
 

 

Article from 
The Modeling Platform 
November 2018 
Issue 8 
 



10 | NOVEMBER 2018 THE MODELING PLATFORM 

Applying FinTech and 
IT Practices to Building 
Actuarial Models
By Igor Nikitin and M. Crew Sullivan

My name is Igor, and I have held a variety of business and 
technical roles as an actuary. An acquaintance approached 
me with an idea of starting a FinTech company. Impressed 

with his enthusiasm and knowledge, coupled with my own curios-
ity and desire to obtain experience in lauching a startup, I decided 
to join the company as a part- time technology co- founder. At the 
time, I felt confident in my programming knowledge. 

The most shocking thing that I quickly learned in a startup is best 
described by a quote from the Game of Thrones: “You know nothing, 
Jon Snow.”

• The culture was very different, until I realized that it must be.

• The cost constraints looked impossible, until I learned that 
they were not.

• The problems I had to solve were all new and uncomfort-
able, until I got used to them.

• And my awesome programming . . . Well, I fired myself from 
technology lead for . . . knowing nothing.

At the same time, I started to learn furiously the knowledge I 
discovered I lacked, which seemed to be literally everything at 
first! I also quickly noticed a great amount of synergy between 
my work in a startup and my work at both jobs. Here is my story 
of applying knowledge from a FinTech startup to modeling in a 
big insurance company.

IN- HOUSE MODEL OR VENDOR- BUILT?
Actuaries need models to do their work. Models are just soft-
ware, which can be bought from a vendor or built in- house. For 
most companies, vendor systems offer a positive user experience 
at a reasonable price; but for some companies, in- house systems 
are the only way to satisfy business needs.

Common reasons for requiring an in- house model are innova-
tion and speed of modification.

• No vendor would develop software for products that don’t 
exist in the marketplace. Only the company innovator 
knows what these products are and can develop its platform 
accordingly.

• Innovation in the institutional space is often deal- driven, and 
includes the risk of being unable to transact due to waiting 
for vendor modifications of the modeling platform. In- house 
software is faster to change.

On the other hand, an in- house platform can have its own draw-
backs and dangers, such as high cost of original build, scalability, 
transparency, build quality and maintainability. My perspective 
is that of a modeling actuary in a highly innovative company 
that opted for an in- house platform. In this article, my colleague 
Crew Sullivan and I will detail how to build an in- house mod-
eling platform using a mix of technologies and processes to 
overcome typical drawbacks of an in- house system.

PROCESS STRUCTURE
Here are the steps we followed to build a successful in- house 
modeling platform:

1. Study the past. Why do we do modeling platform conversions?
2. Do we have necessary resources?

a. Right skill sets
b. Time

3. Do we have management buy- in and commitment?
4. Design phase (aka trade- offs, trade- offs, trade- offs)

a. Design goals
b. Object- oriented vs. procedural programming
c. Software design principles
d. Design patterns
e. System blueprint (UML)
f. Language choice

5. Execution phase
a. Style guide
b. XML doc
c. Version control system (Git)
d. Input structure
e. Error handling
f. Build order
g. Unit testing framework
h. Optimization

6. Testing phase
a. Automate your regression test process
b. Build a quality test bank

7. Maintenance phase
a. Maintain UML
b. Don’t make a mummy! If you need surgery, don’t use 

a bandage.
c. Maintain documentation



 NOVEMBER 2018 THE MODELING PLATFORM | 11

STUDY THE PAST: WHY DO WE DO MODELING 
PLATFORM CONVERSIONS?
Companies switch modeling platforms for a number of reasons, 
which may include:

• Scalability. Excel models tend to run into this limitation, 
and the story typically goes like this: “My original platform 
priced my first contract in a day of runtime, and it was 
awesome. But now I have dozens of contracts in our pricing 
pipeline and a growing valuation block. My existing runtime 
is unacceptable, and I have no way of scaling it.”

• Flexibility. “I came up with an awesome new product feature 
that a client wants, but there is no way to model this in my 
modeling platform. Modification will take a long time and/
or will be very expensive to develop.” Closed vendor systems 
tend to suffer from this the most.

