

Article from

Predictive Analytics and Futurism
December 2015
Issue 12

T he concept of “information explosion” was formed more
than 70 years ago and the world of big data has evolved ever
since. As pointed out by Eric Schmidt (Google CEO), every

two days we are creating as much information as we did since the
dawn of civilization till 2003. The ever increasing information size
has changed the way we store and process data.

Until recently, Hadoop has almost been a paraphrase of big data.
The system, famous for its HDFS (Hadoop Distributed File) stor-
age and Map-Reduce processing, has been widely adopted as a tool
for big data in IT, health care, financial services, telecommunica-
tion and life sciences.

However, the Map-reduce paradigm is not designed for data pro-
cessing that requires cyclic data sharing, e.g., iterative data pro-
cessing and interactive data analysis.1 The invention of Spark, an
in-memory data processing engine, seems to bring a solution to
the problem.2 In 2014, Spark was announced as the top-level proj-
ect of the apache software foundation. Cloudera, a major vendor
of Hadoop, considers Spark as a replacement for MapReduce for
data execution in their data management system.3 Spark is also
embraced by many big data solution vendors, e.g., Hortonworks,
IBM, MapR, etc.

This article gives a general introduction to Spark and shows ev-
idences that Spark could be potentially used as a data processing
engine for the insurance industry as well.

DATA STRUCTURES IN SPARK
The core abstraction upon which Spark is built is called Resilient
Distributed Dataset (RDD). Basically, RDD is an immutable col-
lection of partitioned records that can be distributed across the
nodes of a cluster and operated in parallel. Each partition is a
subset of the data it is created from and RDD contains the infor-
mation on how the partitions are created. If some partitions get
lost during a process, they can still be recreated from the original
dataset. Therefore, if any nodes in a cluster go down during a large
data process, a reconstruction process will be triggered for the lost
partition to ensure a successful completion.

Spark: the Next-generation
Processing Engine for Big
Data
By Dihui Lai and Richard Xu

Despite its beauty in processing big data, RDD is still a little distal
from the data structures that people are familiar with, e.g., SQL
schema, data frame. The recent release of Spark introduces Data-
Frame4 into its ecosystem. The columnar organized data structure
is conceptually similar to a data-frame in R and it also offers rela-
tional data operations like SQL. The following are spark codes (in
Scala) that create DataFrame from a csv file and perform aggrega-
tion on claim counts by states. The 3rd statement appends the claim
to the data set by join operations.

val df = sqlContext.read.format(“com.databricks.spark.
csv”).option(“header”, “true”).load(“claim_data.csv”)

val df_claim_state = df.groupBy(“State”).agg(count(“CLAIM_
CNT”))

val df = df.join (df_claim_state, df(“State”) === df_
claim_state (“State”), “inner”)

Equivalently, one can also register the data frame as a SQL table
and use SQL-like syntax to do the joining operations, as shown
below.

df. registerTempTable(“claim_data”)

sqlContext.sql (“select * from claim_data JOIN
df_claim_state WHERE State claim_data.State = df_

claim_state.State”)

Both RDD and DataFrame use lazy execution, which means
all the operations above will not be executed until some spe-
cial commands are made, e.g., save, show. The laziness of spark
reduces the communication overhead and allows optimization
across operations.

SPARK DEPLOYMENT
Spark allows different modes of deployment. It could be deployed
with a cluster manager system, e.g., Hadoop YARN, Amazon EC2
or Apache Mesos. Spark also allows a standalone mode by which it
can work independent of any cluster management system. It is also
possible to run spark on a laptop as a single-node cluster.

The standalone mode is ideal for users to dive into Spark without
worrying about the setup of a complicated cluster system. Actually,
the standalone mode itself provides a quite powerful tool in deal-
ing with large data of reasonable size. Powerful big data storage
systems like HDFS are not necessary for Spark to work. A shared
file system, e.g., network file system (NFS) works well for process-

34 | DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM

ing data of a large size, e.g., gigabytes as long as the data can fit
into a single disk. Spark also integrates well with various databas-
es, including the ones from the NoSQL family, e.g., Cassandra,
Hbase and also the ones from the relational database family, e.g.,
MySQL.

