution X using for-
mula (1) and remembering that Mean=Original
Price=1:

Margin = A + B*PricewithMargin – (A+ B*LMean)=
B*Lognormal margin 

Margin (2)

where LMean – mean of the lognormal distribution
L(-.11, 0.47), equal 1;
and standard deviation = (99.5th percentile -
Mean)/4.

GMAB Example
In order to have a better feel of the margin adjust-
ment magnitude consider a generic GMAB block.
Risk-neutral valuation under the baseline and the
shocked behavior sets of assumptions (corresponding
to 99.5th percentile) produce the following results,
respectively:

In $millions:
PV Claims PV Fees Net

Baseline: 145 171 -26 
99.5th percentile: 170 145 25 

The graph below illustrates how the distributions could
be fit to the two “observed” points. The linear trans-
form described by formula (1) to map the domain of
lognormal to the real life range of outcomes is used:

Again, lognormal distribution looks more realistic to
represent variability in policyholder behavior. It has

a natural minimum point while the normal distribu-
tion extends far to the left. Also, it generally has fat-
ter tail although it manifests itself only in extremely
high percentiles.

Risk Margin Calculation
Assume =0.3.

For the normal distribution: Margin = x St.
Deviation,
Where St. Deviation can be calculated from (99.5th

percentile – Mean)/2.576
= $19.8 million

For the lognormal distribution use formula (2):

Margin = 2x St. Deviation[e - 1]

Where
St. Deviation = (99.5th percentile – Mean)/4 = $12.6
million

Thus the margin adjustment equals:

Normal: 0.3 x $19.8 million = $5.9 million

Lognormal: 2x $12.6 million x [e(0.3x0.47) - 1] = $3.8
million

Thus, fitting lognormal distribution resulted in a
lower margin adjustment.

Baseline Assumptions vs. Risk Margin
The margin captures the risk of non-market assump-
tions being more adverse than those assumed in the
baseline pricing. But what if a more conservative set
of assumptions is used in the baseline product pric-
ing? One should expect a lower margin. Assume for
example, two companies valuing an identical prod-
uct using different sets of assumptions. Company 1
would use a set of assumptions consistent with the
baseline result above, call it Original. Company 2
would use a more conservative non-market assump-
tions set. As a result, net baseline liability value will
increase from -$26 million to 0.

In $millions:
PV Claims PV Fees Net

Original Baseline: 145 171 -26 
Conservative
Company Baseline: 160 160 0 
99.5th Percentile: 170 145 25 

Note that the value of the 99.5th percentile would be
identical for both companies since the product is
identical. Applying formulas (1) and (2) above pro-
duce the following liability value distributions:
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where LMean – mean of the lognormal distribution L(-.11, 0.47), equal 1;
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Normalizing Distribution
Real life distributions of liability market values may span over a wide range of outcomes.
However, the lognormal distribution we’ve considered so far, with parameters C=-0.11
and �=0.47, denote it L(-0.11, 0.47),  has its domain between [0; �], as any lognormal 
distribution. In order to map the results of a real life distribution to the domain of
lognormal distribution a one-to-one relationship needs to be defined. A simple linear 
transform will describe such a relationship:

Xreal = A+B*X, (1) 

Where,

Xreal – real life outcome variable,
X – lognormal variable, L(-0.11, 0.47).
A and B – constants to solve for.
Two equations linking the two “observed” values of the liability value, baseline and 
99.5th percentile to their mapped values to the lognormal L(-.11, .47) will uniquely
identify constants A and B.
Here are the main steps of the derivation of parameters A and B. The mean of the 
lognormal distribution:

2

2�
�+

= eMean

The 99.5th percentile for L(-.11, 0.47) equals 3.02 or approximately four standard 
deviations away from the mean, and variance (standard deviation squared) of the 
lognormal distribution equals:

)1(
222
�=

+ ��� eeVariance

Since the real life distribution is just a linear transform of the original distribution the 
same relationship between the mean and 99.5th percentile must hold: four standard 
deviations apart.

Therefore, standard deviation of the original distribution equals:

Sigma = (99.5th percentile - Mean)/4.

Next, constant B equals 2 x Sigma.

Next, recall the result of the Wang transform for the lognormal distribution.
Price with the margin equals:

��

�
���

eiceOrigeinicewithM *PrargPr 2

2

==
++

Going back to the real life distribution X using formula (1) and remembering that Mean
=Original Price =1:

Margin = A + B*PricewithMargin – (A+ B*LMean)= B*Lognormal margin

}1{**2arg �= ��
� einM   (2) 
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Note how the distribution for the conservative
Company 2 is less disperse. The margin for non-
market risks is also lower for Company 2.

Margin (Original Company) = $3.8 million
Margin (Conservative Company) = $1.9 million

As the conservative estimate is approximately half-
way between the original baseline and 99.5th per-
centile, the margin to the conservative estimate is
also around a half of the original margin.

Interaction of Risks
So far, the focus has been on a single non-market
risk, behavior risk in most of the examples.
Generally, there may be more than one source of the
non-market risk, for example policyholder behavior
and mortality improvement. In this example an
assumption of a zero correlation between policyhold-
er and mortality risks seems to be a reasonable one.
To generalize for n uncorrelated non-market risks,
the formula for the standard deviation of the joint
distribution is as follows:

Strictly speaking, this formula is accurate if each risk
is normal. It’s suggested to also use the same formu-
la for the lognormal assumption.

The resulting standard deviation of the joint distri-
bution then should be substituted to the formula
(2), if lognormal distribution is assumed.

Summary: Recommended Risk Margin
Calculation for GMxB, Non-market Risks

1.Determine market-consistent values of the guaran-
tee corresponding to two sets of non-market
assumptions, baseline and shocked. Assign a prob-
ability to the shock value, e.g., 99.5th percentile.

