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Hidden Markov Models and You, Part Two
By Brian Grossmiller and Doug Norris

I n the July edition of this newsletter, we introduced you 
to hidden Markov models (HMMs) by providing a brief 
introduction to this technique to tease out patterns with-

in time series and including some discussion on how they 
can be used to solve actuarial problems. In a hidden Markov 
model, observed data are generated from one of multiple 
states that are hidden from view. In this second part, we will 
walk through the algorithm that is typically employed to 
evaluate HMMs, and also provide some more examples to 
spur your own efforts.

HOW ARE HIDDEN MARKOV MODELS 
BUILT?
A good first step toward adopting HMMs into your 
own practice is to understand how the evaluation 
algorithm works. We will be exploring an example 
developed in Excel. Naturally, in a production envi-
ronment, we recommend an implementation of the 
algorithm in a more robust software package such 
as R (so “do as we say, not as we do”).

The Excel workbook described in this article is avail-
able at http://www.soa.org/news-and-publications/
newsletters/forecasting-futurism/default.aspx

One of the best-known algorithms for calibrating an HMM 
is the Baum-Welch, or expectation maximization (EM), al-
gorithm. The EM algorithm is an iterative process, which 
recursively updates a set of HMM parameter estimates until 
they converge. The main four functions used in the Baum-
Welch algorithm are commonly referred to by the first four 
Greek letters, as follows:

• Alpha (α): Forward probabilities, which are generated 
from an initial estimate of the hidden state at the first 
data observation, and calculated forward from there.

• Beta (β): Backward probabilities, which are computed 
as a conditional probability from the last (final) data 
observation.

• Gamma (γ): Combines the forward and backward prob-
abilities into a probability estimate of the state transi-
tion at each data observation.

CONTINUED ON PAGE 12

• Delta (δ): Sums the gamma function across all transi-
tions, to provide an estimate of the hidden state at each 
data observation.

Once these four functions have been constructed, the HMM 
parameters can be re-estimated and the process repeated 
(until the parameters converge to a steady state). A brief ex-
ample will better illustrate this process.

EXAMPLE: CHRONIC DISEASE FLARE-UP
Suppose that we have 24 months of observations for a pa-
tient with a chronic disease. The observations are the num-
ber of medical claims the patient had in each month: zero, 
one, or two or more (the latter shown as “2” in this example, 
as graphing numbers and text together can get messy). The 
observations are as in Figure 1.

Figure 1: 24 Months of Observed Claims Frequency

Based upon these observations, we might suspect that there 
are periods where the disease has flared up and produced 
more claims, and other periods where the disease is well 
managed (and perhaps the only claims in these periods are 
maintenance drugs). By fitting an HMM to these observa-
tions, we can obtain an estimate of the hidden state at each 
observation, and make an estimate of the number of claims 
we expect in the next month. Since we think that there are 
two states in this process (one in which the condition is well 
managed, and one in which the condition has flared up), we 
will model this data with a two-state HMM (it can be fun 
and educational to fit different-sized models to the same 
data).

Observations
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Figure 2 shows some initial estimates for each of the param-
eters. These parameters, along with the data observations, 
allow us to compute each of the four functions required by 
the EM algorithm. Fortunately, the mathematics are fairly 
intuitive and simple, and we will tackle each in turn.

ALPHA (FORWARD PROBABILITIES)

Figure 3: Forward Probabilities

The Baum-Welch algorithm, as with many numerical algo-
rithms, requires initial estimates for each of the model pa-
rameters. This algorithm produces a set of model parameters 
that maximize the likelihood of observing the given data; 
however, if we choose our parameters poorly, we may find 
a solution that is only a local maximum or saddle point (in-
stead of a global maximum). 

This algorithm has another thing in common with other nu-
merical algorithms—choosing these initial parameter esti-
mates is as much an art as it is a science. One way is to look 
at the data and hypothesize the state that each observation 
is in; from there, we can make the remaining parameter es-
timates.  

For this example in particular, we require initial parameter 
estimates for:

• A probability distribution for each state of observing 0, 
1 or 2+ claims.

• A guess as to which state we are in initially.

• Four transition probabilities (one each for State 1 to 
State 1, State 1 to State 2, State 2 to State 1, and State 
2 to State 2).