• Transparency. There are two equally important flavors of 
this: user transparency and developer transparency. If users 
can’t see and easily control calculations in an innovative 
business (think research and development), they will push 
for platform change. If developers don’t know how to modify 
the platform, or you have a single person who knows it, you 
have an unacceptable operational or key person risk.

DO WE HAVE NECESSARY RESOURCES?
There are two critical resources that are necessary to build a 
quality in- house modeling platform: people with the right skill 
sets, and time. Let’s examine both.

People With the Right Skill Sets
Would you go to a brain surgeon to fix a toothache? Then 
maybe you should think twice before going to an actuary to 
design and build software for you. We are great at insurance 

and many other things, but we generally know very little about 
programming and nothing about software engineering. To build 
a modeling platform, you need a dedicated team possessing 
the collective knowledge of actuaries, software engineers and 
programmers.

• Software engineers know how to build software and under-
stand all the considerations that go along with it. They can 
take your business goals and design a system tailored to 
meet them. Software engineers will need help with business 
knowledge, but they can educate you on what is possible, the 
different techniques of achieving your goals, and the trade- 
offs involved. 

• Actuaries possess the necessary business knowledge, but 
need help with software design, programming and software 
shop operations.

• Programmers are needed to do the actual work of writing 
the code. They need the help of both actuaries and software 
engineers to write code in an optimal way.

A stable team that cross- trains on actuarial, software engineering 
and programming topics can become a development power-
house, requiring minimal business explanations and displaying 
impressive efficiency.

Time
Following a proper software development process requires extra 
time up front but pays off in faster speed of change and less 
maintenance over time. It is important to explain this to stake-
holders and ensure they are onboard with giving you necessary 
time. Failing to do so results in one of two things:

• Burning out the development team with an unrealistic 
delivery schedule, which wastes a lot of time on hiring and 
training replacements.

• Cutting corners and failing to deliver the advertised quality, 
which can manifest as maintainability, flexibility, clarity and/
or runtime issues.

MANAGEMENT BUY- IN AND COMMITMENT
Management buy- in is critical and can be a challenge to obtain. 
Building a maintainable model platform requires up-front 
investment in design, training and testing capabilities. The 
trade- off is that building quality software is an investment that 
pays off in lower- cost maintenance over time. When consid-
ering resource levels over time, usage of the model platform 
should be considered. The flexibility of the design may mean 
different functional areas could leverage the platform (as it did 
with us). It should also be identificed whether the modeling 



12 | NOVEMBER 2018 THE MODELING PLATFORM 

Applying FinTech and IT Practices to Building Actuarial Models

team can act as a pooled resource across user groups in an 
efficient and cost- effective way. The challenge here is to make 
believers of the long- term value that the home- grown platform  
will provide.

Beyond the investment to build the system, management may 
also be concerned with having the resources with the right skills 
to support the model platform over time. After all, what good 
is a fast, flexible system if no one can interpret the design and 
make changes. Management support of a dedicated staff and 
robust model governance practices is important to the long- 
term success of this approach.

DESIGN PHASE (AKA TRADE- OFFS, 
TRADE- OFFS, TRADE- OFFS)
When creating a large or sophisticated piece of software, it 
is crucial to spend time to think through the software design 
before any code is written. Most actuaries have experience 
with writing relatively small pieces of code (100 to 2,000 lines) 
while being the sole developer. In contrast, software companies 
develop much larger systems with dozens of developers working 
on various parts of the code simultaneously. On this scale, multi-
ple issues arise that most actuaries never experienced.

Design Goals
In- house systems can and should be designed to meet specific 
business goals. For example, business can desire the fastest pos-
sible model runtime (systems that need to do real- time market 
analysis), fastest possible development time (prototypes for new 
products/markets), clarity of the code (mature systems that will 
be maintained for a long time), flexibility of the code (pricing 
systems, systems that support multiple products, systems that 
change often), or some other priority. These goals often contra-
dict each other, but a software engineer can make trade- offs to 
tailor the system to meet business goals. The first step in design-
ing software is to pick your main design goal. This provides 
guidance for the software engineer regarding the qualities of the 
platform that should be maximized.