2. Take the difference Shocked – Baseline. This will
be equal X standard deviations depending on the
percentile assignment in step 1.
a. E.g., under the lognormal with Mean=1, 

St. Dev=0.5, 4 x Standard Deviation. Therefore,
St. Deviation = (Shocked – Baseline) / 4.

3. Repeat step 2 for each uncorrelated mortality risk,
if applicable.

a. Calculate resulting standard deviation
as: 

4. Calculate the risk margin (added to the baseline
value):
a. Normal: Margin = x St. Deviation,

b. Lognormal: : 2x St. Deviation 

Recommended distribution: Lognormal.

Estimating Lambda
The meaning of the parameter lambda in the Wang
transform is price of risk. That is, it shows by how
much the fair price will increase should a measure of
risk increase by one unit. In this general context, the
lambda is basically independent of the nature of risk.
It’s rather more of a characteristic of the entity bear-
ing the risk and should be closely related to the over-
all risk tolerance of the entity.

In order to estimate lambda, two approaches are sug-
gested here, company-specific and market.

With the company-specific approach the question
should be asked: how much extra return in excess of
the risk-free rate the company requires per accepting
an additional marginal unit of risk. In a narrower
context, this could be answered by the return on cap-
ital targets for new products. For example, if a com-
pany expects risk-adjusted return on capital
(RAROC) of 8 percent in excess of the risk-free rate
on an after-tax basis, and the required economic cap-
ital equals four standard deviations of the change in
economic value the lambda here equals 8 percent x 4
= 32 percent. Here an assumption is made that one
standard deviation equals one unit of risk.

The market approach would extend the definition of
lambda to capital markets which is essentially a def-
inition of Sharpe ratio. The Sharpe ratio based on
historical returns for a broad range of domestic equi-
ty indices ranges between 0.3 and 0.4. For example,
the Sharpe ratio for the S&P 500 historically is
about 0.4. Therefore, a Sharpe ratio in a range of 0.3
-0.4 should be reasonable.
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Fitting Lognormal Distributions
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Note how the distribution for the conservative Company 2 is less disperse. The 
margin for non-market risks is also lower for Company 2.

Margin (Original Company) = $3.8 million 
Margin (Conservative Company) = $1.9 million

As the conservative estimate is approximately half-way between the original
baseline and 99.5th percentile, the margin to the conservative estimate is also 
around a half of the original margin. 

Interaction of Risks
So far, the focus has been on a single non-market risk, behavior risk in most of the 
examples. Generally, there may be more than one source of the non-market risk, for 
example policyholder behavior and mortality improvement. In this example an
assumption of a zero correlation between policyholder and mortality risks seems to be a 
reasonable one. To generalize for n uncorrelated non-market risks, the formula for the
standard deviation of the joint distribution is as follows:

�Joint = (�1
2 + �2

2 +…+ �n
2)0.5

Strictly speaking, this formula is accurate if each risk is normal. It’s suggested to also 
use the same formula for the lognormal assumption.

The resulting standard deviation of the joint distribution then should be substituted to the 
formula (2), if lognormal distribution is assumed.
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F air value will soon be used to value insurance
liabilities. It is not a question of “if ” but
“when.” This should not be viewed as the apoc-

alypse or a holy grail. Like virtually every other
intractable problem in life, there are no solutions,
only trade offs. There are advantages to this develop-
ment, but also drawbacks. I offer this critique of fair
value as a method of valuing insurance liabilities, not
as a call to abandon fair value or forestall its imple-
mentation, but to highlight the challenges the indus-
try will face in this transition. It is my hope that by
bringing these challenges to the forefront of people’s
minds, we will develop practical valuation tech-
niques that make the most of the advantages of fair
value, while diminishing the drawbacks as much as
possible.

It is also important to note that the following dis-
claimer is not perfunctory. I offer these opinions as
my own, and they in no way reflect the opinions or
positions of my employer, Transamerica Reinsurance,
or its parent, AEGON.

Who’s Asking?
I’ve made the point in numerous actuarial presen-
tations, that financial statements are a complicated
answer to a simple question: “When will I get
paid?” Since many different people ask this ques-
tion, there are many different answers that an
insurance enterprise can supply. The regulators ask
this question on the behalf of policy holders, and so
statutory (or regulatory) financial statements pres-
ent a different picture than US GAAP financial
statements, which are, generally, answering that
question for corporate debt holders. Equity analysts
ask that question on behalf of their clients, com-
mon share holders, and find the information in
embedded value financial statements very useful.
The insurance enterprise’s pensioners are also inter-
ested in getting paid and are probably interested in
the company as a going concern. And of course,
you can’t forget everybody’s favorite uncle, Sam—
for the tax man wants to get paid as well and he is
increasingly suspect of overly conservative valua-
tions that comfort the policyholder.

In so far as it is at least rude, if not disconcerting,
to acknowledge that capital markets reduce the

promises we sell to simple figures of dollars and
cents, fair value is obviously not a candidate for
reporting to policy holders, or their proxy, regula-
tors. Solvency and prudent conservatism will and
should continue to dominate the financials pro-
duced to tell the policy holders when they will get
paid. But for debt and equity holders, fair value has
the potential to provide better information about
the risks a company writes and can even make the
financial statements more comparable to other
financial service industry enterprises. A friend of
mine made the astute observation that U.S. insur-
ance companies have become very adept at giving
away free call and put options, because the
accounting rules didn’t force companies to value
them. Under fair value accounting, “free” options
become prohibitively expensive.

Rules versus Principles
There is no better demonstration of the axiom, “no
solutions; only trade offs” than the question of
whether valuation requirements should be rules-
based or principles-based. This table presents some
of the advantages and drawbacks of each:
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continued on page 18>>
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History
Carpe diem—“Seize the day” is the rejoinder of
artists around the world. They are constantly trying
to sell us on the value of living in the moment
because you never know what the future might
bring. Well, most actuaries would characterize this as
a dubious claim, to say the least! But apparently, the
investment bankers have taken this advice to heart.
They feel that all opinions of what the future holds
are mere speculation, and no one person’s opinion
can be trusted more than another. They feel the price
data as it exists today is the best
measure of liabilities because it
is an amalgam of all opinions
precisely balanced by the invisi-
ble hand of The Market.

