

Article from
The Modeling Platform
April 2020

THE MODELING PLATFORM | 6Copyright © 2020 Society of Actuaries. All rights reserved.

 APRIL 2020
THE MODELING PLATFORM

MODELING
SECTION

The Importance of
Centralization of
Actuarial Modeling
Functions, Part 2
DevOps—The Path to Actuarial
Modernization and Consolidation
By Bryon Robidoux

The first article in this series stressed that consolidating
the actuarial modeling department was an important and
worthwhile initiative. But consolidation doesn’t solve much

if the redundancies and complexities of the modeling department
are not reduced in the process.

It was suggested that software engineering practices have many
answers to our modeling problems, especially the monolithic
system1 issue, but there was no mention of what concepts were
important or how to get started. This article will fill that gap by
introducing IT DevOps and other software engineering princi-
ples and their application to the current actuarial modernization
and modeling department consolidation.

CHANGE, CHANGE, CHANGE AND MORE CHANGE
Let’s pause for a second and look at the actuarial modeling and
processes landscape. The amount of change required of the in-
surance organization depends on the type of business written
and where it is sold. In 2017, there was VM-20; in 2019, there
was VM-21; and in 2021, there will be LDTI (long duration
targeted improvements), and IFRS 17 is coming. Not to men-
tion, interest rates have been excruciatingly low and the S&P has
been on the rise for the last 11 or 12 years, so the products are
getting more equity features to stay competitive.

Auditors and regulators are mandating that senior managers be
able to attribute and explain changes to demonstrate confidence

that their organization can properly manage its risk. Given the
speed with which the playing field is changing, senior manag-
ers need to quickly and confidently do what-if analyses to make
more informed decisions to stay ahead of their competitors.
They need information quickly, which requires processes to be
accurate, streamlined and efficient. They can’t wait weeks or
months for actuaries to update their spreadsheet processes for
a decision that needs to be made in a week, or a day or less. As
changes accelerate, change management and handling complex-
ity become paramount.

DECENTRALIZATION—THE NASTY TRUTH
The previous article mentioned that decentralizing models is a
bad practice and should be avoided, but it failed to recognize the
driver behind the behavior. The real motivation for decentral-
ization is to reduce the complexity of models so they are more
maintainable and easier to understand.

The desire to keep things simple is a worthy cause, but decen-
tralization is trading model complexity for operational complex-
ity. There is a great book on this topic originally written in 1975

http://digitaleditions.walsworthprintgroup.com/publication/?i=629391&article_id=3514489&view=articleBrowser&ver=html5

THE MODELING PLATFORM | 7Copyright © 2020 Society of Actuaries. All rights reserved.

The Importance of Centralization of Actuarial Modeling Functions, Part 2

called The Mythical Man-Month.2 The premise of the book is that
it is a mistake to think that if one developer can do the job in
one year, then hiring 12 developers will get the job done with-
in a month. It explains that this is not possible because people
can’t learn complex systems instantaneously. Even if this were
the case, communication among people and teams causes the
development to slow to a crawl because everyone needs to co-
ordinate. The book recommends coming up with a team of spe-
cialists who work together to accomplish an overall goal. These
specialists should complement each other in such a way that they
can maximize the ability to work independently, reducing oper-
ational complexity.

KEEPING MODEL COMPLEXITY UNDER CONTROL
In software engineering, refactoring and unit testing are per-
formed together to mitigate model complexity. Refactoring is
the practice of cleaning up the models to make them easier to
maintain without changing their behavior. Unit testing is writ-
ing small, fast and single-purpose tests to verify the software is
working as expected. Great books on these topics are Refactor-
ing: Improving the Design of Existing Code3 and Working Effectively
With Legacy Code.4

The less frequently refactoring is performed, the faster the mod-
el’s complexity will get out of control. If anyone mentions that
there needs to be a project to refactor the code base, then this is
a good sign that the development practices and standards of the
organization should be revisited. Refactoring should be akin to
cleaning up the woodshop at the end of each day’s shift so that
everything is clean and organized for the next day.

HANDLING CHANGE OUTSIDE THE
ACTUARIAL PROFESSION
How do Facebook, Amazon, Netflix and Google (FANG)—
along with other large technology organizations—handle hun-
dreds of developers confidently, making many changes to their
code on a daily basis and not suffering from the same model and
operational complexities that actuaries suffer from? The answer
is DevOps. It is a framework and guidelines on how to efficient-
ly handle rapid change with confidence and reliability. It allows
developer teams and operation teams to work closely together
building robust processes and software systems.

DEVOPS
One main goal of DevOps is to shorten the deployment time of
fixes and enhancements for complex software systems. It bor-
rows a lot of its methodologies from lean manufacturing.5 Even
though it was conceived from manufacturing circles, there is no
reason that actuaries should not exploit it for their needs! The
DevOps Handbook6 is a great book to get up to speed on the topic.
To promote speed and reproducibility, automation is at the heart
of DevOps, but it is bigger than that.