We selected flexibility and clarity as primary design goals for 
our actuarial pricing modeling platform.

Object- Oriented vs. Procedural Programming
Code organization can be broadly described as procedural or 
object- oriented. Procedural code is typically used for applica-
tions requiring extreme performance, such as sophisticated 
real- time market data analysis, or small applications with only 
a few hundred lines of code. Object- oriented code sacrifices 
some speed for clarity and maintainability. Generally, the 
object- oriented approach should be favored since it is easier to 
maintain. Design of large object- oriented systems requires an 

experienced software engineer who understands your specific 
business application.

We selected object- oriented design for our pricing platform 
since it provides superior flexibility and clarity over procedural 
design. Notice how our choices are driven by our design goals.

Software Design Principles
Software design principles are a set of the most general and 
highest- level aspirations for software. No system could or should 
strictly follow these. These principles are useful to keep in mind 
when making design decisions. They describe what makes a 
design good or bad, and help in understanding the tradeoffs 
being made. A good introductory discussion is available at https://
wiki.base22.com/display/btg/Core+Software+Design+Principles. Here 
are the principles:

• Separate code that varies from code that stays the same.

• Program to an interface, not an implementation.

• Favor composition over inheritance.

• Strive for loose coupling.

• Classes should be open for extension, but closed for 
modification.

• Depend upon abstractions, not concretes.

• Principle of Least Knowledge (interact only with your 
immediate friends).

• The Hollywood Principle (don’t call us, we’ll call you).

• A class should have only one reason to change.

• Design to avoid rigidity, fragility and immobility.

 - It is hard to change because every change affects too many 
other parts of the system (rigidity).

 - When you make a change, unexpected parts of the system 
break (fragility).

 - It is hard to reuse in another application because it cannot 
be disentangled from the current application (immobility).

Applying these principles takes some practice; hence the 
experience of the software engineer matters in applying these 
correctly.



 NOVEMBER 2018 THE MODELING PLATFORM | 13

Design Patterns
A design pattern is a general repeatable solution to a commonly 
occurring problem in software design. You can think of design 
patterns as proverbial wheels that you can use to build a vehi-
cle, without having to invent them. Design patterns introduce 
technical ways of achieving the aspirations laid out in software 
design principles. An outstanding introduction to design pat-
terns is Head First Design Patterns by Eric Freeman and Elisabeth 
Robson. Just like with design principles, experience is required 
to apply design patterns correctly.

For our pricing platform, we heavily used strategy and factory 
patterns. We also used a modified command pattern to achieve 
our flexibility goal of supporting multiple products in a single 
platform.

System Blueprint (UML)
Unified Modeling Language (UML) is commonly used by 
software engineers to design software. It is a standardized dia-
gram convention that lets you describe structures of software, 
database, use cases and so on. UML class diagram describes the 
objects in the system, the responsibility of each object, and the 
data flow between objects. For a sophisticated system, such as a 
complex pricing platform, a detailed UML class diagram must 
be completed before any code writing takes place. Completion 

here also means review with business partners to make sure the 
platform can support changes in the foreseeable future. The 
main reasons for completing UML before writing code are:

• Identify the responsibility of each object and how each will 
communicate. This may not seem important for a small sys-
tem with a handful of objects, but it is critical to document 
this for a large system with hundreds of objects and multiple 
developers. 

• Multiple developers writing code simultaneously need to 
rely on communication protocols described in the UML to 
ensure smooth code integration. 

• Conduct role play to identify how various products (includ-
ing new products) will fit into the platform.This will reveal 
design flaws that can be addressed much more easily on 
paper than in the code.

Our completed UML diagram was 70 pages long and could be 
hung neatly on a large wall (4 meters wide and 2 meters tall). We 
used Visio to create it, however, you can also use other online 
tools such as Cacoo. (See Figure 1.) After reviewing it with our 
business partners, we discovered a major computational ineffi-
ciency, which was resolved in three weeks of fixing UML. Fixing 

Figure 1
Example of UML Class Diagram



14 | NOVEMBER 2018 THE MODELING PLATFORM 

Applying FinTech and IT Practices to Building Actuarial Models

this in the code would have taken far longer and, without this fix,  
we would have been unable to meet our runtime goal.