Well, just as I know night will
eventually follow day, and
spring will eventually follow
winter, I know high interest
rates will be followed by low
interest rates and low interest
rates will be followed by high.
Likewise, the property and casu-
alty actuary knows that the
underwriting cycle will have a
tight market followed by a loose
market before returning to tight.

We do not know the frequency of the interest rate and
underwriting cycles as precisely as the seasons, but we
do know they exist. And even if our opinion of “high
interest rates” and “low interest rates” changes over
time, mean reversion exists because market actions are
a result of human decisions, which cannot be memo-
ry free like the log normal interest rate and equity
return generators we build. Historically, insurance lia-
bility valuation has sought to smooth out these cycles
as another opportunity for diversification. Graphically
it looks like this:

      Rules-based       Principles-based

A
dvantages

• Easier for regulators to audit 
• Easier for companies to
    implement 
• Makes commercial software
    easier to develop and use
• Makes different companies’
    results more comparable
• More objective

• Always makes sense 
• No incentive to manipulate 

product design (PD)
• Encourages PD creativity
• Diminishes systemic risk 

(Mistakes not industry-wide)
• Actuarial focus is on price of 

risk, not accounting results

D
raw

backs

• Does not always make sense
• Easier to manipulate
• New products can cause
    problems
• Lack of accountability
• Impedes creativity
• Regulators can’t admit

• More subjective
• Harder for regulator to audit
• Easier to commit fraud
• Easier for actuary to make a 

bankruptcy-sized mistake
• Requires powerful analysis 

tools and understanding
• Requires better actuaries



Financial Reporter | December 2007 19

>> A Critique of Fair Value as a Method …

The best way to manage non-hedgable risk is
through diversification. Insurance enterprises have
always diversified individual instances of risk by
combining them into portfolios of risk and they have
been adept at developing products that contained
several non-correlated kinds of risk to further the
diversification benefit. And we have historically
diversified our risks across time as well. The U.S.
Statutory concept of the IMR (Interest Maintenance
Reserve) and AVR (Asset Valuation Reserve) are
methods of smoothing investment returns (that is,
current period income) by amortizing credit gains
and default losses, and capital gains and losses into
income. And under US GAAP FAS 97, it has been
very common for management’s best estimate of
future equity returns and interest rates to employ
mean reversion to dampen the effects of capital mar-
ket movements.

This is a perfectly acceptable approach PROVIDED
that you have enough capital to ride out the entire
cycle. In truth, we can never know this because these
cycles are not as regular as the seasons.

Price versus Prediction
I’ve often made the point that asking an actuary to
put a fair value on an insurance liability is asking
him to do something completely foreign with respect
to traditional actuarial work. All of our training has
been geared toward predicting future benefits. (With
call and put options, we assign probabilities to the
range of possible future outcomes in order to calcu-
late an expected value of benefits.) We can quibble
all day over the discount rate used to calculate the
present value of the benefits, but that’s the easy part:
predicting the future benefits is the hard part. And if
you want to know how well an actuary does his job,
all you have to do is wait to see how close his predic-
tions of future benefits are.

In placing a fair value on an insurance liability, we
are asking for something fundamentally different
from a prediction of future benefits even though it is
calculated similarly. With fair value (especially exit
value) we are asking the actuary to predict a price at
which a hypothetical transaction would take place.
It’s interesting to note that once the prediction is
made, we can never check up on the actuary like we
can with traditional actuarial work where all we need
is patience. Once the hypothetical transaction date is
past, any subsequent transaction would have a differ-
ent in-force inventory, different interest rate condi-
tions, and more information for experience studies.

When we speak of a liability’s value, investment
bankers and insurance actuaries are talking past each
other. In placing a value on an insurance liability, the
investment banker is trying to predict the unknow-
able present and the actuary is trying to predict the
eventually knowable future. In a fair value world, the
actuary must come to appreciate this subtle differ-
ence. Before I gained an appreciation for this differ-
ence, I used to enjoy pointing out the fact that, gen-
erally, market prices don’t have predictive value.
Forward interest rates don’t do a good job of predict-
ing future interest rate levels. Implied volatilities
don’t do a good job of predicting future actual
volatility. And if a country’s regulator greatly increas-
es the capital requirements for a certain asset class,
spreads on that asset class will widen as companies
are forced to divest of that class, but the wider
spreads do not increase the probability of default for
the issuing companies. They merely reflect a new
equilibrium point in the supply and demand for
fixed income securities.

This lack of predictive value is not surprising given
the fact that investment bankers aren’t trying to pre-
dict the future, they are trying to predict the present.
And in one sense, the investment bankers have the
better argument: the most important aspect of any
proposed insurance accounting system is that it must
value assets and liabilities consistently. For the
majority of assets, it is very easy to accurately predict
their fair value. If we start on the left side of the bal-
ance sheet and we know the fair value of a group of
assets that perfectly hedge a liability, then the liabili-
ty value must match the value of the assets irrespec-
tive of what a good prediction of the future benefit
payout is. This is one of those Truths that is truly
self-evident.

Now it is fair to point out that in the insurance
world, the situation where it is possible to construct
a “perfect hedge” is exceedingly rare. It is more com-
mon to be able to construct partial hedges. Given
this fact, the “art” of fair value will be in deconstruct-
ing the various risks so that the hedgable portions tie
exactly to the value of financial instruments that
would hedge the risk, and the remaining risks are
valued consistently with the assets backing them.

