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MR. ROBERT d. JOHANSEN: This is the first of two sessions arranged by
the American Statistical Assocation. This session and the one on Social

Indicators mark the continuation of an interchange of programs between
the Society of Actuaries and the American Statistical Association which I
have been promoting for a couple of years. In October 1978, the
statisticians presented three sessions in the general area of economics
at the Society's annual meeting. In August of this year, the Society
sponsored two sessions at the Statistical meeting in Houston. The
actuaries discussed the new Build and Blood Pressure Study and some
recent developments in actuarial methodology relating to analysis of
survival studies.

Actuaries and statisticians have a great deal in common in the studies
they do and the approaches they take. However, most of the individuals
in one sphere are probably unaware of much of the work being done in the
other sphere. The purpose of these interchanges is to provide each group
with some examples of the work of the other group, and to encourage
further inquiry and interchange.

Dr. Gary Koch, the Discussion Leader, will introduce the speakers and
provide some comments. Dr. Koch was the principal organizer of this
session for the American Statistical Association.

Dr. Koch has been at the University of North Carolina since 1963. Since
1976 he is Professor in the Department of Biostatistics jointly with the
North Carolina Highway Safety Research Center. He has been a Visiting
Professor at a number of universities and other organizations. He is a
Fellow of the American Statistical Association and Chairman of its
Biometric Section; Past President of the Biometric Society, Eastern North
American Region; a member of the American Public Health Association, and
recipient of their 1974 Mortimer Spiegelman Award. Actuaries are well
acquainted, of course, with Mort Spiegelman through his textbook.

Before turning the meeting over to Dr. Koch, I would like to clarify one
item. The term "censored survival data" which will be used in this

afternoon's session may not be familiar to some of you. You may recall
from studying Construction of Mortality Tables that individual records
exposed to risk formulas usually provide for a partial year exposure for
withdrawals during the year and a deduction for those existing at the end
of the investigation period. The term "censored" would be applicable to
these cases. In a broad sense it applies to termination from any cause
other than the cause being studied.

DR. GARY KOCH: I would like to formally thank Bob Johansen and the
Society of Actuaries for inviting the Biometric Section of the American
Statistical Association to participate in this session.

Biometricians and statisticians in general have substantial interest in
the area of time to event data, i.e,, the length of time subjects who are
exposed to risk of a particular type of condition are free of that
condition up until the time that they have it. They see these time to
vital event studies in a number of different contexts. Some settings are
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clinical trials where subjects are followed until an event like death
occurs. The subjects are then evaluated as to comparative survival
rates. In other settings, individuals are attempting to maintain a
favorable state like remission from a particular disease or actually
being in a disease free state until the occurrence of a particular
disease.

As a consequence of analyzing many situations where time is the
predominant factor, i.e., the statistic studied, the biometricians and
statisticians have developed a variety of methods for dealing with

statistical questions concerning these situations. In many cases, these
methods have been borrowed from actuarial science because many of the

concepts in statistics share similar orientations and concerns with those
of actuarial science.

The purpose of today's session is to review some of the work which has
been going on in this particular area and also to attempt to identify
various relationships between the concerns and methods that arose in
biomedical research where certain analogies are seen with respect to
actuarial science. Some of the dimensions of these concerns refer to the

nature of the population that is under study and how that population is
dealt with. In some statistical studies, one sees the population as its
own phenomenon, and proceeds to do various kinds of descriptive analyses
with respect to that population. These are sometimes called data bank
type analyses. Other statistical studies involve experimental
randomization of subjects to one or two groups. Another type of study is
one in which a sample is drawn from some larger population and then an
inference is made with respect to that population.

In all of these cases, a particular framework for analysis involves the
computation of estimates and then the derivation of standard errors, or
other tests of the sampling or measurement error, for the estimates that
are obtained. This may involve the production of confidence intervals,
significance tests and the like. In actuarial science, these kinds of
concepts may have limited application because the data are perceived
essentially as a population even though that population is used to make
statements of inference of some type about some other population.

In these presentations, we will try to indicate the similarities in the

biomedical approach, which involves certain kinds of sampling processes
and inference, and the traditional methods and concepts that exist in
actuarial studies. The four speakers and the three presentations cut
across these particular dimensions. The first presentation will be given
by Professor Norman Breslow from the University of Washington. His
presentation will review briefly some of the concepts of analysis for
clinical trial data, although it has implications for other situations as
well. In particular, he will talk about a concept of covariate analysis
that has to do with the select concept in actuarial science. Professor
Elandt-Johnson and Professor Johnson from the University of North

Carolina will try to do some bridging of the gaps between biomedical
research and actuarial science. Their presentation will discuss common
terms for both frameworks and will indicate some of the phenomena that
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are studied in each. In particular, their paper will address competing

risks and the multiple decrement problem and the relationships that exist

between them. They will also try to draw relationships between what

biometricians call the covariance or regression problem and the select

problem as it exists in actuarial science.