Figure 2: Initial Parameter Estimates

Initial Two State Estimates  Pr(0) Pr(1) Pr(2)

Distribution of State 1  0.400 0.400 0.200

Distribution of State 2  0.200 0.200 0.600

Initial Pr(State 1)   0.500  

Initial Pr(State 2)   0.500  

Pr(State 1 -> State 1)  0.700  

Pr(State 1 -> State 2)  0.300  

Pr(State 2 -> State 1)  0.500  

Pr(State 2 -> State 2)  0.500   

 

Alpha - Forward Probabilities   
 Month Value State 1 State 2

 1 2 0.100000 0.300000
 2 1 0.088000 0.036000
 3 0 0.031840 0.008880
 4 1 0.010691 0.002798
 5 2 0.001777 0.002764
 6 0 0.001050 0.000383
 7 1 0.000371 0.000101
 8 1 0.000124 0.000032
 9 0 0.000041 0.000011
 10 1 0.000014 0.000004
 11 1 0.000005 0.000001
 12 2 0.000001 0.000001
 13 0 0.000000 0.000000
 14 0 0.000000 0.000000
 15 2 0.000000 0.000000
 16 2 0.000000 0.000000
 17 1 0.000000 0.000000
 18 1 0.000000 0.000000
 19 1 0.000000 0.000000
 20 1 0.000000 0.000000
 21 1 0.000000 0.000000
 22 1 0.000000 0.000000
 23 2 0.000000 0.000000
 24 2 0.000000 0.000000
   
Total Probability  0.000000 

HIDDEN MARKOV MODELS …  | FROM PAGE 11
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The forward probabilities (alpha values) represent the joint 
probability that, given the current HMM parameters, the 
model is in its current state and that each of the data points 
observed so far has happened. For instance, the first data 
point above is a “2.” α1(1) then represents the joint probabil-
ity that the model is in State 1 in the first month, and that we 
have observed “2” claims.

The table of forward probabilities (shown in Figure 3) can 
look daunting at first, but it essentially comes down to two 
calculations. The first row is simply the initial state prob-
ability multiplied by the probability of the observation in 
that state. Using our initial parameter estimates, this comes 
down to: 

α1(1) = Initial Pr(State 1) * Pr1(2) = 0.5 * 0.2 = 0.1

The calculation changes for Month 2 and beyond. There, we 
take the forward probabilities in each state up to that point, 
multiply by the transition probability to the state in ques-
tion, and multiply the sum of those by the probability of the 
observation. An example of the calculation of the forward 
probability at Month 2 for State 1 follows:

α1(2) = [ α1(1) * Pr(State 1 → State 1) + α2(1) * Pr(State 2 
→ State 1) ] * Pr1(1) = [ 0.1 * 0.7 + 0.3 * 0.5 ] * 0.4 = 0.088

The remaining calculations follow this same formula. We 
also compute the total probability at the last step (simply 
the sum of the probabilities across all states in the last step). 
This is used in maximum likelihood estimation, and in both 
the gamma and delta functions (which we will get into lat-
er). As you can see, there are a few zeroes between the value 
and the decimal point, so taking the logarithm and maximiz-
ing that instead is often more convenient.

BETA (BACKWARD PROBABILITIES)

Figure 4: Backward Probabilities

CONTINUED ON PAGE 14

Beta - Backward Probabilities   

   

Month Value State 1 State 2

 1 2 0.000000 0.000000

 2 1 0.000000 0.000000

 3 0 0.000000 0.000000

 4 1 0.000000 0.000000

 5 2 0.000000 0.000000

 6 0 0.000000 0.000000

 7 1 0.000000 0.000000

 8 1 0.000000 0.000000

 9 0 0.000000 0.000000

 10 1 0.000000 0.000000

 11 1 0.000001 0.000001

 12 2 0.000002 0.000002

 13 0 0.000006 0.000006

 14 0 0.000018 0.000023

 15 2 0.000050 0.000061

 16 2 0.000170 0.000147

 17 1 0.000513 0.000443

 18 1 0.001546 0.001335

 19 1 0.004660 0.004027

 20 1 0.014024 0.012221

 21 1 0.041824 0.038560

 22 1 0.116800 0.152000

 23 2 0.320000 0.400000

 24 2 1.000000 1.000000
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GAMMA (ESTIMATE OF STATE 
TRANSITIONS)

Figure 5: Estimate of State Transitions

The backward probabilities (beta values) represent a condi-
tional probability that, given that the HMM is in state X at 
time t (and assuming the current HMM parameters), all of 
the observed data points from t+1 through the last month ac-
tually occurred. In our example, β23(1) represents the prob-
ability that, given that the HMM is in State 1 at time 23, we 
observed “2” claims at time 24. 