Understanding Market Value Risk Margins
Even though one uses risk-free rates (which have no
default margins) to calculate risk neutral scenarios,
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that does not mean risk neutral prices don’t have risk
margins embedded in them. The confusion is creat-
ed when the three risk profiles are placed next to
each other. The three risk profiles are risk averse, risk
neutral and risk seeker. Someone who is a risk seek-
er will pay a margin to take risk. (A gambler plays at
an expected loss for the privilege/thrill of gambling.)
Someone who is risk averse will pay a margin to
avoid risk. (Insurance premiums are higher than the
present value of loss.) It is incorrect to interpolate
between these two profiles and conclude someone
who is risk neutral is indifferent to risk and will
accept it without a margin.

In fact, risk neutral prices do contain a margin over
the actuarially determined expected value. The
amount of the margin is the precise amount that The
Market has determined will compensate for assum-
ing the risk.

The International Actuarial Association (IAA) has
issued a white paper on risk margins at the request of
the International Association of Insurance
Supervisors (IAIS). In it, they describe four possible
approaches for determining margins: 1) Explicit
assumption (110 percent of current estimate, for
example), 2) Quantile method (enough margin for
95 percent confidence interval, for example), 3) Cost
of Capital method (enough margin to compensate at
the cost of capital for the amount of capital needed
to manage the risk), and 4) Other (implicit conser-
vatism in assumptions or discount rates).

It seems the cost of capital method is the most prom-
ising for fair value. In order to get a value that does-
n’t exaggerate the effects of market movements the
actuary will need to start with the total capital

requirement for the product portfolio and will then
need to strip out the hedgable risks. If he can esti-
mate the risk margins within the prices for the
hedgable risks, he can use his cost of capital to esti-
mate what portion of the total capital is attributable
to hedgable risks. After that, he should strip out cap-
ital related to asset risk (C3 in the United States).
Then he can use his cost of capital with the remain-
ing capital to calculate the market value margin that
needs to be added to the current estimate of the non-
hedgable risks in order to calculate the total fair
value.

Risk Free versus Portfolio Yield
Many actuaries believe the current draft of the IASB
Phase II exposure draft directs the actuary to dis-
count projected cash flows using risk-free rates (less
a spread to reflect the instrument’s credit worthi-
ness). Historically, actuaries have discounted at (a
slightly conservative estimate of ) an appropriate
portfolio yield. It seems counter-intuitive that it
shouldn’t matter if the left side of the balance sheet
is a well diversified portfolio of bonds, or if it is a sin-
gle bond. In reality, the left side will affect the finan-
cials through capital. An entity will need less capital
to manage insurance risks backed by a well diversi-
fied portfolio than it would need to run the compa-
ny with a single (very large) bond.

I can appreciate why discounting at risk-free rates is
desirable for simplicity sake, but I think a strong case
can be made for a higher rate. As described in the
previous section, a bond’s credit spread should reflect
a spread higher than the best estimate of credit loss-
es because the spread has to reward the risk taker for
the capital he needs to post to manage these risks. As
was discussed before, by diversifying default risk
across a non-correlated portfolio of bonds, we reduce
the required capital needed to manage the portfolio,
and thus there should be extra spread (margin) avail-
able.

Incorporating Credit Worthiness in
Discounting
I have encountered many people who feel very
strongly that incorporating credit risk into the dis-
counting of liability cash flows is just plain wrong. If
we were discussing regulatory valuation, I would
agree without reservation; however, since this is
GAAP reporting I will admit to being able to see
both sides.

On a theoretical level, incorporating an instrument’s
credit spread makes sense because it should reduce
income volatility. An insurance enterprise that is
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managing risk prudently should invest the funds to
back reserves in a diversified portfolio of fixed
income assets that approximates the credit worthi-
ness of the instrument being managed. That way, if
there is a credit event or shock in the broader mar-
kets, credit spreads on the asset portfolio will
decrease the value of those assets, but the credit wor-
thiness of the instrument being valued should have
widened as well, also reducing the fair value of the
liability being valued. If management did a good job
of matching, the decrease in assets should be offset
by the decrease in liabilities. Without incorporating
credit worthiness into the fair value of the liability,
all credit events would produce income equal to the
change in fair value of the assets. So on a theoretical
level, this makes perfect sense: a well managed com-
pany should see earnings volatility if credit spreads
widen a little.

On a practical level, it will be exceedingly difficult to
monitor and estimate the credit worthiness of instru-

ments each quarter. There is a very real possibility
that methods for estimating credit worthiness will be
somewhat arbitrary and will create artificial income
volatility that could be worse than if no creditwor-
thiness was considered. Here the actuary will need to
remember that in predicting a price (not a probabil-
ity of default), markets move together. A survey of
the broader market might be the best method of esti-
mating creditworthiness of the instrument.

Concluding Remarks
Obviously, the thoughts contained herein are in no
way exhaustive on the subject, but it is my hope that
actuaries will consider these issues I have raised. I
think that if they do, a better understanding of the
implications of the issues will lead them to develop
better valuation methods for putting a fair value on
insurance liabilities.
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Stop us if you’ve heard this
one—Embedded value
reporting is coming to North

America. This has been heard in
various forms since the late ’90s.
But this time it’s true. Embedded
value (EV) reporting is growing in
importance in North America for
several reasons. Most European
insurance groups (and, by exten-
sion, their North American sub-
sidiaries) are reporting embedded
value results publicly. In Canada,
two of the “Big Three” regularly
disclose embedded values as part of
their external reporting. The con-
cept behind embedded value is sim-
ilar in nature to the principles-
based approaches being developed
by the American Academy of
Actuaries, and investment analysts
and rating agencies are increasingly
turning to economic measures of
value other than traditional statuto-
ry or GAAP reporting.

One major criticism of embedded
values has always been the lack of
authoritative guidance. Because EV
reporting lies outside the purview
of statutory and GAAP accounting,
North American standard setters
have steered clear of addressing EV
(notwithstanding a paper published
by the Canadian Institute of
Actuaries in 2000). However, with
EV gaining popularity outside
North America, in 2004 a group
comprised of the CFOs of the
major European life insurers pub-
lished a set of principles for report-
ing embedded values. These princi-
ples, and subsequent releases, have
begun to form a set of codified
guidance for EV reporting that has,
in part, filled that void for North
American insurers.