The third presentation by Dr. Buncher from the University of Cincinnati

will focus on an observational population concept known as the Healthy

Worker Effect. He will try to interpret it to the extent that it relates

to both actuarial and epidemiological concerns.

Professor Norman Breslow will give the first presentation. The title of

his discussion is "Statistical Analysis of Medical Follow-up Studies."

This is an area in which he has made a number of contributions to

statistical literature beginning with work emanating from his graduate

training at Stanford University and proceeding on through his work on the

faculty at the University of Washington where he has been since 1968.

Among his other activities, he was a consultant to the World Health

Organization's International Agency for Research on Cancer where he

developed a monograph entitled Statistical Methods of Cancer Research -

The Analysis of Case Control Studies. In 1978, Dr. Breslow received the

Mortimer Spiegelman Award from the American Public Health Association_

DR. NORMAN BRESLOW: Censored survival data arise in many areas of

medical research. In clinical trials patients are followed from

diagnosis or definitive treatment until relapse or death. The clinical

investigator is interested in the statistical distribution of the

duration of response or survival, and how it is influenced by treatment

and by prognostic factors like age and extent of disease. Data analysis

is complicated by the fact that some patients are still alive and well at

the study's end, so that the observations of their response times are

incomplete or "censored." This means that the well known statistical

methods of analysis of variance and linear regression, which have proven

so valuable in other areas, cannot be applied without substantial

modification.

Similar problems arise with epidemiological studies, for example in

occupational health, where the endpoint is the diagnosis of or death from

a particular illness and explanatory variables include accumulating

industrial exposures. Limitations are imposed on the observation period

by death from competing causes. Censorship is encountered also with data

from the bioassay of toxic agents in experimental test systems, wherein

animals are observed from birth or weaning for the occurrence of cancer

or other chronic ailments.

The analysis of such censored survival data has the same goals as in

other areas of statistics. First, one wants to characterize the

distribution of survival duration in one or more subgroups of the

population. Since the numbers of individuals in particular subgroups are

rarely large, inferential statistics are needed to decide whether the

observed differences are real or are simply due to sampling fluctuations.

Mathematical models are used to describe the effects on the survival

distribution of different treatment and baseline factors.
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For ease of exposition it is convenient to suppose that the endpoint in
question is death rather than some other event such as relapse. Let T
denote the (random) survival time for an individual sampled from the
population under study. The initial goal is to estimate the statistical
distribution of T, which may be specified alternatively in terms of the
survival function

S(t) = e (T>t),

the hazard function (also known as the force of mortality)

_(t) : limP[T<t+_tlT_]_
At_o

or the cumulative hazard function

A(t) J _(_)a_=-]o3S(e)
The hazard function A(t) represents the (instantaneous) mortality rate
at t among persons still alive at that time,_i (t) its integral and S(t)
the proportion of the population surviving until time t.

If complete data are available for all individuals in a study, an obvious
estimate of S(t) is the sample proportion actually observed to survive
until that time. However if study subjects are not all kept under
observation until death, and some are withdrawn from observation before
time t, this proportion will underestimate S(t). An early resolution of
the difficulty was provided by application of fundamental actuarial
concepts, as embodied in the life table. Typically, the time period is

partitioned into a number of intervals, say [0,tl) , [tl,t2),... ,
[tj_l,ti). Let ni denote the number still under observation at the
start o_ the jth Interval, of which dj die, wj are "withdrawn
alive" and nj+1 = nj-d'-w'jjsurvive to the start of the next
interval. Then the probability of survival to tj may be estimated by

S(tj) : (l-ql)(l-q2)...(l-qj)

where qj = dj(nj- _ wj) represents the conditional probability of
death during the jth interval. Thus in__ho are withdrawn
early on in the study contribute to the estimation of survival only over
the intervals during which they are at risk of death. Table i
illustrates this calculation, which is by now well known to clinicians,
epidemiologists and other medical scientists (Cutler and Ederer, 1958).

