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T he concept of “information explosion” was formed more 
than 70 years ago and the world of big data has evolved ever 
since. As pointed out by Eric Schmidt (Google CEO), every 

two days we are creating as much information as we did since the 
dawn of civilization till 2003. The ever increasing information size 
has changed the way we store and process data.

Until recently, Hadoop has almost been a paraphrase of big data. 
The system, famous for its HDFS (Hadoop Distributed File) stor-
age and Map-Reduce processing, has been widely adopted as a tool 
for big data in IT, health care, financial services, telecommunica-
tion and life sciences. 

However, the Map-reduce paradigm is not designed for data pro-
cessing that requires cyclic data sharing, e.g., iterative data pro-
cessing and interactive data analysis.1 The invention of Spark, an 
in-memory data processing engine, seems to bring a solution to 
the problem.2 In 2014, Spark was announced as the top-level proj-
ect of the apache software foundation. Cloudera, a major vendor 
of Hadoop, considers Spark as a replacement for MapReduce for 
data execution in their data management system.3 Spark is also 
embraced by many big data solution vendors, e.g., Hortonworks, 
IBM, MapR, etc.

This article gives a general introduction to Spark and shows ev-
idences that Spark could be potentially used as a data processing 
engine for the insurance industry as well.

DATA STRUCTURES IN SPARK
The core abstraction upon which Spark is built is called Resilient 
Distributed Dataset (RDD). Basically, RDD is an immutable col-
lection of partitioned records that can be distributed across the 
nodes of a cluster and operated in parallel. Each partition is a 
subset of the data it is created from and RDD contains the infor-
mation on how the partitions are created. If some partitions get 
lost during a process, they can still be recreated from the original 
dataset. Therefore, if any nodes in a cluster go down during a large 
data process, a reconstruction process will be triggered for the lost 
partition to ensure a successful completion.
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Despite its beauty in processing big data, RDD is still a little distal 
from the data structures that people are familiar with, e.g., SQL 
schema, data frame. The recent release of Spark introduces Data-
Frame4 into its ecosystem. The columnar organized data structure 
is conceptually similar to a data-frame in R and it also offers rela-
tional data operations like SQL. The following are spark codes (in 
Scala) that create DataFrame from a csv file and perform aggrega-
tion on claim counts by states. The 3rd statement appends the claim 
to the data set by join operations.

val df = sqlContext.read.format(“com.databricks.spark.
csv”).option(“header”, “true”).load(“claim_data.csv”)

val df_claim_state = df.groupBy(“State”).agg(count(“CLAIM_
CNT”))

val df = df.join (df_claim_state, df(“State”) === df_
claim_state (“State”), “inner”)

 
Equivalently, one can also register the data frame as a SQL table 
and use SQL-like syntax to do the joining operations, as shown 
below.

df. registerTempTable(“claim_data”)

sqlContext.sql (“select * from claim_data JOIN 
df_claim_state WHERE State claim_data.State = df_

claim_state.State”)

Both RDD and DataFrame use lazy execution, which means 
all the operations above will not be executed until some spe-
cial commands are made, e.g., save, show. The laziness of spark 
reduces the communication overhead and allows optimization 
across operations.

SPARK DEPLOYMENT
Spark allows different modes of deployment. It could be deployed 
with a cluster manager system, e.g., Hadoop YARN, Amazon EC2 
or Apache Mesos. Spark also allows a standalone mode by which it 
can work independent of any cluster management system. It is also 
possible to run spark on a laptop as a single-node cluster.

The standalone mode is ideal for users to dive into Spark without 
worrying about the setup of a complicated cluster system. Actually, 
the standalone mode itself provides a quite powerful tool in deal-
ing with large data of reasonable size. Powerful big data storage 
systems like HDFS are not necessary for Spark to work. A shared 
file system, e.g., network file system (NFS) works well for process-
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ing data of a large size, e.g., gigabytes as long as the data can fit 
into a single disk. Spark also integrates well with various databas-
es, including the ones from the NoSQL family, e.g., Cassandra, 
Hbase and also the ones from the relational database family, e.g., 
MySQL.

MACHINE LEARNING AND ANALYTICS
As mentioned before, one major limitation of Hadoop’s Map-re-
duce method is that it is not designed for analytics such as machine 
learning (ML). The in-memory architecture of Spark introduces a 
nice solution to the problem. By keeping data in memory, Spark 
allows the users to query data repeatedly and speed up the iterative 
ML algorithms to a large extent. 

Moreover, Spark provides the users with a built-in machine learn-
ing library (MLlib). The library covers quite a list of popular ML 
algorithms, which includes regression (linear/logistic), classifica-
tion (SVM, naïve Bayes) and clustering (k-means), etc. If one needs 
an algorithm that is beyond the scope of MLlib, Sparkling-water 
would be a nice package to add. Sparkling-water is created upon 
the integration of spark platform and H2O. H2O provides scal-
able predictive analytics in a wide spectrum, including Generalized 
Linear Models (GLM), tree algorithms, Gradient Boosting Ma-
chine (GBM), Deep Learning, etc.

SPEED AND SCALABILITY
Existing analytical tools such as R or Python do not provide 
parallel computation for free and are not scalable inherently. 
Revolution R provides parallelized algorithms but could be very 
expensive to deploy in a cluster environment. Spark provides an 
open source platform for analytics and can process large data 
that could be otherwise hard to handle. Moreover, Spark pro-
vides an API for Java, Scala, Python and R. Data scientists who 
are more familiar with R/Python can dive into the system with-
out much pain.

Generalized linear model (GLM) is widely used in the insurance 
industry. To understand the potential usage of Spark in insur-
ance, we built GLMs for data of varying sizes and compared the 
performance difference using terminal server and spark cluster. 
The terminal server and the spark cluster (7 nodes) had com-
parable memory sizes in our test. Revolution R showed better 
performance than regular R regarding the processing speed due 
to optimized algorithm and parallelism (Table 1). The spark clus-
ter reduced the processing time of the model further due to the 
involvement of more CPUs. In processing a large data set, the 
terminal server experienced a memory overflow in processing 
data 70GB in size while the spark cluster finished the model in 
about three minutes.

Table 1. Processing data on terminal server and cluster. The processing time of different data 
on terminal server and spark cluster. Generalized Linear Model is built within two environments 
on data of different sizes. * we used a GLM routine from the H2O package in the spark cluster.

Proc Time (Data 1.5 GB) Proc Time (Data 70 GB)

R (TS) 480.19 s Memory Overflow

Revolution R(TS) 33 s Memory Overflow

Spark* (Cluster) 6 s 184 s

To further test the scalability of the spark cluster, we built a GLM 
model on the same data set while changing the size of the cluster. 
The processing speed changed depending on the data type and the 
complexity of the model. Under the given test environment, the 
spark-cluster showed a close-to-linear scalability where the increase 
of processing speed was almost proportional to the size of the cluster 
(Table 2). A 2-nodes cluster failed the task due to memory overflow. 

Table 2. Scalability. Comparison between processing time on clusters of different sizes.

Cluster 2-nodes (8 cores) 4-nodes (16 Cores) 7-nodes (28 Cores)

Proc Time Memory Overflow 300 s 180 s

In summary, spark provides a fast and scalable platform for han-
dling big data. Its in-memory architecture makes it a nice fit for 
big data analytics. The APIs for multiple languages make it easy to 
dive-in from various backgrounds. The various deployment modes 
make it easy to implement into existing big data environments.   
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