With that in mind, the Academy’s
Life Financial Reporting
Committee decided to further
enhance the guidance available to
actuaries performing EV work. The
Committee is currently completing
a Practice Note for North American
actuaries on the reporting of
embedded values. This work comes
not a moment too soon. The SOA
Embedded Value Webcast was
attended by at least 600 people,
indicating that interest in EV
reporting is on the upswing, with
more than half of registrants stating
they were currently calculating EV
in some form.

The Practice Note focuses on tradi-
tional and European Embedded
Values, while leaving the thornier
issues relating to Market-
Consistent Embedded Values for a
future Note. Topics covered
include:

• Introduction to embedded values
• Mechanics of embedded values
• Non-economic assumptions
• Economic assumptions
• Analysis of movement
• Treatment of options and guaran-
tees
• Disclosure of embedded values

As is characteristic of Academy
Practice Notes, the focus is on the
current state of practice in North
America, although the Committee
does attempt to provide some of the
theoretical basis underlying certain
issues. The target date for the
release of the exposure draft is
December 2007.

Many thanks to Tina Getachew,
Academy Risk Management and
Financial Reporting Policy Analyst
and the following Committee
members and other volunteers who
have devoted time and energy to
the development of this new
Practice Note:

• Errol Cramer
• Rob Frasca
• Noel Harewood
• Ken LaSorella
• Patricia Matson
• James Norman
• Jack Walton
• Darin Zimmerman

For more information, please con-
tact Tina Getachew at the
American Academy of Actuaries, at
Getachew@actuary.org, or any of the
committee members listed above.
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"There are more things in heaven and earth, Loss Ratio,
than are dreamt of in your philosophy."

The loss ratio has been around for a long time. A
properly formulated loss ratio tells us what por-
tion of premium income is set aside for claims,

over a fairly short interval, over many years, or over
the lifetime of an entire block. Yet despite its many
modifications to accommodate diverse lines of busi-
ness, it’s still a very blunt instrument.

Loss ratios began as a casualty insurance concept. In
auto and homeowners’ insurance, renewal periods
are short. The loss ratio is just the aggregate claims
paid, divided by the aggregate premiums collected.
This works because the premiums and claims are
confined to a short period, usually one year or less.
The timing of the premiums collected roughly
matches the timing of the cash claim payouts.

Subsequently, the loss ratio was embraced by the
group and individual health insurance business. In
those lines, claims can extend much longer, necessi-
tating long-tail claim reserves and the “incurred
claims” concept.

With Long Term Care and Individual Disability
Income things get more complicated. These lines use
issue age and level premiums, an idea borrowed from
life insurance. Active life reserves and investment
income complicate the picture, requiring further
refinements, and recognition of the time value of
money. Here, our definition is more properly the
present value of (expected) future claims, divided by
present value of future premiums. Or equivalently,
it’s the accumulated value of (actual) past claims,
divided by the accumulated value of past premiums.
Despite all those elaborations, loss ratio calculations
are based solely on aggregate data and are easy to cal-
culate.

As we will see, these last enhancements have, by
necessity, made the loss ratio sensitive to policy per-
sistency. Thus, it’s no longer a pure measurement of
claims.

The loss ratio is often used for regulatory purposes.
For new rate filings in some lines, companies must
demonstrate that the loss ratio, calculated under rea-
sonable assumptions, is expected to meet a legal

minimum. In addition, they must monitor emerging
experience on their existing business in force. If
claims are lower than expected, they may have to
decrease premiums or increase policyholder divi-
dends. But this article will concentrate on using the
loss ratio as an internal management tool. The meth-
ods analyzed here may not precisely match the legal
definitions.

What makes a good tool for financial analysis?
• Ease of use—The traditional loss ratio is easy to

calculate, because it’s based solely on aggregate
data, namely premiums, claims and reserves. If
possible, any refinement should preserve this
advantage. But, as we’ll see below, we must sacrifice
some simplicity to understand loss ratio dynamics
and tie it into other financial measures.

• Drill-down capability—If we subdivide our data, it
should be possible to get loss ratios for various
underwriting and occupation classes, geographical
regions and markets. This can help us monitor the
experience of important subgroups, and estimate
our pricing adequacy.

• Consistency—To be useful, a measurement must
be consistent. Having adopted a benchmark, we
should be able to judge how we’re doing in relation
to it. In other words, if our experience is exactly as
originally assumed, the loss ratio should remain
constant throughout the life of the business.

The Lowly Loss Ratio
by Paul Margus
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The remainder of this article
will explore alternative defini-
tions and their mathematical
underpinnings. We’ll discuss
the modifications for level pre-
mium lines of business, chiefly
Long Term Care and Individual
Disability Income, harping

again and again on the importance of interest adjust-
ments. The loss ratio concept will be extended to
expenses and profit. Limited pay plans and Life
Insurance will be briefly explored. Finally, we’ll examine
the strengths and limitations of the loss ratio, and how
they can be remedied. This will entail linking the loss
ratio to gain and loss analysis.

In the next two sections, we deal separately with
numerator and denominator.

The Numerator: Claims
For very short-duration claims, it may be sufficient
simply to use cash payments. But if claim payouts
extend beyond the expected period of the loss ratio,
we will have to include the claim reserve. We have
two methods of addressing this.

1. The simpler method is to include the initial
claim reserve at the moment of inception, and
ignore all subsequent activity on that claim. For
our loss ratio, the entire claim obligation is dis-
charged in one lump sum. Thus, the loss ratio
responds to actual claim incidence, but not to
deviations from our assumed claim termination.