These backward probabilities are calculated in reverse, 
starting from the last data observation. The beta values at 
the last data observation are defined to be one, because there 
is no data beyond this point (and so the probability of ob-
serving it is one). 

Unfortunately the other calculations aren’t as easy, but at 
least they are pretty much identical to one other. For each 
time step, the process is to calculate the sum of the prob-
abilities of moving to each state, seeing the observation at 
the next time, and multiplying by the beta function back to 
that point. To demonstrate, let’s take a look at the beta cal-
culation at Month 22 in State 1:

β22(1) = Pr(State 1 → State 1) * Pr1(2) * β23(1) + Pr(State 1 
→ State 2) * Pr2(2) * β23(2) = 0.7 * 0.2 * 0.32 + 0.3 * 0.6 * 
0.4 = 0.1168

That one is a bit of a headache, but if you stare cross-eyed 
at the formula long enough you might see a 3D picture (also 
notice that, in each part of the calculation, the first two num-
bers are the same for each beta calculation). These backward 
probabilities are used in the calculation of the gamma func-
tion, so let’s dive right in.

Gamma - Estimate of State Transitions   

    Transition   

Month Value 1 to 1 1 to 2 2 to 1 2 to 2

 1 2 0.234674 0.043742 0.502873 0.218711

 2 1 0.617078 0.120469 0.180315 0.082138

 3 0 0.632653 0.164741 0.126031 0.076575

 4 1 0.359658 0.399025 0.067243 0.174073

 5 2 0.360280 0.066621 0.400358 0.172740

 6 0 0.641922 0.118717 0.167207 0.072154

 7 1 0.682736 0.126392 0.133294 0.057578

 8 1 0.687818 0.128212 0.128207 0.055763

 9 0 0.682702 0.133323 0.126385 0.057590

 10 1 0.641680 0.167407 0.118672 0.072241

 11 1 0.358619 0.401734 0.066313 0.173334

 12 2 0.354881 0.070051 0.393726 0.181342

 13 0 0.585995 0.162612 0.152591 0.098802

 14 0 0.288242 0.450344 0.056272 0.205142

 15 2 0.163319 0.181195 0.182651 0.472835

 16 2 0.291979 0.053991 0.456895 0.197135

 17 1 0.631989 0.116885 0.175423 0.075703

 18 1 0.681261 0.126151 0.134482 0.058106

 19 1 0.687388 0.128355 0.128339 0.055917

 20 1 0.681156 0.134571 0.126129 0.058143

 21 1 0.631252 0.176034 0.116748 0.075966

 22 1 0.286904 0.461096 0.053053 0.198948

 23 2 0.148731 0.191226 0.165011 0.495032

 24 2    

[THE BAUM-WELCH ALGORITHM] PRODUCES A SET 
OF MODEL PARAMETERS THAT MAXIMIZE THE LIKELI-
HOOD OF OBSERVING THE GIVEN DATA.

HIDDEN MARKOV MODELS …  | FROM PAGE 13



DELTA (ESTIMATE OF THE STATE AT EACH 
OBSERVATION)

Figure 6: Estimates of Hidden States

The forward (alpha) and backward (beta) probabilities are 
combined to produce the gamma function, which gives an 
estimate of the state transitions. This function is calculated 
separately for every possible state transition, and because 
(in this example) we have two states, there are four transi-
tions. Note that we do not calculate the gamma function at 
the last observation; because this is the terminal state, there 
is no additional transition to estimate. In each calculation, 
four components are multiplied together, which are then di-
vided by the total probability from the alpha function:

• The forward probability of the current time and state

• The transition probability to the state at the next time 
(for each column, this is one value)

• The probability of the observation at the next time and 
state

• The backward probability at the next time and state.

To give one example, the calculation at Month 1 for the tran-
sition from State 1 to State 1 is as follows (note that the beta 
and total probabilities are very small, and are presented in 
scientific notation for reading convenience):

[ α1(1) * Pr(State 1 → State 1) * Pr1(1) * β2(1) ] / Total Prob-
ability = [ 0.1 * 0.7 * 0.4 * 3.21E-11 ] / 3.83E-12 = 0.234674

Wasn’t that fun? The good news is that the rest of the cal-
culations are just like that (the other good news is that you 
don’t have to do these calculations by hand). Anyhow, once 
the gamma function is built, the state transitions can be re-
estimated for the next iteration of the HMM. The first col-
umn shown in Figure 5 contains all of the estimated prob-
abilities for transitions from State 1 to State 1, while the 
first two columns contain all of the estimated probabilities 
for transitions originating in State 1. By adding up the first 
column, and dividing by the sum of the first and second col-
umns, you have your new estimate of the transition prob-
ability from State 1 to State 1—finally some easy math. 
Speaking of easy math, next up is the delta function.