There are several components to DevOps, such as microservices,
continuous testing, continuous integration, continuous delivery,
continuous deployment, infrastructure as code, telemetry and con-
tinuous feedback, which will be discussed next.

Microservices
With DevOps, the collaboration can happen at such a fast pace
because each team works to build microservices. (I will take a lit-
tle liberty in describing microservices.7) For actuaries, a micro-
service can be thought of as just a single-purpose library. Micro-
services allow developers to work independently without tram-
pling on each other. They contain application user interfaces
(API), which are interfaces that encapsulate the details of the
implementation behind a barrier.

The interfaces have contracts, which are called preconditions
and postconditions, that describe the output of the services
based upon the domain of the inputs. As long as everyone writes
codes based upon these contracts, there is no reason to worry
about the details of implementation. This greatly speeds up de-
velopment, because it reduces dependencies among components
in the model.

Microservices should be loosely coupled but have a tight co-
hesion, which means they should be able to communicate with
each other, work independently and be singularly focused. The
problem with monolithic systems is they have tons of dependen-
cies that lead to tight coupling and loose cohesion of all their
components. This leads directly to a system’s complexity and the
desire to decentralize it.

Continuous Testing
For each unit of work within a microservice, a unit test is made
to verify that it operates as expected. These automated tests are
small, fast, singularly focused and should run in milliseconds.
They should not consume external resources or write to external
locations, such as files or databases, so that they run very effi-
ciently. They should be able to run locally on the modeler’s local
machine or on a server. This allows the developer to continuous-
ly run thousands of tests to get immediate feedback and quickly
diagnose problems. Running a few sample policies is too slow
and too little coverage. Running all policies on the grid doesn’t
give immediate feedback or good diagnostics on potential issues.

Once the enhancement passes all the unit tests, the changes
should go through automated user acceptance testing (UAT).
These should also be fast and plentiful, but they are usually larg-
er, less granular tests. They would be designed to test the micro-
service API and its larger logical units. As stated in test-driven
development (TDD), all the unit tests and UATs should be cre-
ated before a line of code is ever written or modified so that
the design of the tests is part of the design of the model. It is
only after hundreds or thousands of the very fast automated tests

THE MODELING PLATFORM | 8Copyright © 2020 Society of Actuaries. All rights reserved.

The Importance of Centralization of Actuarial Modeling Functions, Part 2

have been run that more manual exploratory tests should even
be considered.

Continuous Integration, Delivery and Deployment
As many developers are making changes throughout the day,
the changes need to be continuously integrated into the master
branch. If there are too many changes or the changes are too
big, merging them can be time-consuming and difficult and can
potentially produce instability. Therefore, each modeling task
should be small and singularly focused to provide continuous
delivery of new features multiple times per day.

Once the code is delivered, it can go through its last round of
reviews and approvals. According to The DevOps Handbook, the
reviews and approvals should not be delegated away to outside
committees. The greater the distance between the committee
and where the work is actually performed, the less familiarity
there is with the changes and the slower the approval process will
be. It is actually recommended to follow extreme-programming
practices, which advocate for dual modelers working together on
each task. This method has been shown to be quicker and more
thorough than a committee approach, because the modelers
help each other arrive at a better solution and spot potential is-
sues faster. Once the approvals are passed, then the code can be
automatically deployed into production.

INFRASTRUCTURE AS CODE
Infrastructure as code is the concept that all aspects of the model
and its configuration are in source control, such as GitHub. This
gives the ability for anyone to download the model and all its
dependencies and quickly get any deployed version running and
reproduce results. If things do go awry, the previous version can
be brought back quickly with no manual intervention or setup
time. For actuaries, this would include all the work products,
such as spreadsheets and other items required to feed the model.
This allows any part of the production environment or processes
to be reproduced from beginning to end.

Spreadsheets are just ad hoc little programs that are mainly do-
ing calculations and data transformations. They are manual pro-
cess touch points that are cumbersome, error-prone and a major

source of technical debt.8 It would be much more robust to re-
place these with more traditional software applications so that
the production processes can better follow DevOps principles.

TELEMETRY
Telemetry is monitoring and logging the model by recording
data on all mission-critical aspects of its behavior. This allows
problems to be addressed quickly with little or no downtime.
Items to monitor are run times of all the intermediate pro-
cesses and distributions of different input variables, crucial
intermediate variables and output variables. By keeping the
statistics, everyone can receive continuous feedback and learn
ways to improve the processes and models. Machine learn-
ing and reinforcement learning can be used to monitor logs
and detect errors faster, which will speed up response time of
dealing with issues.

CONTINUOUS FEEDBACK AND LEARNING
In order for organizations to improve their models and opera-
tions, they need to be constantly learning from both their past
successes and their past failures. This is not possible without
continuously monitoring the health of the models and the sup-
porting processes.