2. Another method is to count cash payouts, plus
the increase in claim reserve.

Initially, Method 2 is equivalent to the Method 1. At
claim inception, the claim reserve instantaneously jumps
from zero to its initial value. And in this infinitesimal
span, we haven’t had enough time to make any pay-
ment. But subsequently, Method 2 makes mid-course
corrections as the actual claim terminations deviate
from expected. To see this, consider the familiar recur-
sive formula for the annuity function.

Here, is the claim reserve, is the claim
termination rate expected in the claim reserve calcu-
lation, is the reserve interest rate, and the period-
ic claim payout is $1.

Actual claim termination always differs from expected.
Let the actual termination rate during claim year t be

. Then, subtracting 
from both sides of Equation 1, we get

At the beginning of the period, the aggregate in-
force is $1 and the aggregate claim reserve is

. At the end of the period, we’re left
with                 of aggregate claims in force, bearing
an aggregate reserve of                            .

is the amount of “actuarial
gain from claim termination.” If aggregate claims in
the period are exactly as expected, then the actuarial
gain is zero. If terminations are bigger than expected,
the gain is positive. If they’re less than expected, the
gain is negative, and we have a loss from claim ter-
mination.

Thus, on any closed block of claims, we can subtract
actual claim payouts from the last period’s aggregate
claim reserve. Then we adjust for interest, taking
into account the actual timings. If this overstates the
current aggregate claim reserve, then the amount of
the overstatement represents the actuarial gains for
the period.

So, in many practical applications,
is just the balancing item.

But as I will explain later, it may be useful to invest
additional effort to calculate it explicitly.

For other than annual payouts with one-year loss
ratios, the above math is more complex; but the result
is the same, as long as we let our interest adjustments
reflect the actual timing of the payments.

We now return to our definition of “incurred
claims”: cash payouts, plus the increase in claim
reserve.

… loss ratio calculations are
based solely on aggegate data
and are easy to calculate.
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To make things work out neatly in Equation 4, I
have applied an interest adjustment to the reserve
increase in Equation 3. In the real world, the claim
payout isn’t concentrated at the beginning, so it may
need some sort of discounting, too. In practice, that’s
all there is to calculating the aggregate incurred
claims. But let’s see what we’re actually calculating.

As mentioned above, at the moment of claim incep-
tion, Method 2 is identical to Method 1. Thereafter,
Method 2 records deviations from expected termina-
tions as actuarial gains. These gains (and losses) serve
as mid-course corrections to the initial claim reserve,
which occur only as the experience unfolds.

Method 1 is simpler, and it confines the claim expe-
rience to the period of the loss ratio, while neglect-
ing the mid-course corrections. Method 2 scrupu-
lously adjusts for under- or over-reserving over time.
But it blends prior claims into the calculation of the
current loss ratio. Thus, each method has its advan-
tages and disadvantages.

In the above derivations, we have assumed that our
claim reserve is a quasi life annuity calculation. But
these principles are equally valid for claim triangles.
In any event, if claim durations are potentially long,
we need an interest element in the reserve and
incurred claim calculations. (Loss reserves should be
discounted.)

As a practical matter, under Method 2, the incurred
claims are calculated using the fundamental defini-

tion: cash payouts, plus the (interest-adjusted)
increase in claim reserve. The sole purpose of our
derivations was to show that incurred claims are
exactly:
• the claim reserve at the moment of claim incep-

tion, and
• the negative of actuarial gains for any subsequent

period.

The Denominator: Premiums
Premiums should be recognized only when due.
“Incurred Premiums” represent what we’ll collect
over the period, if everyone pays exactly on time.
This is just the Cash Collections over the period,
plus the increase in “Premiums Due and Unpaid,”
minus the increase in “Premiums Paid in Advance.”

A further refinement is to use the “Earned
Premium,” which represents what we would collect
if premiums were paid continuously, and always
exactly on time. Thus, over a four-month period, we
show of an annual premium, regardless of when
the policy anniversary occurs. (Otherwise, for a
block of policies paying annually in February, we
could be dividing by zero if we tried to do a loss ratio
for just the summer months. And a first quarter loss
ratio would be understated because it would reflect a
whole year’s premium.) The “earned premium” is the
“incurred premium,” minus the increase in unearned
premiums.

For loss ratios taken over an extended period, we
must adjust for interest. This means taking the pres-
ent or accumulated value of premiums. In addition,
it seems appropriate to interest-adjust all of the “Due
and Unpaid,” “Advance” and “Unearned” accruals.
(See the Active Life Reserves section)  
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Active Life Reserves
The above formulation is consistent with a mid-ter-
minal Active Life Reserve. If t represents the time (in
years) since the last anniversary (between 0 and 1),
then it’s good enough to interpolate the Active Life
Reserve linearly between anniversaries:

This differs somewhat from custom as follows:
• The unearned premium is omitted from the

reserve;
• In Equation 6 above, we subtracted it from the pre-

miums.
If our reported premiums and reserves follow a dif-
ferent convention, we should adjust them for loss
ratio calculations. (In the case of Life Insurance, pre-
miums should exclude any increase in deferred pre-
mium. For the casualty and group lines, we end up
with no active life reserve at all.)

To get meaningful loss ratios, we’ll want our reserves
to be as realistic as possible. Usually, GAAP benefit
reserves are the best candidate. To the extent possi-
ble, the margins for adverse deviation should be
removed, perhaps using a simple multiple.

Long Term Care and Individual Disability Insurance
specify level premiums, payable for the term of the
coverage or for a limited period. Because the premi-
um is level and claim costs are increasing, the premi-
ums and claim costs are mismatched. Without some
adjustment for active life reserves, the loss ratios will
be meaningless. They will start out unrealistically
low, but would ultimately attain astronomical levels.
To remedy this, we recognize the increase in active
life reserves as part of the claim cost for the current
period. Two definitions are popular.

As always, the 0 subscript refers to the beginning of
the period, while 1 means the end.