Once the UML was finalized we began writing code with a team 
of five actuaries who had technical guidance from the software 
engineer. The team worked in parallel using UML as the tech-
nical specifications. The model build went very smoothly with 
no integration issues.

Language Choice
For calculation engines, programming language choice mostly 
boils down to the following considerations:

1. Higher- level or lower- level programming language? 
Lower- level languages (like C) are faster, but less clear, 
harder to debug, and require much more programming expe-
rience to employ effectively. Manual memory management 
is a powerful tool, but there are a lot of things that can go 
wrong, and it requires appropriate training and experience. 
Higher- level languages (C#, Java, Python) are slower but 
easier to use, have more “guardrails,” and are recommended 
for less- experienced developers.

2. Will you need to use specialized libraries that have 
better support in a certain language? If you need GPU 
support, then Python and C++ have some robust free librar-
ies. If you heavily use linear algebra, then MATLAB might 

make sense. If you don’t really need anything special, then 
pick a free language (MATLAB is not free, for example).

3. What does my grid support? Can I easily install things on 
the grid? If you don’t have control over what gets installed 
on the grid, then it might be necessary to pick a language 
that caters to the grid. For example, C# would work if your 
grid already has the .Net framework on it, but you would 
have a problem if your grid runs Linux and you can’t install 
Mono on it.

For our pricing platform, we picked C#. It is one of the easiest 
programming languages to learn and use. We did not need any 
libraries outside of .Net, and our grid already had .Net frame-
work on it.

EXECUTION PHASE
We finally have our detailed UML; we know our design goals; 
we picked the language to use; and we are now ready to write 
some code! Here are the ideas and technologies that will greatly 
speed up the process.

Style Guide
Everyone intends to write “great code,” but not everyone interprets 
that the same due to personal experience and preferences. Great 
code from a novice programmer usually looks outright awful to an 
experienced developer. A style guide is a document that lays out 
the rules of how to write the code. A good style guide includes vari-
able naming conventions, commenting requirements and so on. 
One of the most popular style guides is Google C++ style guide, 
which is available at https://google .github.io/styleguide/cppguide.html. 
The benefits of using a style guide include:

• Code written by different developers looks and feels the 
same. This accelerates the code review process and onboard-
ing of new hires.

• Developers can work with and debug each other’s code much 
easier, since all code looks similar.

• Using a style guide makes code transparent. It reduces the 
chances of ending up with cryptic code that only the original 
author understands. Cryptic code is one of the main reasons 
for model platform changes.

Adherence to a style guide should be continually enforced. 
It takes time to see the benefits for a programmer who never 
worked in a team- based development environment.

We used Google’s C++ style guide with slight modification for 
our pricing platform since we used C# and not C++.



 NOVEMBER 2018 THE MODELING PLATFORM | 15

XML Doc
XML doc is a technology that allows storage of documentation 
directly in the code. You can then use programs like Doxygen 
or write your own interpreter to have HTML documentation 
generated from tags in your code. XML doc allows for tighter 
integration of code and documentation. It also allows the use 
of programmatic hyperlinks, which are easier to maintain com-
pared to hyperlinks in a Word document.

For our pricing platform we wrote our own XML interpreter 
that generates Microsoft- like HTML documentation.

Version Control System (Git)
Version control software like Git is the most important tech-
nology required for development in a team. It tracks versions of 
the software, allows for very efficient review and merging of the 
code from multiple developers, and saves enormous amounts 
of time and effort. Git enables each developer to work in their 
own branch of code. The project lead can then easily review 
branches from different developers, and either send them back 
for additional development or merge them into your most 
current accepted code. Vincent Driessen wrote a good article 
on how this should all work (http://nvie.com/posts/a- successful- git 
- branching- model/ ). You can use online repositories like GitHub 
and BitBucket, or you can use Git functionality built into Visual 
Studio and many other development environments.

