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What is a “regime” in the interest
rate environment?  If the regime
changed, how would you know?
For long-term descriptive inter-
est rate models, it is useful to

develop a concise view about this.  With it, we can
produce internally consistent scenario sets for a given
regime.  We can investigate the financial conse-
quences of moving from the current regime to
alternate ones.  Our views about the likelihood of
transitioning from one regime to another can also be
incorporated into a stochastic stress test.  With a view
to these applications, this article proposes a way to
describe the interest rate regime.

As many have pointed out, a statistical technique
called “principal components analysis” (PCA)
provides a remarkably stable result.  Changes in the
yield curve can be decomposed into shifts in “level,”
“steepness” and “curvature.”  This is the starting
point for investigating changes in the U.S. yield
curve.  The monthly Constant Maturity Treasury
(CMT) series from the U.S. Federal Reserve Web 
site was used.  This site provides market rates for
each month since 1953.  

Now, by itself, a principal components representation
for the yield curve is inadequate for a term structure
model.  On one hand, any change in the yield curve
can be represented with a linear combination of the
PCs, for instance, 3 * level vector + 2 * steepness
vector.  These multiples (3 and 2) are sometimes
called changes in the “state variables.”  A typical
attempt would be to assume changes in the state vari-
ables are independent identically distributed normal
random variables, with mean reversion.  Perhaps
enough constraints can be found on such a model to
make it useful for risk reporting.  The usual, unsatis-
fying result when we attempt to use PCA for a term
structure model is that the curve becomes too
inverted or humped, while rates may become nega-
tive or very high.  The constrained mean-reverting
multivariate normal model must be missing some-
thing critical.

Clearly, the PCs themselves are only building blocks.
The interesting part of the model comes when we
specify how the state variables change over time.  As
input to such a model, we should first observe the
actual path for the state variables in the CMT data.

Some preparation work is needed first.  Given the
monthly CMT series, I interpolated the zero coupon
bond prices for all points between time zero and 20
years.  For this, I used a Lagrange interpolating poly-
nomial with anchors at the beginning, middle and
end of the observed data.  With the zero coupon bond
price at time t for a unit payment at time T, P(t, T), we
can calculate the associated continuous spot rate
series  r(t, T) = -ln[P(t, T)] / T.  I used the r(t, T) series
as the yield curve for that month.

PCA applies to the change in the yield curve.  I used
the matrix M of absolute changes (in bp) 
at each time t, rather than the percentage change or
normalized percentage change.  The square matrix 
A = MT x M is related to the variance-covariance
matrix for the original data series. Any data point
(change in the yield curve at time t) can be repre-
sented with a column vector vT, and this in turn can
be expressed as Aj for some j.  

A =  MT x M
A‘ = inverse of A
A‘vT = j

Now we can represent the data point j more effi-
ciently.  The columns of A form a basis that spans the
original data set. We can transform A into a set of
orthogonal vectors (eigenvectors) that also spans the
data set.  The PCs are the largest eigenvectors of 
MT x M. Thus any of the observed data in M can be
represented with a linear combination of the PCs. 

If Aw = λw then w is an eigenvector of  A, and λ
is the associated eigenvalue. The size of λ tells us
how much of the variation in A can be represented
with each eigenvector.  Table 1 and Figure 1 show the
results of this analysis.
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Many statistical packages can calculate principal
components. These results are reasonably in line with
expectations.  Note we can choose the scale and sign
for these factors as we like, since the same data point
results when we make equal and opposite adjust-
ments to the state variables.  In Table 1, they have
been scaled so that the monthly change in the state
variables has roughly a variance of 1.

The next step was to use these building blocks to
describe the original spot rate series r(t, T).  Since any
change in r(t, T) can be represented with a linear

combination of the PCs, so can the original series.
For this I used Excel solver to back into the state vari-
ables at each point.  The full range of data over the
50-year period can be expressed this way.  For exam-
ple, the state variables for three representative dates
are shown in Table 2. 

These are (respectively) low/steep, inverted and
high/flat. The first two PCs (in this implemenation)
explain 98 percent of the estimated spot rate data, so
the rest of this analysis only uses the first two PCs.
Now, this may compound errors in the smoothing
process. The reconstituted result may be off from
actual historical data by 30bp or more at intermediate
points.  However, this forces us to look for patterns in
two dimensions.