Equation 9 is the better choice. As we will show in
section entitled Doing the Math, the loss ratio works
out to be the valuation net premium for the benefit
reserve, divided by the gross premium, minus actu-
arial gains (as a percent of premium). Thus, it meets
the “consistency” criterion discussed in the introduc-
tion of this article.

If you accept the previous assertion for now, then
Equation 8 fails the “consistency” criterion. Even in
the absence of actuarial gains, the loss ratio won’t be
level. In the early policy years, when the active life
reserve is small, it will be almost right. It will increase
artificially as the missing interest adjustment
becomes significant. It will peak at some point, and
then decrease back to normal at the end of time.
Back in the real world, when the loss ratio increases,
we won’t know whether to blame bad claims or chalk
it up to the natural behavior of an aging block.

Over an extended period, Equation 9 is better writ-
ten as:

where PV(whatever) is the n-year present value at the
mth policy year, or

Now, we define a few symbols.

=  Issue Age.

=  Policy Year.

=  Active life reserve per unit in force at the

end of policy year t.

=  Active life reserve on the policy issue date,

which is zero.

=  Active life reserve at the end of coverage.

Px is chosen so that this comes out to

zero.

=  Valuation interest rate for policy year t.
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Therefore,
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= Actual Lapse rate for policy year t.

= Actual Mortality rate for policy year t.

$1 = Actual Amount in force at beginning of policy year t.

= Actual Amount in force at the end of policy year t. 

= Aggregate Reserve at beginning of policy year t.

= Actual Aggregate Reserve at end of policy year t.

At policy year m, we have $1 in force with an aggregate
reserve of .  Then n years later, remains
in force, and the aggregate reserve is                      .

Substituting into Equation 10, we get

which looks a lot like Equation 9. From this, we
draw some conclusions.

• Equation 9 applies over any period of time that we
choose, as long as we properly adjust for interest.

• The foregoing derivation does not in any way use
the reserve valuation assumptions. But the section
Doing the Math does.

• Reserves matter only at the endpoints.
Intermediate reserves have no effect on the loss
ratio.
o Within the               term, the claim reserve

increases (Method 2) telescope in the same way.
o For m = 0 (new business) and (the end of

time), the reserve increase becomes Zero minus
Zero. Similarly, the accruals in Equation 5 and
Equation 6 go to zero, so the lifetime loss ratio is

Equation 11
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which is similar to the loss ratio that we file for a new
policy form.

o As mentioned previously, the premium accruals
need interest adjustments of the form

• For analyzing past results, we calculate retrospective
accumulated values rather than present values.
Instead of inserting persistency and mortality
assumptions into the Equation 11 summations, we
simply accumulate aggregate the historical premi-
ums and claims with interest. At the endpoints, we
use actual reserves with the interest adjustment.

Doing the Math
The active life reserve funds benefits over the term of
the coverage. During policy year t, it changes as fol-
lows:

where

=  Net level premium.

=  Valuation Claim incidence rate

for policy year t.

=  The present value of benefits at

inception, under a claim start-

ing in policy year t. For indi-

vidual disability income, it’s

the familiar claim annuity.

= The net annual claim cost for

claims starting in policy year t.

=   Valuation Lapse rate for policy

year t.

=  Valuation Mortality rate for

policy year t.

Here, the net level premium is set at a level that
funds the benefits over the term of the policy, assum-
ing that claim costs, interest, lapse and mortality
occur exactly as assumed. Thus, the Active life
reserve starts and ends at zero. At intermediate 
times, if generally increases with t, the
reserve is greater than zero.

Actual Experience never follows our script. 

= Actual Claim incidence rate for
policy year t.

= The actual net annual claim
cost for claims starting in policy
year t.   To keep it simple, I’m
using the Method 1 definition
of “incurred claims.”

If 1.0000 = Amount in force at the beginning of pol-
icy year t, then;

= Expected Aggregate Reserve at
end of policy year t.

= Expected Amount in force at
the end of policy year t.

Then, we can transform Equation 13 as follows:

Add (expected decrements) to
both sides …

Subtract (actual decrements)
from both sides …
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Collect terms …

On the right hand side, add and subtract 
(actual claims) …

Finally, we can write

Equation 14 says

The actuarial gains represent deviations from expected
claims, lapses and mortality. They can be either posi-
tive (favorable) or negative (unfavorable).

This motivates a definition for Interest-Adjusted Loss
Ratio:

In practice, the loss ratio is calculated from aggregated
data. Therefore, actual calculations use the Equation
15 definition. Equation 16 shows that the loss ratio is
our established Net-to-Gross ratio, adjusted for expe-
rience over the period.

Expense Ratios, Combined Ratios and Profit
Margin
In GAAP accounting, we establish a deferred acquisi-
tion cost asset. The DAC asset is simply the negative
of an “expense reserve.” From year to year, the expense
reserve progresses in a manner similar to Equation 13:

where

= Expected incurred expense at the
beginning of policy year t.  

= Actual incurred expense at the
beginning of policy year t.  

= Expense Net level premium.

= Expense Reserve per unit in force
at the end of policy year t. It’s
generally negative. Negating it
gives us the positive DAC asset.

Then we define an expense ratio as follows:

Skipping a lot of math that’s very similar to our trans-
formation of Equation 13, we get:

Equation 14

Equation 15

Equation 16

Equation 17

Equation 18

Equation 19
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Actual calculations use the Equation 18 definition.
Equation 19 shows that it works out to our GAAP
amortization percentage, adjusted for experience
over the period.

Equation 19 is the deferrable expense analogue of
Equation 16. Adding:

• the net-to gross ratio from Equation 16 (cover-
ing benefits),

• the GAAP Amortization percentage from
Equation 19, and

• some provision for nondeferrable expenses
results in the “combined ratio,” another con-
cept borrowed from casualty insurance. And
100 percent minus the combined ratio is the
profit margin.

Lines of Business
The Equation 9 definition of the loss ratio modifies
the basic concept to fit issue age level premium
plans, chiefly Long Term Care and Individual
Disability Income.

