

Article from
Predictive Analytics and Futurism
May 2019
Issue 20

24 MAY 2019 PREDICTIVE ANALYTICS AND FUTURISM

Getting C++ Performance
From Python With
Cython
By Je� Heaton

Python programs have a wealth of packages that can
increase runtime performance. Packages such as Numpy,
Scipy, TensorFlow and PySpark are just a few of those

available to optimize your program’s performance. Normally,
when your Python code makes extensive use of loops that pro-
cess mathematical equations, performance can suffer. Heavily
nested mathematical oriented loops and multidimension
arrays are normally the domain where compiled low-level lan-
guages such as C++ are best suited. However, by making use of
a Python package called Cython, you can achieve performance
close to that of C++ in Python.

For Windows, you will need one of the Visual C++ compilers
or one of the open-source compilers. Docker is also an option
for Windows, because it allows emulation of standard UNIX
environments.

CYTHON FOR EXTENSIONS
This article will demonstrate several different ways to use
Cython. You can use Cython with either Python 2.x or 3.x;
however, the examples contained in this article will make use of
Python 3.x. As of the time I wrote this article, the latest version
of Python was Python 3.7. I also used the Anaconda release of
Python on a Macintosh computer and the GCC C++ compiler
version 8.2. Other environments should work; however, small
modifications may be necessary.

Each of these examples can be found on my GitHub reposi-
tory.1 If performance is the goal in your use of Cython, then
you will likely be using Cython to create a Python extension.
This allows you to compile part of your Python program
to a compiled Cython extension that many of your Python
programs can use. The code inside of this extension will be
compiled to C and be very efficient. You can import this exten-
sion into your Python script just like a regular package.

As an example, Listing 1 shows an extension I created that will
calculate the standard deviation of a population.

Listing 1
Calculate the Standard Deviation of a Population
(Calculate.pyx)

import math

def sdev(lst):
 # Mean
 sum = 0
 for x in lst:
 sum += x

 mean = sum / len(lst)

 # Standard deviation
 sum = 0
 for x in lst:
 delta = x - mean
 sum += delta ** 2

 return math.sqrt(sum / len(lst))

While Python contains built-in support for calculating the
standard deviation of a population or sample, the above code
shows how this can be done from simple algebraic operations.
This is exactly the type of code that Cython can speed up. In this
form, the above code is standard Python and could be used with

Cython works by transforming
Python into C code. The
output from Cython is literally
a .C file.

Performance is not the only reason to consider using Cython.
You can give the compiled binary produced by Cython to
external users of your application, allowing some degree of
protection of the intellectual property (IP). Cython works
by transforming Python code into C code. The output from
Cython is literally a .C file that you must compile with a C
compiler. The code generated by compiling a C program to an
executable is very difficult to decompile back into C, let alone
further back into Python. This makes Cython an effective tool
to protect IP contained in your Python source files. While no
software protection scheme is perfect, it is much more difficult
to reverse engineer compiled C code than higher-level lan-
guages, such as R and Python.

Because the output of Cython is C-source code, you must have
a C compiler installed to make use of Cython. On Macintosh
and Linux, this is easy. Both of these two platforms have open-
source C compilers available. Windows is a bit more complex.

 MAY 2019 PREDICTIVE ANALYTICS AND FUTURISM | 25

or without Cython. Even when compiling from pure Python,
Cython gives considerable speed improvements.

You should save the above code to a filename such as “Calcu-
late.pyx.” The PYX extension designates this code as Cython.
You must now compile this Python code to C code and then
to a Python extension. This is accomplished by a Python build
script that is often named “setup.py” and is shown in Listing 2.

Listing 2
Build the Extension (setup.py)

from distutils.core import setup
from Cython.Build import cythonize

setup(
 ext_modules = cythonize(“Calculate.pyx”)
)

You should execute the build script to actually compile the
Cython extension with the following command:

python setup.py build_ext --inplace

The “build_ext” parameter indicates that you are building
an extension. The “inplace” parameter designates that the
extension should be placed in the current folder, as opposed to
copied to a system directory. Once this program is run, it will

create a .SO file under Mac/Linux or a DLL under Windows.
This file is the actual Cython extension. Listing 3 shows how
to actually make use of this extension.

Listing 3
Test the Shared Object (test.py)

import Calculate as c

print(c.sdev([1,2,3,4,5]))

This program simply imports the calculation Cython exten-
sion and then computes the standard deviation of the set [1, 2,
3, 4, 5]. The test script is executed with the following Python
command:

python test.py

This will output the standard deviation of the vector.

CYTHON FOR STANDALONE EXECUTABLES
It is also possible to produce a standalone executable with
Cython. This executable will be a .EXE file in a Windows
operating system or executable file on Linux or Mac (these
operating systems do not have a specific extension for execut-
able files). To demonstrate this, we will use a classic Python
“Hello World” program, as shown in Listing 4.

Getting C++ Performance From Python With Cython

26 MAY 2019 PREDICTIVE ANALYTICS AND FUTURISM

Listing 4:
Calculate the Standard Deviation of a Population
(HelloWorld.pyx)

print(“Hello World”)

Unfortunately, the commands to build a standalone executable
are a bit more complex than the previous example. The first
step is to invoke Cython and convert the HelloWorld.pyx file
to HelloWorld.c.

cython --embed -o HelloWorld.c HelloWorld.pyx

The next step is to compile the HelloWorld.c to a standalone
file. This will require the use of your C++ compiler. The com-
mand that I used for GCC is as follows:

gcc -Os -I /Users/jheaton/miniconda3/
include/python3.6m/ -o HelloWorldEXE Hel-
loWorld.c -L/Users/jheaton/miniconda3/
lib -lpython3.6m -lpthread -lm -lutil -ldl

There are two important paths that are provided to GCC.
The first is the path to the include files needed to compile.
This includes Python.h. The second path is the location of
the Python libraries that are needed to compile your Cython
extension. This includes the primary Python library, named
“python3.6m”; however, additional libraries should also be
specified with more “-l” arguments.

The resulting file is executable from the command line.

CALLING PYTHON PACKAGES
FROM CYTHON PROGRAMS
Python programs make use of a variety of packages. Often
predictive modeling programs will use Scipy, Numpy,

Scikit-Learn, TensorFlow and potentially many others. If you
are going to make use of these packages, it is necessary for
your Cython program to have access to them. These packages
are dynamically linked, and your Cython program will not run
without them. You will need each of them to be present to run
the stand alone Cython executable. You can look up the file
location of any Python package with a single Python com-
mand. For example, to find the location of Numpy, you would
use the following command:

python -c ‘import numpy; print(numpy.__file__)’

NEXT STEPS
This article provided a brief introduction to Cython. Using
these techniques alone, you can considerably increase the speed
of Python programs that need to use loops for their calculations.
However, this is only the beginning. Cython also adds exten-
sions to the Python programming language that you can use to
further enhance the performance of your Python code. Such
extensions include static typing and multithreading. ■

Je� Heaton, Ph.D., is a vice president and data
scientist for RGA Reinsurance Company in
Chesterfield, Missouri. He can be reached at
jheaton@rgare.com.

ENDNOTE

1 Heaton, Je� . GitHub. https://github.com/je� heaton/present/tree/master/SOA/
paf-cython (Accessed March 5, 2019).