Theterm _w_ in thedenominator of qj is intended to adjust for the
fact that indlviduals withdrawn alive during the interval effectively
reduce the number at risk. This is a rough approximation which works
best if the intervals are short. A more accurate estimate is obtained in

the limit as the intervals become infinitely large in number and small in
length. If t,< %_ < ......_ ....... now denote the distinct, ordered times
of death, and if d_ deaths occur at t_ among the nK individuals
still at risk just prior to that time, the "product limit" (PL) estimate
may be written

nK
t_4t



TABLEI

ACTUARIAL (LIFE TABLE) ESTIMATE OF THE SURVIVAL DISTRIBUTION

Interval Numberalive Deaths Losses Probof Probof Cumulative
j atstart death survival probsurvival co

^ J _ --I-'_', ^

11_ qj[t t.) d W qj 1 i- ) co
_-_,j nj J J nJ-WJ/2 qj

Z
I

0 - llmos 15 5 O O.3333 O.6666 0.6666
O
Z

12- 23mos i0 2 3 0._353 0.7647 0.5098

24- 35mos 5 1 1 0.2222 0.7777 0.3965
Z

36+ mos. 3 .... N
CO
O0

Z
CO
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Kaplan and Meier (1958), who introduced the estimate to the statistical
community, noted that it had been proposed by Bohmer (1912) at the 7th
International Congress of Actuaries. When there is no censorship, it
reduces to the simple proportion mentioned earlier, known as the
empirical distribution function. The corresponding estimate of the
cumulative hazard (Altschuler, 1970) is

_kSt'_K

In order to make statistical inferences about the true survival function,
it is necessary to know something about the distribution of _. According

to the work of Efron^(1967), Breslow and Crowley (1974) and Meier (1975),
the function W(t) = S(t) - S(t), considered as a stochastic process in t,
is approximately Gaussian with mean O and a covariance kernel which may
be estimated for t_s by

t_t

When t : s this yields the variance function for _(t) known as
Greenwood's (1926) formula.

This result leads to the construction of simultaneous confidence bands
for S, and to a Kolmogorov-Smirnov type of test for its equality with

some particular SO (Hall and Wellner, 1980). More precisely, defining

t_ t

where nO is the total sample size (number alive and under observation
at tO = 0), it may be shown that

is approximately equal to

where B(u) is the stoehastie process known as the Brownian bridge. These
latter probabilities may be ealeulated using results of Anderson (1960).

Medical researeh typically involves the comparison of one group of
subjects with another: the survival of patients treated with Drug A is
compared to survival with Drug B, or the cancer incidence of underground
miners is compared with that of surface miners. If infinite resources
were available, one could approach the comparison by making separate
estimates of the survival function for each subgroup of the population
under study. However this is rarely feasible with the small samples

available to the researcher. He may wish to investigate the effect of

several different factors on survival yet can collect information on only
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a few hundred deaths. Clearly what is needed in this situation is a
mathematical model which allows him to express the effects of group
membership or other individual characteristics on the survival

distribution in terms of a relatively small number of parameters.

Data typically available for each subject in a longitudinal study consist
of a survival or follow-up time t, an indicator _ which denotes whether
the subject actually died (6=1) or rather contributed a censored

observation (_=0), and a number of treatment and covariables zl,

z2,...z p whose effect on outcome is to be determined. The most
widely used and successful statistical models express the effect of the
eovariables on outcome by means of a linear function

_z :_izi+...38pZp,

where the _ parameters, or unknown regression coefficients, are estimated
from the data. A wide range of relationships may be expressed in this
form by including among the z's both transformations and cross-products
involving some basic set of variables. Thus in clinical trials the

available information is summarized into a single "prognostic score"_ z
for each patient which is used to estimate his survival duration.

Since the survival times are all positive, it is inconvenient and
somewhat unreasonable to suppose that _z acts additively on them.
However the idea that exp(_z) acts multiplicatively on t leads to the
accelerated aging model

log t : _ +_z:+_w

where w denotes a random error variable (mean O, variance l) and _ and
are unknown parameters of scale and location, respectively. Various
parametric specifications for the error distribution lead to such
familiar survival distributions as the log-normal and Weibull.

Recent emphasis has been on partially non-parametric formulations of the
model in which the error distribution is left unspecified. This leads to

consideration of the distribution of the rank vector, appropriately
generalized to censored data, of the residuals log t -_z (Kalbfleisch
and Prentice, 1980; _6.4). Unfortunately, estimation of the_ regression
coefficients using this approach is rather cumbersome, and it has not
seen much application to date.