In the early years, LTC claims are very small. Even
significant percentage deviations will not register sig-
nificantly in the loss ratio calculation. The actuarial
gains from claim experience are small compared to
the other components (Net-to-gross ratio, and mor-
tality and lapse gains). High early lapses could make
a new block of LTC look very profitable. But the
remaining insureds may be less healthy, and subse-
quent claim experience may be unfavorable. You
should always examine your loss ratio results critical-
ly, and understand what’s driving them.

Limited-pay plans (e.g., 10-pay) present special
problems. Applying our usual formulas, we’re divid-
ing by a very large premium in the early years. Later
on, we’re faced with the prospect of dividing by zero.
None of this matters if we don’t have much limited
pay in force, or if we have a mature distribution by
policy year. But the scheme is fairly popular; and
most policies are probably still in their premium-
paying period. One solution may be to restate the
active-life reserve as lifetime pay, and treat the excess
as unearned premium. Thus:

• the interest-adjusted increase in the lifetime pay
portion would be added to claims in the numer-
ator, and

• the increase in the interest-adjusted excess
would be subtracted from the premiums in the
denominator.

This doesn’t sound very practical. If the limited-pay
block is small, you can spare yourself the effort.

We can apply these concepts to life insurance. The
life insurance analog of Equation 16 is
where

= Face Amount for policy year t
= Cash Value for policy year t (usu-

ally zero for term insurance)

In life insurance the law doesn’t require loss ratio cal-
culations. There is no consensus on acceptable val-
ues, especially for Cash Value Whole Life, although
they may be helpful for term insurance. They may
also be useful if your parent company is a casualty
insurer.

Limitations and Food for Thought
The loss ratio is easy to apply, based solely on aggre-
gate premiums, claims and reserves. Using modern
data warehouse technology, we can examine separate
loss ratios for various underwriting and occupation
classes, geographical regions and markets.

Of course, we must confine our examination to sub-
sets that produce statistically significant results. That
entails some combination of choosing sufficiently
large subsets or sufficiently long study periods.

But Equation 16 indicates one obvious area where
the information is incomplete. We see that the major
component of the loss ratio is the ratio of valuation
net premium to gross premium (and this ratio may
be similar to what we originally filed with the states).
In the loss ratio calculation, actuarial gains,
expressed as a percentage of premium, are implicitly
subtracted.

So, if our loss ratio is higher than expected, is it
because of excess claim incidence or insufficient laps-
es? (And if we’re using method 2 to calculate our
incurred claims, are low claim terminations to
blame?) Thus, the loss ratio alone gives us an incom-
plete picture.

The solution is to calculate the individual actuar-
ial gains explicitly. For example, Equation 16 

contains , the gain from incidence. The

>> The Lowly Loss Ratio 
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>> The Lowly Loss Ratio

component is the sum of all new claim reserves
established during the period. And requires doing
a summation over all active lives in force. Once we get
those figures, we can divide by the interest-
adjusted earned premiums, giving us the gain from inci-
dence as a percentage of premium.

Similar analysis gives us the remaining actuarial gains.
Then, we can calculate the aggregate net-to-gross ratio,
subtract the actuarial gains percentages, and hope that
they add up to the aggregate loss ratio.

This is a bit tedious, because we are required to go beyond
merely taking ratios of aggregate quantities. But our
reward is that we can split our loss ratio into the expected
net-to-gross value and all deviations from expected. For
example, assume that we priced for a 55 percent loss ratio,
which is the net-to-gross premium ratio. During the peri-
od, if incidence gains are +2 percent, lapse gains are -7
percent, and termination gains are +1 percent, then our
total loss ratio is

55% - (2% - 7% + 1%)  =  59%
The loss ratio is higher than we priced for, and yet claim
incidence and termination are fine. The problem is “insuf-
ficient” lapses.

We can perform similar analysis of expenses (see Section
6). Then the “deferrable” expense ratio will be the GAAP
amortization ratio, minus the actuarial gains. Here, the
“insufficient” lapses may translate into an actuarial gain,
somewhat offsetting the disappointing loss ratio.

All of the foregoing, plus the nondeferrable expenses and
profit margin, add up to 100 percent. The moral of the
story is that not all deviations are created equal. A higher
than expected loss ratio does indicate an unanticipated
level of claim payout. But if it’s solely because of low laps-
es, then our expense amortization offers some mitigation.

GAAP reserves generally include some margin for adverse
deviation. As mentioned earlier, we can have a more
meaningful exhibit of actuarial gains if we devise an
adjustment that removes them.

If the net-to-gross ratio varies by issue age, sex, underwrit-
ing class, etc., then the aggregate net-to-gross will gradu-
ally shift with variations in lapses and mortality. This is
another pitfall to examining loss ratios in isolation. We
can overcome this by splitting the loss ratio into its basic
net-to-gross ratio, minus actuarial gains. $
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Health Watch
Health Section Newsletter, Sept. 2007 
http://www.soa.org/library/newsletters/health-watch-
newsletter/2007/september/hsn-0708.pdf

IASB Phase II Insurance Contracts Project:
Implications for U.S. Health Insurers
by Rowen B. Bell
An article about how IASB Phase II may affect
reporting for health insurance products.

²²²

Long-Term Care News, Aug. 2007 
http://www.soa.org/library/newsletters/long-term-
care/2007/august/ltc-0807.pdf

Random Variation in Claims Reserves
by James Berger
On the challenges of explaining changes in claims
reserves.

Taxing Times
Taxation Section Newsletter, Sept. 2007 
http://www.soa.org/library/newsletters/taxing-
times/2007/september/ttn-0907.pdf

Tax Uncertainty Swirls Around Principles-Based
Reserves
by Christian DesRochers
Highlights some potential issues for the effect on
Federal Income Tax when a Principles-Based
approach to reserves is adopted.
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