MACHINE LEARNING AND ANALYTICS
As mentioned before, one major limitation of Hadoop’s Map-re-
duce method is that it is not designed for analytics such as machine
learning (ML). The in-memory architecture of Spark introduces a
nice solution to the problem. By keeping data in memory, Spark
allows the users to query data repeatedly and speed up the iterative
ML algorithms to a large extent.

Moreover, Spark provides the users with a built-in machine learn-
ing library (MLlib). The library covers quite a list of popular ML
algorithms, which includes regression (linear/logistic), classifica-
tion (SVM, naïve Bayes) and clustering (k-means), etc. If one needs
an algorithm that is beyond the scope of MLlib, Sparkling-water
would be a nice package to add. Sparkling-water is created upon
the integration of spark platform and H2O. H2O provides scal-
able predictive analytics in a wide spectrum, including Generalized
Linear Models (GLM), tree algorithms, Gradient Boosting Ma-
chine (GBM), Deep Learning, etc.

SPEED AND SCALABILITY
Existing analytical tools such as R or Python do not provide
parallel computation for free and are not scalable inherently.
Revolution R provides parallelized algorithms but could be very
expensive to deploy in a cluster environment. Spark provides an
open source platform for analytics and can process large data
that could be otherwise hard to handle. Moreover, Spark pro-
vides an API for Java, Scala, Python and R. Data scientists who
are more familiar with R/Python can dive into the system with-
out much pain.

Generalized linear model (GLM) is widely used in the insurance
industry. To understand the potential usage of Spark in insur-
ance, we built GLMs for data of varying sizes and compared the
performance difference using terminal server and spark cluster.
The terminal server and the spark cluster (7 nodes) had com-
parable memory sizes in our test. Revolution R showed better
performance than regular R regarding the processing speed due
to optimized algorithm and parallelism (Table 1). The spark clus-
ter reduced the processing time of the model further due to the
involvement of more CPUs. In processing a large data set, the
terminal server experienced a memory overflow in processing
data 70GB in size while the spark cluster finished the model in
about three minutes.

Table 1. Processing data on terminal server and cluster. The processing time of different data
on terminal server and spark cluster. Generalized Linear Model is built within two environments
on data of different sizes. * we used a GLM routine from the H2O package in the spark cluster.

Proc Time (Data 1.5 GB) Proc Time (Data 70 GB)

R (TS) 480.19 s Memory Overflow

Revolution R(TS) 33 s Memory Overflow

Spark* (Cluster) 6 s 184 s

To further test the scalability of the spark cluster, we built a GLM
model on the same data set while changing the size of the cluster.
The processing speed changed depending on the data type and the
complexity of the model. Under the given test environment, the
spark-cluster showed a close-to-linear scalability where the increase
of processing speed was almost proportional to the size of the cluster
(Table 2). A 2-nodes cluster failed the task due to memory overflow.

Table 2. Scalability. Comparison between processing time on clusters of different sizes.

Cluster 2-nodes (8 cores) 4-nodes (16 Cores) 7-nodes (28 Cores)

Proc Time Memory Overflow 300 s 180 s

In summary, spark provides a fast and scalable platform for han-
dling big data. Its in-memory architecture makes it a nice fit for
big data analytics. The APIs for multiple languages make it easy to
dive-in from various backgrounds. The various deployment modes
make it easy to implement into existing big data environments.

REFERENCES

1 Zaharia M., Chowdhury M., Franklin M.J., Shenker S. and Stoica I., Spark: Cluster Com-
puting with Working Sets. In HotCloud, 2010.

2 Zaharia M., Chowdhury M., Das T., Dave A., Ma J., McCauley M., Franklin M.J., Shen-
ker S. and Stoica I.; Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing; In NSDI, 2012.

3 http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/spark.html

4 Bradley J.K., Meng X., Kaftan T., Franklin M.J., Ghodsi A. and Zaharia M. Spark SQL:
Relational data processing in Spark; In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15), 2015.

Dihui Lai, Ph.D., is a data scientist analyst at RGA
Reinsurance Company in Chesterfield, Mo. He can be
reached at dlai@rgare.com.

Richard Xu, FSA, Ph.D., is VP and actuary, head of Data
Science at RGA Reinsurance Company in Chesterfield, Mo.
He can be reached at rxu@rgare.com.

DECEMBER 2015 PREDICTIVE ANALYTICS AND FUTURISM | 35