Input Structure
Most actuaries are familiar with Excel and csv files. However, 
for large systems these may not be good programmatic inputs; 
especially Excel, since its data access is very slow. When design-
ing a large system with long- term maintenance in mind, you 
may want to consider specific file formats like JSON or more 
robust data storage solutions such as a database. The benefit you 
are after is generic programmatic data transfer between your 
user interface and your calculation engine. Adding or expanding 
a table or adding a new switch should require no coding related 
to data transfer since all data should be transferred generically. 
Since data in the JSON file is tagged, your code can handle its 
transfer from one media to another generically by using meta-
data. Databases would require some setup of metadata, but a 
similar approach can be used.

For our pricing platform the Excel user interface creates XML 
parameter files, which are used by the C# calculation engine. 
The process is fully automated, so that adding a set of brand- 
new input tables for a new product requires only defining them 
in the Excel interface and tagging them with several named 
ranges. The Excel code and C# code are fully generic for all 
input tables, and hence require no modification!

Error Handling
You can use exceptions to generate a call trace of the error. This 
will greatly improve user experience and reduce the time spent 
on user support. To do this, you simply wrap all your methods 
in a try catch block generating an error message that contains 
call description appended with the existing error message from 
downstream objects. The resulting error message would look 
something like this.

Calculate method of Benefit object found negative benefit 
amount - 43. Only positive benefit amounts are allowed for 
this benefit category. 
Calculate parameters were: benefitName = salariedPlan, 
category = JointAndSurvivor, amount = - 43.

Calculate method of Policy object encountered an 
exception. 
Policy parameters were: policyNumber = 103945.

Calculate method of Contract object encountered an 
exception. 
Contract parameters were: contractName = TestCo.

This was one of the favorite features of our model users since it 
was now very clear why the model didn’t run and how to fix it.

Build Order
When building a system from scratch, the most common build 
order is simply trying to get a runnable skeleton, and then add-
ing actual calculations. Our build order looked like this:

1. Launcher is an interface that launches your code locally or 
on the grid. It verifies that you will not have compatibility 
issues between your user interface, programming language 
and grid. Launcher is your simplest runnable model.

2. Base classes and interfaces to read in inputs will let 
you read in your input files, connect to your databases and 
APIs. This furthers your verification of compatibility and 
connectivity.

3. Empty base classes enable you to have a runnable skeleton 
of the model.

4. Detailed report is a dump of all vectors produced by the 
model. This will come in very handy for developers since all 
of them will need an easy way to verify their calculations.

5. Implementations of actual calculations should be written 
last. This step can be written in parallel by multiple develop-
ers. At this point each developer can run a model, get inputs 



16 | NOVEMBER 2018 THE MODELING PLATFORM 

Applying FinTech and IT Practices to Building Actuarial Models

and produce a nice report that includes the vectors that he or 
she is working on. Very efficient!

Unit Testing Framework
Unit testing framework offers an efficient way to run tests for 
each class. For example, if you have a class responsible for age 
calculation, you can use unit testing framework to write a test 
class that will instantiate your age class with a variety of param-
eters and check the calculation results. This is very useful as a 
quick regression test that verifies that code modifications did 
not break something in an existing class. This works very well on 
classes that sit at the bottom of the call hierarchy. For top- level 
classes, such as Launcher or Contract, setting up unit tests is too 
complicated and hence impractical. Top- level classes should be 
tested using full model runs and analysis of the outputs.

Optimization
Optimization should be done after each functionality goal is 
achieved. It is faster and easier to optimize the smallest possible 
amount of code. Some of the more sophisticated integrated 
development environments (IDEs) have built- in optimization 
support. For example, Visual Studio has Performance Profiler, 
which will record time spent on each calculation and show you 
what took the longest to run. It will also provide counts of each 
method call. You get the biggest benefit from optimizing objects 
that get called the most. Here are some ideas of what could 
cause performance drag:

• Searching for something more times than you need. 
Examples include looking up the same value inside of the 
loop or on a lower level than you could and getting items 
one at a time from a vector in a dictionary, when you could 
get a vector from the dictionary once and then use indexing 
to get individual items.

• Inefficient calculation reuse. For example, if you compute 
mortality for every benefit on a policy, it might be much 
more efficient to compute mortality once and reuse it for all 
benefits. This is a design issue, though, and may or may not 
be possible to address easily once you have the code written.