Cox (1972) proposed an alternative regression model in which exp_z) acts
multiplicatively on the hazard function rather than on the survival
time. The hazard for an individual with covariates z is written

A(t;z) : exp(_z)_o(t) ,
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where Ao is the hazard for an individual with a standard (z:O) set of
covariates. A consequence is that the hazard functions for two
individuals with different covariate vectors are proportional, meaning
that their ratio is constant in time. The relation among survival
functions under this proportional hazards (PH) model is

exp (fiz)
S(t;z) : So(t)

One main advantage of the PH model is that the _ coefficients have simple
interpretations as log relative risks (rate ratios) which are familiar to
epidemiologists and other medical scientists. A second advantage is that

the likelihood function used to make statistical inferences about ff takes
the rather simple form

where zk denotes the covariate vector for the individual who dies at
tk, while R(tk) denotes the "risk set" of subjects who are still
alive and under observation just prior to tk. This may be derived
alternately as a marginal likelihood based on the generalized rank vector
of the censored survival times (Kalbfleisch and Prentice, 1973) or, using
a chain of conditional probabilities reminiscent of actuarial techniques,
as a partial likelihood (Cox, 1975). From this latter viewpoint, the

contribution to the likelihood at t = tk is simply the conditional
probability, given that some one of the individuals in R(tk) dies at
that time, that it is the particular one whose death was actually
observed.

Maximum likelihood estimates, tests of significance, and confidence
intervals for individual_ coefficients are all obtained by applying
standard large sample likelihood methods to L(_). A non-parametric
estimate of the underlying survival distribution in the PH model is

oTT_t )

(Breslow, 1975), which reduces to the PL estimate when_ : 0. Tsiatis

(1978) has shown that _0 enjoys similar weak convergence properties to
those noted earlier.

For purposes of illustration we fitted the PH regression model to data on
268 leukemia children enrolled in a clinical trial to investigate
modifications of the standard maintenance chemotherapy in use at the time
(Miller etal., 1974). The endpoint in question was the duration of

remission, i.e. time until relapse, from completion of an initial
induction course of therapy. At the time the data were analyzed, 181
children had relapsed while 87 remained in remission and thus had
censored observations.
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The regression variables of interest included: zI the initial
(diagnostic) white blood count, expressed in log units; z2 the child's
age at diagnosis; z3 age squared; and z4 a dichotomous treatment
variable which indicated whether (z4 = i) or not (z4 = O) the drug
actinomycin-D had been added to the standard regimen. Table 2 shows the
results of fitting the model in a hierarchical fashion, wherein each of
the four variables are added to the regression equation in succession.
The three test statistics computed at each fit evaluate the statistical
significance of the contribution of the new variable, after accounting
for the effects of the previous ones. These are the likelihood ratio
statistic, the score test (based on the first derivative of the log
likelihood), and the squared ratio of the estimated _ divided by its
standard error, all of which are known to be approximately equal in large

samples under the null hypothesis (Rao, 1966, _6e).

The tests indeed yield rather similar numerical results with these data.
The initial white count is the most dramatic determinant of the time of
subsequent relapse. Age has a lesser but nevertheless important
quadratic effect, such that the very youngest and oldest children are at
highest risk, while those in the mid age range (2-10 years) have a
somewhat better prognosis. After accounting for the effects of these
baseline factors, the treatment variable is not statistically
significant, although there is a trend towards a lower relapse rate for
those receiving the new agent. Quantitatively, the regression
coefficients indicate that there is an approximate doubling
(exp(°721)=2.06) in the relapse rate for each lO fold increase in the
initial white count. The overall effect of treatment is to reduce the

relapse rate by a factor of exp(-0.220) = 0.80.

As a means of evaluating the goodness-of-fit of the model, the 268
patients were divided into 4 groups according to the value of their _z
prognostic scores and PL estimates of the remission duration curve were
computed separately for each one. In addition, fitted curves from the
model were calculated for fixed #z values corresponding to the boundaries
of the 4 groups. The results shown in Figure i illustrate some rather
serious problems with the fit. The observed curves are more widely
separated during the early time period than are the fitted curves,
whereas the reverse is true in the later period. Such behavior indicates
that the model is underestimating the effects of the covariates on the
hazard function for small t, and overestimating them for larger t. In
other words, the multiplieative effects depend on time.

As an informal means of confirming this interpretation of the lack of
fit, we re-analyzed the data by dividing the time period into two
intervals with a cut-point at 270 days and making separate estimates of
regression coefficients for each one. Operationally this is accomplished
by factoring the partial likelihood into two pieces, one for relapses
which occur prior to 270 days and another for those which occur later.
The results in Table 3 show that the coefficients for the second period
are indeed smaller in absolute value than those for the first. In



TABLE 2

FITTING OF PH MODEL TO DATA

ON 268 CHILDREN WITH ACUTE LEUKAEMIA

(ENTIRE OBSERVATION PERIOD)

TESTS OF SIGNIFICANCE (X_) REGRESSION COEFFICIENTS

VARIABLE ± (StandardizedCoefficientsin Parentheses)

STEP ADDED ^

eR SCORE _2/Var(_) LOG(WBC) AGE/IO AGE2/IOO RX
(N-P) (Rao) (Wald) (0/I)