Most people appreciate visual patterns best.  It is
insightful to present the state variable series as a
graph, with height (y-axis) as a function of steepness
(x-axis).  This representation is sometimes called the
“phase plane.”  Any point on the plane represents a
particular state of the yield curve.  We can move up,
down or sideways from a given state to the next one.
In Figure 2, “up” means greater Height factor, “right”
is greater Steepness.
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Table 1: Principal Component Vectors

Figure 1: Principal Components of U.S.Yield Curve
Based on Monthly Spot Rates 1953-2003
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This tells us a lot. Even though changes in the
state variables are uncorrelated (by definition
of PCs), Figure 2 shows a link between steep-
ness and height. Steepness follows height
closely, with much of the variation being
around the center line where the two are equal.
This makes intuitive sense: When rates are
very high, the steepness/inversion factor has
the same relative size but may be much higher
than normal in terms of the absolute 10yr-2yr
yield difference.

Note the areas in the lower left of Figure 2.
This represents the period from 1953 to 1963.
There seem to be two distinct periods here in
which rates stayed about the same “distance”
from the origin, but that the “angle” for the
data point shifted back and forth.

This suggests we should transform the data
series of steepness-height state variables into
polar coordinates.  Define:

Steepness S
Height H
Distance D = sq root( D2 + H2)
Angle A = arc tan (H/S) in radians

The resulting time series contains some inter-
esting regularities.

Again, the path of rates is a continuous,
connected figure in the D-A phase diagram.
The 1953-1963 period as seen in Figure 3,  now
shows up as relatively vertical lines to the left
of the chart.  It seems that during the last 50
years, the pattern changes every five years or
so.  Three such periods are shown in Figure 4.
This is what I would like to capture with the
concept of a “regime” of interest rates.  

Here are the “stylized facts” that seem evident
from this representation shown in Figure 4. 
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Table 2: State Variables for Three Dates

Figure 2: Steepness-Height Phase Diagram for U.S. Yield Curve
Monthly 1953-2003

Figure 3: Distance-Angle Diagram of U.S. Interest Rates

 



• The state of the yield curve at any time is speci-
fied as a linear combination of the two PCs given
in Table 1, where H (height) is a multiple of PC1,
and S (steepness) is a multiple of PC2.  

• We can transform the time series in (S,H) coordi-
nates to a series in polar (D,A) coordinates.

• The path of the yield curve under both coordinate
systems can be assumed to be continuous.

• D has ranged from about 12 to 60
• A has ranged from about  .5 to 1.2
• During an interest rate “regime,” the yield curve

stays in a smaller region of the D-A phase plane
anchored on a line.

• The slope of this line varies with D, from about
.09 when D = 12 toward zero for D > 45.

• The yield curve stays in a given regime for three
to six years, then transitions to another similar
one.

By “anchored” I mean that the path of a point in the
D-A phase plane will differ from the line by a
stochastic component.  It may speed up or reverse
course or move laterally for while and then resume
course.  All the math used to describe motion in two
dimensions can be applied to develop a specific
model form.  For example, one approach would be to
start with stochastic differential equations for oscillat-
ing motion in X and Y, such as 

d2X/dt2 = - uX + σDZ1
d2Y/dt2 = - vY + σAZ2

with initial conditions X(0), X’(0), Y(0), Y’(0) 
and volatility parameters σD and σAand then
rotate/translate the resulting figure to the desired
line in the D-A plane.
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Figure 4: D-A Phase Plane 
for U.S. Interest Rate Regimes
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Note that D mainly controls the level of interest rates,
while A mainly controls the amount of inversion.  A
slope of .09 results in most of the movement occur-
ring at the short end, while a slope of zero results in a
parallel shift.

Here is an example of the yield curves along an
“anchor” line, in which D moves from 20 to 25 in
increments of 1, while the angle A follows the line

A = -1.05 + .08*D 
as seen in Figure 5.

We’ll stop here with this qualitative description of an
interest rate regime.  Though convoluted, this deriva-
tion of the form of an interest rate model has a
number of advantages:

• Scenario output can be easily compared to actual
historical levels for D and A.

• It is straightforward to extrapolate to very low
and very high interest rates and still preserve
reasonable relationships between steepness and
height.  The same model can apply for Brazil as
for Japan.

• We can specify parameters for several regimes
and allow the model to transition from one to the
next

• We can distinguish “velocity” of movement
within a given regime, from transitional move-
ment to a new regime. �
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Figure 5: Interest Rate Regime Anchor Line

 