Delta - Estimate of Probability of Each State at Each Observation 

Month Value State 1 State 2

 1 2 0.278416 0.721584

 2 1 0.737547 0.262453

 3 0 0.797394 0.202606

 4 1 0.758684 0.241316

 5 2 0.426901 0.573099

 6 0 0.760639 0.239361

 7 1 0.809128 0.190872

 8 1 0.816030 0.183970

 9 0 0.816025 0.183975

 10 1 0.809087 0.190913

 11 1 0.760353 0.239647

 12 2 0.424932 0.575068

 13 0 0.748607 0.251393

 14 0 0.738586 0.261414

 15 2 0.344514 0.655486

 16 2 0.345970 0.654030

 17 1 0.748874 0.251126

 18 1 0.807413 0.192587

 19 1 0.815743 0.184257

 20 1 0.815727 0.184273

 21 1 0.807286 0.192714

 22 1 0.748000 0.252000

 23 2 0.339957 0.660043

 24 2 0.313742 0.686258
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The delta function allows us to re-estimate all of the remain-
ing HMM parameters. New initial state estimates are given 
by the delta function in the first row. Probability distribu-
tions can be derived by adding up the delta function in each 
state (for the observed 0, 1 or 2) and dividing by the total 
delta function. In our example, the resulting figures after the 
first iteration are given in Figure 7.

It can be educational to see how our parameters have 
changed from our initial assumptions. For both distribu-
tions, we had initially overestimated the probability of see-
ing zero claims (compared to what was actually observed in 
the data). We also increased the likelihood that we begin in 
the “condition flare-up” state, as the high number of claims 
present in the initial observation suggests.

One last interesting feature of the delta function is that it 
gives us an estimate of the state that the system is in at every 
observation. This tends to converge as we iterate the HMM, 
as shown in Figures 8, 9 and 10 for iterations 1, 10 and 100, 
respectively.

For our chronic disease example, Figure 6 shows the delta 
function for the first iteration of the HMM. All, except for 
the last step, are simply the sum of the gamma functions 
originating in that state. The first observation for State 1 is 
just:

γ1→1(1) + γ1→2(1) = 0.234674 + 0.043742 = 0.278416

The only exception is the last observation, which (fortu-
nately) can be easily computed from the total probability 
determined in the alpha function. As you’ll recall, that was 
just the sum of the probabilities across all states at the last 
observation. The delta function at the last step is the alpha 
function for the same state and step, divided by that total 
probability.

Initial Two State Estimates Pr(0) Pr(1) Pr(2)

Distribution of State 1 0.245 0.598 0.157

Distribution of State 2 0.138 0.312 0.550

Initial Pr(State 1) 0.278  

Initial Pr(State 2) 0.722  

Pr(State 1 -> State 1) 0.733  

Pr(State 1 -> State 2) 0.267  

Pr(State 2 -> State 1) 0.551  

Pr(State 2 -> State 2) 0.449  

    

Figure 7: Re-estimated Parameters at the First Iteration

Figure 8: Hidden State Estimate at Iteration 1

Hidden State Estimate
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We also saw in Figure 10 that at Time 24 we are in State 
2. We can use the state transitions alongside the expected 
values of each distribution to determine that:

• Expected Value Distribution 1: 0 * 0.293 + 1 * 0.704 + 
2 * 0.002 = 0.708

• Expected Value Distribution 2: 0 * 0.0 + 1 * 0.0 + 2 * 
1.0 = 2

• Pr(State 2 → State 1) * 0.708 + Pr(State 2 → State 2) * 
2 = 0.668 * 0.708 + 0.332 * 2 = 1.132

A straight empirical distribution (average of the observed 
values) would provide an estimate of 1.0833; if the hidden 
state structure is a reasonable assumption for this particular 
disease, then we have a good case for using the HMM re-
sult instead. A great feature of HMMs is that they can run 
very quickly once implemented, and a more refined estimate 
across several thousand claimants can really add up.

Now that we’ve had a thorough grounding in the mechan-
ics of hidden Markov models, let’s look at a more realistic 
example.