LOG(WBC) 38.61 41.56 40.55 0.7831
(6.37) O

2 AGE 0.58 0.57 0.57 0.785 O.166

(6.41) (0.75)

3 AGE 2 6.62 6.97 6.87 0.737 -1.859 1.454
(5.88) (-2.29) (2.62)

4 RX 2.12 2.12 2.11 0.721 -1.889 1.483 -0.220
(5.71) (-2.32) (2.65) (-1.45)
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FIGURE i. Remission duration curves for four groups of leukemia children
according to their prognostic score, and predicted curves on the basis of
the PH model. (Reprinted, with permission, from Environmental Health

Perspectives 32:181-189, 1979.)
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TABLE 3

COMPARISON OF REGRESSION COEFFICIENTS

FROM EARLY AND LATE OBSERVATION PERIODS
ON 268 CHILDREN WITH ACUTE LEUKAEMIA

REGRESSION COEFFICIENTS + S.E.

LOG --- r"

PERIOD LIKELIHOOD

LOG (WBC ) AGE /10 AGE 2/iO0 (0l±P_') C3

EARLY -480. 729 O.866-+0.172 -2. 353+-1.076 i.863+-0.746 -O.468+-0.210
O

Ln

LATE -385. 257 O.513+-O.190 -i.206+1. 294 O.786+0. 907 O.037-+0.229

ENTIRE -876.863 O.721±O.126 -1.889-+0.815 1.483-+O.560 -O.220+-O.151

Test for early vs. late::x_ = 2{876.863-480.729-385.257} = 21.75 (p=O.OOO2)
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particular, there appears to be a statistically significant effect of
treatment on the early relapses such that patients receiving the new
agent relapse at only exp(-0.468) = 63% of the rate of those who did not,
whereas the treatment effect on the relapse rate during the later period

is virtually nil.

While this sort of informal reasoning suffices to demonstrate the lack of
fit of the PH model in this instance, it is an inadequate basis for
extending the model.

One would not expect an abrupt change in the effects of covariates at 270
days, but rather a smooth transition over time. Such changes may be
incorporated through the introduction into the model of time dependent
covariates, some of which may represent interactions of baseline factors
with time itself. For example, in the present situation, we define

z5(t) : zI x t
z6(t) : z4 x t

to represent the attenuation of the multiplicative effects of white blood

count and treatment on.t). The model itself becomes

from which it is clear that the hazard ratios for two different

individuals need no longer be proportional. Formal tests of significance
of the PH model are obtained by examining the coefficients of the time
dependent covariates for evidence of departure from zero. The partial
likelihood function used for inferences about the coefficients is
extended to

wherein the contribution to the likelihood at the time t : tk of the
kth death is based on the evaluation of the covariates of all
individuals in the risk set at that time (Kalbfleisch and Prentice, 1980).

While time dependent covariates have been used here primarily to test the
goodness-of-fit of the PH model, in other contexts, their employment
contributes to the resolution of some major methodological problems. In
occupational health studies, for example, they may be used to represent
cumulative exposures which each worker receives during the follow-up
period, or the duration of time since cessation of exposure, either one
of which may influence the subsequent risk of disease development.
Similarly, in clinical trials, they may be used to represent the effects
of prognostic variables whose values are changing during the post
treatment period. While particular care must be exercised in
interpretation of the coefficients of such covariates, their use

nevertheless significantly extends the range of possible analyses.
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The above examples illustrate that the PH model is a flexible tool for
the multivariate regression analysis of censored survival data, and it is
not hard to see why is has been adopted wholeheartedly by medical
statisticians. New areas of application are being discovered all the
time. In conclusion, we mention briefly its application to case control
studies.

When conducting etiologic studies of rare chronic diseases such as
cancer, it is not possible logistically to keep under constant
surveillance the large samples which would be required for diagnosis of a
reasonable number of cases. An alternative is to collect the eases as

they appear in hospitals and outpatient clinics, and compare their
exposure histories with those of a control sample drawn from the
population at risk. With matched studies, one or more disease-free
controls of the same age and sex are sampled each time a case is
diagnosed. An extension of the PH model for this situation leads to the
same partial likelihood for the relative risk parameters B as given
above, except that the risk sets for each case consist only of the case
and its matched controls rather than the entire disease-free population
(Prentice and Breslow, 1978). This approach provides a method for the
multivariate analysis of match case-control studies which is closely

related to many procedures already in use by epidemiologists (Breslow et
al, 1978; Breslow and Day, 1980).
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DR. KOCH: The second presentation will be given by Professor Regina
Elandt-Johnson and Professor Norman Johnson who are both with the

University of North Carolina. It is entitled "Statistical Aspects of
Mortality Analysis: Actuarial and Biometric Points of View," and it

will 5e concerned with trying to tie together common subject matter in
biometric research and actuarial science.