The problem with a monolithic model is that all the pieces have
to come together in order to get a functionality to work. It might
take days, weeks or months to get all the pieces assembled de-
pending on the size of the enhancement. The feedback on all the
issues does not come until late in the development cycle. At this
point, the enhancement is promised to senior management, and
herculean efforts are required to get it all done. The enhance-
ments are often brittle to boot.

This is why it is important to create tasks that are small and singular-
ly focused—so that the feedback on potential issues comes as early
as possible in the development cycle. The later the problems are re-
alized, the more expensive they are to fix. This is why there has been
a strong movement of Agile project management over Waterfall so
that everyone can get immediate feedback and fix problems sooner.
Monolithic systems naturally lead to Waterfall project management
no matter how good the intentions are to go Agile.

FUTURE ARTICLES
Now that DevOps has been introduced, the following two articles
in the series will get away from theory and get to the practice
of implementing DevOps using Moody’s Axis. Part 3 will address
continuous integration, continuous delivery and infrastructure as
code by creating a data-driven dataset that can be generated on
the fly. Last, Part 4 will implement DevOps in code using Ax-
is’s formula link, formula tables and third-party DevOps tools
to showcase all the principles in this article. With these detailed
case studies, it will give actuaries the ability to start implementing
DevOps in their organizations.

Monolithic systems naturally
lead to Waterfall project
management no matter how
good the intentions are to
go Agile.

THE MODELING PLATFORM | 9Copyright © 2020 Society of Actuaries. All rights reserved.

The Importance of Centralization of Actuarial Modeling Functions, Part 2

CONCLUSION
Given all the regulatory and accounting changes, such as LDTI
and IFRS 17, the actuary has been asked to make a lot of changes
in recent years. Even though the intentions of the regulators and
accounting standards are to help produce stronger insurance
companies and to better track changes, the current practices
of actuarial modeling and processes have had a hard time cop-
ing with the tidal wave of change. The changes are too fast and
the complexity too large for actuaries to brute force their way
through them anymore. DevOps is the paradigm shift needed to
better cope with change and change management.

The main aspects of DevOps are microservices, continuous
testing, continuous integration, continuous delivery, continu-
ous deployment, infrastructure as code, telemetry and contin-
uous feedback. Each one of these concepts plays a crucial role
in improving the actuaries’ change management capabilities. By
following the DevOps best practices, actuaries will be able to
create smaller, better, faster and cheaper modeling and valuation
departments. The herculean efforts required to get through pro-
duction cycles and do what-if analysis will be greatly reduced.

Actuarial modernization should be more than moving to a new
modeling vendor or software package. The support from our ven-
dors is critical, but modernization is bigger than them. It is about
changing how actuaries work and their culture by embracing
DevOps and making the practices commonplace. Actuaries are not
really modernizing if they are not incorporating DevOps practices
in all their work. Replacing spreadsheets should be the first focus of
all modernization efforts, because there is so much to gain. Spread-
sheets in processes are like cockroaches. There is never just one,
and it is expensive and difficult to get rid of the infestation!

ENDNOTES

1 The monolithic system problem is when all the work products needed for the
model are modified and/or stored in the model such that the model will not run
or produce accurate results if all the components do not exist.

2 Brooks, F.P. 1995. The Mythical Man-Month. Boston, MA: Addison-Wesley.

3 Fowler, M. 1999. Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley.

4 Feathers, M.C. 2005. Working Effectively With Legacy Code. Prentice Hall.

5 From Wikipedia, lean manufacturing or lean production is a systematic meth-
od originating in the Japanese manufacturing industry for the minimization of
waste within a manufacturing system without sacrificing productivity, which can
cause problems. https://en.wikipedia.org/wiki/Lean_manufacturing

6 Kim, G., J. Willis, J. Humble, and P. Debois. 2016. The DevOps Handbook: How to
Create World-Class Agility, Reliability and Security in Technology Organizations.
2nd ed. Vol. 2. T Revolution.

7 Library vs microservice. static void, March 7, 2017, https://blog.staticvoid.
co.nz/2017/library_vs_microservice/ (accessed March 12, 2020).

8 From Wikipedia, technical debt is a concept in software development that re-
flects the implied cost of additional rework caused by choosing an easy (limited)
solution now instead of using a better approach that would take longer. https://
en.wikipedia.org/wiki/Technical_debt

Bryon Robidoux, FSA, CERA, is an actuary ALM at
Reinsurance Group of America. He can be reached
at bryon.robidoux@rgare.com.

With all the potential changes and unknowns on the horizon, it
is important that actuaries incorporate DevOps practices sooner
rather than later. n

https://blog.staticvoid.co.nz/2017/library_vs_microservice/
https://blog.staticvoid.co.nz/2017/library_vs_microservice/
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
mailto:bryon.robidoux%40rgare.com?subject=