NOW THAT WE HAVE OUR MODEL, WHAT 
DO WE DO WITH IT?
Now that we have gone through all that trouble of putting to-
gether an HMM, you might be wondering what comes next. 
This is the fun part, so let’s put together an estimate of the 
number of claims that we could expect to see in Month 25. 
After 100 iterations, our parameters are as in Figure 11.

Figure 11: New Parameters after 100 Iterations

Figure 9: Hidden State Estimate at Iteration 10

Figure 10: Hidden State Estimate at Iteration 100

Initial Two State Estimates  Pr(0) Pr(1) Pr(2)

Distribution of State 1  0.293 0.704 0.002

Distribution of State 2  0.000 0.000 1.000

Initial Pr(State 1)  0.000  

Initial Pr(State 2)  1.000  

Pr(State 1 -> State 1)  0.766  

Pr(State 1 -> State 2)  0.234  

Pr(State 2 -> State 1)  0.668  

Pr(State 2 -> State 2)  0.332  

CONTINUED ON PAGE 18
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variables when sewing together members this way (such as 
age and gender). However, note that we do not need to know 
our members’ health statuses in order to build the HMM.

For this exercise, we built fictional data, assuming that for 
each health status risk scores are distributed in a lognormal 
fashion (with mean risk scores getting progressively high-
er for less healthy statuses). For those who wish to follow 
along, here is some sample R code (for use with the hidden 
Markov model package found at the Comprehensive R Ar-
chive Network1):

• library(HiddenMarkov)

• delta<-c(1/4,1/4,1/4,1/4)

• Pi<-matrix(c(0.9,0.08,0.01,0.01,0.045,0.9,0.045,0.01,0
.01,0.045,0.9,0.045,0.01,0.01,0.08,0.9),byrow=TRUE,
nrow=4)

• x<-dthmm(NULL,Pi,delta,”lnorm”,list(meanlog=c(log
(0.15),log(0.3),log(0.55),log(1.4)),sdlog=c(log(5),log(
5),log(5),log(5))),discrete=TRUE)

• x<-simulate(x,nsim=1000)

The last step of the code above is a random process, and so 
(if you are following along) you will have different sample 
data than we have used. Alternatively—and preferably—
you could create a string of actual data from your own plan’s 
experience. 

Now we can create our four-stage HMM. As with most nu-
merical methods, in order to build an HMM we must have 
an initial guess at the model structure. Suppose here that 
we believe that an individual stays at a given health level 
70 percent of the time, switching to each of the other three 
health levels with 10 percent probability apiece. And sup-
pose that we believe that, for each underlying health status, 
the risk score distributions are as follows:

• Healthy: Lognormal (parameters meanlog = log(0.15), 
sdlog = log(5))

EXAMPLE: QUANTIFYING FUTURE RISK
As actuaries, we are oftentimes called upon to measure, 
manage and predict risk. For the truly gifted (such as ersatz 
hero George Costanza), becoming a risk management expert 
is as simple as listening to a few books on tape, but for the 
rest of us, it’s not so easy. And with reimbursement on the 
line (as in the Medicare world, or in the commercial world 
under the Patient Protection and Affordable Care Act), it’s 
important to gain insight on the future risk of a plan’s mem-
bers. The following rudimentary example explores the pos-
sibility of using hidden Markov models to estimate future 
risk.

Risk scores (which we can observe directly) are a function 
of an individual’s health status (which we cannot observe 
directly). Suppose that we choose to model an individual’s 
health as one of four states:

• Healthy

• Mildly sick

• Moderately sick

• Severely sick.

To build our hidden Markov model, actual risk scores are 
needed for individuals from one year to the next. The HMM 
package in R requires a string of data as input; if we used 
1,000 data points to build our model, this would be repre-
sentative of 1,000 years of a single individual’s risk score. 
With lapse rates what they are, it is unlikely that a health 
plan has 1,000 years of consecutive data on a single individ-
ual. Moreover, it would be nice to build our model on more 
than the risk scores of one individual. An alternative is to 
string together multiple individuals’ risk scores to produce a 
chain of data—suppose that we have four years of data for 
Person A: 1.08, 0.74, 1.42 and 1.20. We could then find a 
Person B, with risk scores of 1.20, 0.96, 1.77 and 0.80. Con-
tinuing this process, we could build a chain of data of arbi-
trary length on which to base our model. Of course, in a real 
model, you would probably also have to worry about other 