Professor Elandt-Johnson had her graduate training at the University of
Poznan. She has a strong interest in probability models in biology and
survivorship. She is the author of a textbook entitled Probability
Models and Statistical Methods in Genetics. She has also recently
co-authored a new book with Norman Johnson entitled Survival Model and

Data Analysis.

Professor Norman Johnson is currently the Alumni Distinguished Professor
of Statistics at the University of North Carolina where he has been a
professor since 1962. His graduate training was at the University of
London where he also served on the faculty for a number of years. He is
the author of many papers and books and recently he has taken on a new

enterprise - the preparation of an Encyclopedia of Statistical Sciences.
He also has interests as an actuary and is a Fellow of the Institute of
Actuaries and a member of ASTIN in addition to being a Fellow of the
Royal Statistical Society and of the American Statistical Association.

DR. ELANDT-JOHNSON AND DR. JOHNSON: As Seal (1977) has pointed out,
actuaries had been constructing and studying life tables - in particular,
multiple decrement life tables - for some i00 years before the recent (25
years or so) growth of interest in this topic among statisticians. This
growth was fostered, in large part, by the very substantial increase in
the number of statisticians employed in what may be broadly called
"health industries", who were required to analyze the results of
controlled clinical trials, and data from longitudinal epidemiological
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studies. Using mathematical ideas of probability theory, statisticians
have developed their own concepts and techniques for analysis of survival
data, sometimes paying very little or no attention to the techniques
already existing in actuarial science. There is consequently a
considerable difference in notation and concepts.

In recent years, relations between the two approaches have become, in
general, more clearly understood; our discussion is intended to be a
modest contribution to the continuation of this process.

We use the term "biometrlc" rather than "probabilistic" or "statistical"
to describe the second point of view in our title in recognition of the
fact that a large part of recent developments have arisen from work in
biological (including medical) applications. The basic probabilistic
ideas, however, are derived from reliability theory whose main field of
applications is quality control in industry.

A basic tool of the actuary is the life table; the corresponding
statistical concept is the survival distribution function (SDF).

Denoting age (or survival time) by x, the relations between the two are
summarized as follows:

LIFETABLE SURVIVALANALYSIS

Expected number surviving at age x

_X .__

Expected proportion surviving at age x (survival function)

x>xj= (x)
Conditional probability of death between age x and x + 1
given alive at age x

qx=l--_ qx:Prlx<X_<x + iIX_x} : i-_ (_.i)
Force of mortality (hazard rate) _;¢_}

,
/_'<:-x--;-"<ix _('x)= J <#sxc_<}5x0<) d_,
It is easy to see that

Sx(X)= (i - qo) (i - ql).....(l-qx_l), and CJ)

Xx =l- Sx(x) c2)
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The further life table functions (dx, lx, ix, etc.) can be derived
using probability theory.

While actuaries certainly used the concept of probability (though not

always spelled out), it seems that they primarily thought of the life
table as representing the progress of a cohort of I0 newborn individuals
through life, rather than representing the distribution of lifetimes.

Actuaries have from time to time been concerned about formulating

mathematical "laws of mortality"; the corresponding statistical problem
is that of finding an appropriate parametric distribution function.
Statisticians tend to give greater importance to this aspect than
actuaries, whose life tables were often constructed by estimating values
of qx, and then combining them by means of formula (i), without
ensuring a parametric lifetime distribution. There are of course, not
unusual exceptions, from both sides. Gompertz or Makeham-Gompertz laws
were used in construction of life tables - the British HM table is an

early example - while the Kaplan-Meier (1958) formula, which results from
a "distribution-free" approach, has been in common use among
statisticians for over two decades.

There are at least two topics related to life tables in which differences
between the two approaches can clearly be seen: (i) multiple decrement
life tables and competing risk theory, and (ii) select life tables and
use of concomitant variables in survival models.

Suppose that causes of death are classified into k disjoint classes,

CI, C2,... , Ck; we will, for convenience, refer to "cause Cl" ,
"cause C2, , etc. From mortality records (death certificates) we can
identify the cause of death and time (age) at death.

