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Understanding 
Autoregressive Model 
for Time Series as a 
Deterministic Dynamic 
System
By Dihui Lai and Bingfeng Lu

The autoregressive (AR) model is commonly used to model 
time-varying processes and solve problems in the fields of 
natural science, economics and finance, and others.1 The 

models have always been discussed in the context of random 
process and are often perceived as statistical tools for time series 
data. However, randomness is only part of the story. The rich 
deterministic dynamics that an AR model produces is perhaps 
also worth some attention.

In this article, we are going to discuss the AR model by making 
connections to time-dependent ordinary differential equations. 
The goal is to understand the essential dynamics underlying the 
AR model and provide guidance on model usage in addition to 
statistical diagnostic tools.

AUTOREGRESSIVE MODEL
In general, the autoregressive model describes a system whose 
status (dependent variable) depends  linearly  on its own status 
in the past. The system can be mathematically described by a 
stochastic difference equation such as the following: 

∑=β + β +ε
=

−y y .t
i

p

i t i t0
1

Here, the βs describe how much the system’s status i steps ago 
will impact current values. Normally, one would expect βs to 
decrease as i increases, that is, the events that happen further 
in the past have less impact on current events. Anything that 
happens earlier than p time steps ago will have no impact, and 
the model is noted as AR(p), where εt  is a “noise” term that 

describes some random events that affect the status of the 
system. The “noise” term is often required to be stationary to 
make lots of statistical estimators valid (least-square estimation, 
maximum-likelihood estimation etc.). 

AR(1) MODEL AND FIRST ORDER TIME-DEPENDENT 
ORDINARY DIFFERENTIAL EQUATION (ODE) SYSTEM

In a very simple scenario where p = 1, we have an AR(1) model 

where the system’s current status is dependent only on the 

system’s status one time step ago: = β +β +ε−y yt t t0 1 1 . The con-

tinuous version of the system can be represented as a first-order 

time-dependent ODE with a noise term: ( )= β + β − +ε
dy
dt

y1 t0 1
 

(see the appendix). Without considering the noise, the closed 

formula solution of the ODE is an exponential function: 
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1 . It follows immediately that the status 

of the system will reach an equilibrium point β

−β1
0
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 , if β <11 , 

as the exponential term vanishes in the long term. Not surpris-

ingly, this is also the expected behavior of an AR(1) model in 

equilibrium status when = −y yt t 1 . 

Now that we have made the connection between the two 
systems, it becomes clear that the parameter ( )−β1 1  could be 
interpreted as a decay constant that describes how fast the sys-
tem will reach a steady value as time elapses. When β <11 , the 
AR(1) model is nothing more than a system that exponentially 
decays to a steady state from a certain initial value noted as 
constant in the close formula solution. On the other hand, when 
β >11 , the dependent variable will exponentially increase to a 
very large value.

In another words, an AR(1) model can be used to describe 
the evolvement of systems that have decay-like behavior with 
a long-term equilibrium point. As an example, we modeled 
the lapse behavior of a 10-year term life policy over the level 
period with an AR(1) model. The model uses the lapse rate at 
each policy year as the target variable. To make a forecast, we 
provide the model with an initial lapse rate at duration 1, and 
the lapse rate evolves as an exponential decay toward a stable 
point (see Figure 1). The model forecast did quite well at early 
duration but underestimated the rate after duration 5, indicating 
that extra factors need to be considered beyond the dynamics 
described by AR(1).
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AR(p) MODEL AND pTH-ORDER TIME-DEPENDENT 
ODE SYSTEM
In general, an AR(p) model is a pth-order linear difference equa-
tion with a noise term. It can be proven with some linear algebra 
techniques that a pth-order linear difference equation can be 
reorganized into a set of p first-order ODEs. Thus, it is expected 
that an AR(p) model will inherent some dynamic properties of 
a pth-order ODE set. In the following section, we use an AR(2) 
model to reproduce the behavior of an oscillatory system. 

SEASONALITY OR HARMONIC OSCILLATOR?
When studying time series, the periodic behavior is commonly 
modeled by constructing a new seasonal difference variable 
Δ = − −y y yt t t Tperiod

. The evolvement of the system over time is 
then described by the new variable Δ yt . This clever approach 
avoids modeling the periodic behavior by removing the gross 
seasonal feature and considering only the change over seasons.2

However, to make a forecast, this approach needs to have n
initial condition parameters where =n Tperiod  and some prior 
knowledge for Tperiod  are needed.

Alternatively, we know that a second-order ODE system 
will lead to oscillatory behavior (a harmonic oscillator can be 
described by a second-order ODE) given the right parameter 
sets, and therefore we expect the time series version of the 
system will produce periodic behaviors. As a demonstration, 
we build an AR(2) model on a sinusoidal time series signals (see 
Figure 2). Without explicitly modeling the seasonal activity, the 
model captures the essence of the oscillatory behavior (period) 
with only three parameters. 

SUMMARY
When building an autoregressive model, it is often more of art 
than science to decide the value for p—that is, how far do we 
have to trace the system’s past to make a reliable forecast? Some 
tools are available to help the decision-making process, such as 
an autocorrelation function (ACF) or a partial autocorrelation 
function (PACF).3 Although the diagnostic tools provide con-
venient guidance on choosing the lag parameter, it is not always 
easy to find a clear-cut value. The judgment becomes even 
harder for a noisy data set.

Figure 1
Forecasting the lapse rate of a 10-year term life policy over a level period by the AR(1) model. The black line is the 
actual lapse rate, and the red line is the forecasted rate. The forecasted lapse rate quickly decays and reaches a 
stable point (green dashed line)
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In this article, we demonstrate the dynamic feature of AR 
models. By borrowing concepts and closed formula solutions 
from time-dependent ODEs, we gain some intuition for the 
parameters in AR models (βs and p) and relate them to the 
dynamic properties of continuous systems. We use some exam-
ples to demonstrate that an AR(1) model can be used to model a 
dynamic system showing decay-like behaviors. Besides the com-
monly used seasonality model, an AR(2) model could be used to 
model periodic oscillatory (seasonal) behaviors. ■
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APPENDIX

First- Order Difference Equation and First- Order ODE

A first-order difference equation can be written as 

= β +β −y yt t0 1 1 . Here we have assumed a change over 

one time unit in the formula. In general, the time step 

can be of any unit, and by changing the unit of time, we 

can replace unit time with t∆ , and the equation can be 

rewritten as 
−

= β + β −−
−

y y
t

y
∆

( 1)t t t
t t

∆
0 1 ∆ . When →t∆ 0 , 

the difference equation becomes a first-order time-

dependent ODE ( )= β + β −
dy
dt

y10 1 .

Figure 2
Forecast of an AR(2) model on a periodic signal. The black line is the original signal, and the red line is the forecasted 
behavior of the system. The forecasted part reproduces the periods of the signal quite well.
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