• Mildly sick: Lognormal (meanlog = log(0.41), sdlog = 
log(4.80)); expected value 1.42

• Moderately sick: Lognormal (meanlog = log(1.27), sd-
log = log(4.66)); expected value 4.17

• Severely sick: Lognormal (meanlog = log(1.42), sdlog 
= log(4.48)); expected value 4.38

(Note that we did not exactly replicate the parameters used 
to generate the initial random data, nor should we expect 
to have done so. The Baum-Welch algorithm develops the 
most likely HMM to produce the observed data, but there 
are other distributions that could produce the same set of 
random data. Just as we do not expect the most likely out-
come of rolling a fair six-sided die to be a “6,” we do expect 
some “6” values when we repeatedly roll a fair six-sided 
die.)

Suppose that we have an individual with a risk score of 0.9 
in the most recent year, and we would like to estimate that 
person’s risk score in the upcoming year. First, we would 
need to estimate the current health state—this would be 
done most accurately by using a maximum likelihood ap-
proach. However, in practice (and in particular with lognor-
mal distributions), it is simpler merely to assume that the 
state is closest to the individual’s observed risk score (in this 
case, a risk score of 0.9 would most closely correspond to 
the healthy state).

Using the transition matrix above, we would then estimate 
that, in the coming year, the individual will be healthy (with 
95.9 percent probability) or mildly sick (with 4.1 percent 
probability). The distribution of the expected risk score 
would be a composite lognormal distribution, and we would 
predict the mean future risk score to be 0.89. (The composi-
tion of lognormal distributions is not easy to express in a 
closed form, but one could find the entire distribution using 
a numerical method, and could then compute likelihoods 
such as the probability that next year’s risk score will ex-
ceed 10.)

• Mildly sick: Lognormal (parameters meanlog = 
log(0.3), sdlog = log(5))

• Moderately sick: Lognormal (parameters meanlog = 
log(0.55), sdlog = log(5))

• Severely sick: Lognormal (parameters meanlog = 
log(1.4), sdlog = log(5))

(The eagle-eyed among you will note that these parameters 
are precisely those used to produce the sample data above. 
If we aren’t as lucky, we do run the risk that our model will 
converge to something other than the true optimal value.)

The following R code then builds a discrete-time HMM:

• Pi4<-matrix(c(0.7,0.1,0.1,0.1,0.1,0.7,0.1,0.1,0.1,0.1,0.
7,0.1,0.1,0.1,0.1,0.7),byrow=TRUE,nrow=4)

• a4<-dthmm(NULL,Pi4,delta,”lnorm”,list(meanlog=c(
log(0.5),log(1.1),log(2),log(5)),sdlog=c(log(5),log(5),l
og(5),log(5))),discrete=TRUE)

• a4$x<-x$x

• y4<-BaumWelch(a4)

• print(summary(y4))

With our sample data, this code produces an HMM with 
transition matrix:
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0.959 0.041 0.000 0.000 

0.000 0.962 0.000 0.038 

0.097 0.000 0.903 0.000 

0.000 0.555 0.095 0.905 

and state distributions of:

• Healthy: Lognormal (meanlog = log(0.23), sdlog = 
log(5.16)); expected value 0.87

CONTINUED ON PAGE 20
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returns. As well, there is a risk of over-fitting (remember 
that a model’s true ability lies in how it performs with un-
seen data, not in simply replicating the data used to build 
the model).

REFERENCES
Zucchini, Walter, and Iain MacDonald. 2009. Hid-
den Markov Models for Time Series. Upper Chap-
man & Hill/CRC. Print.  

This is meant to be a (somewhat) simple example, and you 
are probably already coming up with improvements to the 
algorithm. For instance, one might expect that the most re-
cent two years of risk scores would be a better predictor of 
next year’s risk score than this year’s risk score alone. This 
would require a larger HMM to implement (because of the 
need to track both last year’s and this year’s health status), 
but would be straightforward to accomplish.

How many states should one build into a model? That’s 
more of the art of the HMM—similar to the question of 
which distribution best fits a set of data. One fun exercise 
(for the reader) is to take the example above (either with 
random data or your own actual data), and try fitting HMMs 
of different sizes (and with different assumptions). Larger 
HMMs, with more available parameters, may fit the data 
better, but one will ultimately reach a point of diminishing 
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ENDNOTES

1 HiddenMarkov: Hidden Markov Models. Retrieved Sept. 
20, 2013, from http://cran.r-project.org/web/packages/
HiddenMarkov/index.html.