A good deal of recent theoretical development in the theory of competing
risks has been based on a concept of potential times "due to die",

X1,...,Xk, one for each cause. In fact, this concept is adapted from
reliability theory, where it is customary to speak about failures of
different components, each component having its own time "due to fail".
It is, then, convenient to introduce their joint survival function

Under the assumption (AI) that death is ascribed to just one cause, the
observed time at death is, in fact, X=min (Xl,...,Xk) , and the
overall survival function is

SX(X) : Sl...k(X, x .....x). (q)

We now have to distinguish forces of mortality, "survival functions",
ere., for cause C_ in the presence and in the absence of all other
causes. We add the prefix "a" to the corresponding function when we

refer to presence, and no prefix for absence of all other causes. For
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example, the force of mortality for cause C_ acting in the presence of all
other causes is denoted by a_ (x); and when C_ is acting alone it is

denoted by /_(x). (In British notation, 6L.a_c(x)is denoted by [_x_x,
and /x_(x) by _ while the corresponding U.S. notation is /_
and _'_x) ) respectively. Similarly, cUE.. _x coincide with

British(_)_,_ andu.s._, _ _ "
respectively. ) Note that

al'_'(x):-s......,4;,,.:..,x).... 'd_ I{xr=_ _o_r=,,......k_ (_)
and in view of assumption A1,

&) = _._, (X) ÷ O..U.a(X) * ..... + _ C×). (_)

It is easy to see (c.f., also Gail (1975))that

where

The latter can be interpreted as a "survival function" for cause C_ alone
if the force of mortality in the absence of all other causes was equal to
the force of mortality in their presence, that is, (assumption A2),

,u,o<(×)= o._, _3 , ,x =h2_...... ,K (q')

When using the concept of joint SDF, (9) is equivalent to the assumption

that X1, X2,...,X k are mutually independent. Unfortunately, this
independence cannot be tested. If this assumption, or some similar
assumption, is not justified (e.g., on biological grounds), we face the

problem of nonidentifiability: the joint survival function cannot be
identified from mortality data alone. There exists an infinity of

possible Joint distributions of XI,...,Xk, which produce the same
observable survival distribution SX(X) and identified cause of death.
[e.g., Cox (1962), Tsiatis (1975_.

The difficulty in regard to both the nonidentifiability of

Sl...k(Xl,...,x k) and the actuarial assumption_(_a_g_) can, to
some extent, be resolved.

Let

denote the probability function that the person aged x will eventually
die from cause C_ in the presence of all other causes. Then
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s a) Z;
It is easy to see that

aPl(x) + aP2(x) +...+ aPk(X) = SX (x) . (12)

The definition of the aP_(x)'s (and then of SX(X) and G_(x)'s does
not require introduction of _times due to die n and their joint SDF, so
that assumption A2 no longer implies independence.

The approach just discussed is, in fact, an actuarial approach to

construction of multiple decrement life tables. The SX(X) corresponds
to _,/_o) the _P_(x) corresponds to _x/_o_ while _(x)
corresponds to _x/_o Formal mathematical bases for deriving SxdX),
using the probability functions m_(×) s5 can be found in Cox (1962)

and Berman (1963). The meaning of G_ (x) (and _x ) re_ins, however,
obscure.

Why must it be interpreted as the SDF for cause C _ acting alone, when
other causes have been eliminated? Chronic diseases, which are now major
causes of death, are mutually associated in one way or another; only
greater knowledge of the history of diseases could help (though still
speculatively) in regard to the effect of "elimination" of a cause. In
the present stage of knowledge, it would be helpful to regard _(x) as a
(hypothetical) "waiting time" distribution for cause C_ with the force

of mortality _(x). [Elandt-Johnson & Johnson (19_0), Chapters 9-12].
No strong physical interpretation has to be associated with G_ (x) (or
_but it can be useful as a tool in estimation problems, (using
mortality data from cause C_ only, while deaths from other causes are
treated as withdrawals). In our opinion, the tables on effect of cause
"elimination" in the National Life Tables by Causes of Death are
misleading and should be omitted, or interpreted in another way.

The results discussed in this section are sun_marized as follows:

LIFE TABLES BY CAUSES OF DEATH COMPETING RISK ANALYSIS

Expected number surviving at age x

_x .......

Expected proportion surviving at age x

Expected proportion of individuals who die after age x from cause Cm in
the presence of all other causes

Force of mortality for cause Cg in the presence of all other causes

a'_=x :- _-'_-x" dX
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"Waiting time" distribution for cause C_ alone

In most _ontrolled clinical trials or longitudinal studies, measurements
of many variables (blood pressure, cigarette smoking, etc.) are routinely
obtained. Statisticians have attempted to make use of this information
by incorporating concomitant variables in the parametric models they
construct. This is usually done by representing the hazard rate (force
of mortality) in a parametric (or semi-parametric, that is, without
specifying the hazard rate completely) form. For example, Cox (1972)
suggested a model of hazard rate at time t in the form

where z= (z,>zz_ ..... _Zs) are concomitant variables, and /.c(t) is an
arbitrary underlying hazard. Several other models for /j_(t_z) can be
found in the ]Literature (see Elandt-Johnson & Johnson (1980), Chapter 13).