We did two optimization rounds for our pricing platform that 
yielded runtime improvements of 25 times and further four 
times, for a cumulative 100 times faster runtime. It really pays to 
spend time on this!

TESTING PHASE
Once the model is complete, it is time to make sure it is 
production- worthy. Generally, testing can be broken into two 
parts. Regression testing makes sure a new version of the model 
didn’t break anything. New functionality testing makes sure 

additions work as expected. There is not much that can be done 
to improve testing of new functionality, but there is a lot that 
can be improved for regression testing.

Automate Your Regression Test Process
You should consider automating your testing process since its 
efficiency or inefficiency will drive the quality of your regres-
sion testing. Ideally, you want to be able to run a full regression 
test of the new model with a click of a button and get a compre-
hensive report on the test cases that didn’t match. You can then 
compare the test numbers to your test names and see a pattern. 
(“Aha! All tests containing a particular benefit failed!”) Your 
automation goal should be that the number of tests does not 
matter and your tools can handle one test case just as easily as 
1 million.

We wrote a custom utility that compares model outputs in 
two folders and produces a report on the largest mismatch in 
each test case. We then compared this report to our test bank 
description to see if there was a pattern.

Build a Quality Test Bank
In theory a regression test should cover all possible input com-
binations, but practically you need to be able to run and analyze 
it in a reasonable amount of time. The inputs that should not be 
used should be programmatically blocked with an appropriate 
error message. The test bank should include tests that verify 
that the model will not run with prohibited inputs. The task of 
constructing the test bank can be done in parallel with devel-
opment of the model. It is a good idea to have a well- organized 
document describing the tests, since it will greatly speed up 
analysis of the mismatches.

Our regression test bank contains more than 6 million test 
cases, since our automation enables us to run and analyze the 
results in about a day. The test cases cover all combinations of 
various toggles and switches for all the products that the system 
supports.

MAINTENANCE PHASE
Once the model is in production, it is important to maintain and 
preserve its original qualities. Poor maintenance will deteriorate 
the model and may result in issues that cause the next model 
conversion. It is important to be diligent on maintenance.

Maintain UML
Larger model changes should be approached similarly to orig-
inal model design and hence should be first implemented in 
UML. This will help you think through the various possible 
ways to implement your changes and identify possible imple-
mentation issues. Make sure that the changes you make flow 



 NOVEMBER 2018 THE MODELING PLATFORM | 17

Listen at Your  
Own Risk
 

The SOA’s new podcast series explores  thought-

provoking, forward-thinking topics across the spectrum of 

risk and actuarial practice. Listen as host Andy Ferris, FSA, 

FCA, MAAA, leads his guests through lively discussions on 

the latest actuarial trends and challenges.

Visit SOA.org/Listen to 
get the podcast.

C

M

Y

CM

MY

CY

CMY

K

well with overall model design. UML also helps with training 
new developers as it provides an uncluttered way of walking 
someone through the code flow.

Don’t Make a Mummy! If You Need Surgery, 
Don’t Use a Bandage
Many changes can be implemented in several different ways 
in an object- oriented system. Make sure to pick the way that 
is most sound from the software design principles and design 
patterns perspective. It may not be the fastest way to implement 
the change, but it will save you from having to work with a 
patchwork of various approaches and implementation styles a 
year into the model’s life.

Maintain Documentation
Documentation should be maintained as part of the devel-
opment process, especially if you use XML doc. It is easy to 
describe what you did and why you did it in the code as you 
write it. It is much harder to do later.

CONCLUSION
There is a lot to learn from practices of IT and FinTech indus-
tries when it comes to model building. Some tasks are best 
handled by integrated cross- functional teams. Technology pro-
vides a lot of efficiency, but unlocking its potential requires very 
close cross- functional collaboration. ■

Igor Nikitin, ASA, MAAA, is a director, actuary 
at Prudential Financial. He can be reached at 
igor.nikitin@prudential.com.

M. Crew Sullivan, FSA, is a VP and actuary 
at Prudential Financial. He can be reached at 
crew.sullivan@prudential.com.