It is perhaps, fair to say that, so far, most of this modeling has been
(loneon an arbitrary basis rather than by application of any specific
scientific principles or theory.

Models incorporating effects of concomitant variables can be regarded as
rather elaborate forms of select and/or sectional life tables. If the

only variables are "age at entry" and "time since entry," then there is,
of course, an exact parallel with select tables, though the selection is
often negative.

Models with concomitant variables can be estimated from a relatively
small volume of observations, but construction of select life tables
requires a large body of data - effectively to allow for stratification.
Therefore, the results of survival analysis with concomitant information
are rarely presented in the form of select life tables. There is,
however, an interesting exception in a report by Tallis et al. (1973) on

breast cancer among women in Melbourne, Australia. (Here "entry" is
registration as having breast cancer.) Not only are select life tables
presented, but there are separate tables on each of 12 combinations: (4
stages of disease) x (3 types of tumor malignancy).

Comparison of mortality at various times after operation with that among

general population at the same attained age (aggregate mortality), though
not in the form of select life tables, is sometimes presented e.g.,
Cutler and Axtell (1963) .

Adequate presentation of the information continued in fitted models which
incorporate several concomitant variables in life table form would often
call for so many select life tables as to constitute a small library. A
great advantage of mathematical formulation of hazard rate is the
condensed presentation and by using computer programs, the flexibility to
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incorporate many covariables. A disadvantage is that the assumptions, on
which models are based, are often not well justified and consequently,
the SDF's corresponding to certain combinations of concomitant variables
may be quite unrealistic.

A few related comments should be made at this point. In the estimation

of central death rate, mx, (and so in estimation of qx) the concept
of "person-time units exposed to risk" plays an essential role. This
concept appears to be a casualty of the statistical approach.
Statisticians tend to prefer to approximate the survival distribution
(and sometimes also the distribution of "time due for withdrawal"), in a
given age group, by uniform or exponential distribution. Using further
assumptions - for example, that, on the average, the withdrawal time is
in the middle of the age group interval - the statisticians construct a
likelihood function and come up with a so-called "maximum likelihood

estimator" of qx- This approach is called, by some statisticians,
"scientific" while the actuarial approach, based on the concept of
person-years, is named "intuitive".

First, we notice that the actuarial estimator of qx,

is, indeed, a "maximum likelihood" estimator, when the exponential
approximation to the survival distribution is used, though it was
originally derived without reference to this fact. More details on
comparisons of various estimators of qx can be found in Elandt-Johnson
and Johnson (1980), Chapter 6.

Second, the concept of "person-years of exposed to risk" beyond its value
as a technical tool in estimating death rates, provides an easily
understood index to the amount of data available in various

subpopulations (e.g., age groups, sections, etc.) of the experience.

We also note the unfortunate fact that in the analysis of clinical trials
data, "life table" is used to mean what, for many years, has been termed
"experience". What has been traditionally called a "life table," seems
to be called in analysis of survival data from clinical trials, a
"theoretical life table."

Even more confusion is caused by using the terms "rate" and "probability"

interchangeably. Clearly, qx is a probability, but in actuarial
terminology it is termed "mortality rate" while the central rate, mx,
is termed a "death rate". It is important to recognize the difference
between rate and proportion to avoid confusion Elandt-Johnson, (1975) .
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DR. KOCH: I am sure that everyone enjoyed the dialogue and the
information on the different perspectives that are in existence with
respect to biomedical research and actuarial science as well as the
concern over language. The problem of specialized language not only
exists in terms of biometricians and actuaries but statisticians and

epidemiologists often tend to use somewhat different language for the
same thing. It would seem that each person who has some kind of interest
in the use of probabilistic or statistical methods in a particular study
has a tendency to develop his or her own language and set of methods
almost independent of what exists in other areas. We are trying to

bridge the gap so that this tends not to happen at least to the extent
that it has in the past.
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The third presentation will be given by Professor Ralph Buncher who is
the Director of the Division of Biostatistics and Epidemiology at the

University of Cincinnati. His presentation, entitled "Is the Healthy
Worker Effect Due to Select Mortality?," is concerned with the particular

type of phenomena seen in epidemiological research, an area which has an
actuarial flavor as well as a biostatistical flavor. Dr. Buncher

received his graduate training at Harvard University. Since that time he
has served at Merrell-National Laboratories as well as the University of

Cincinnati as I mentioned previously. He has many professional
activities including efforts in the area of occupational health as well
as biopharmaceutical research. In the latter context he is co-editor of
a soon to be published research monograph entitled, Statistics in the

Pharmaceutical Industry. He is also the current chairman of the American
Statistical Association Biopharmaceutical Section.

DR. C. RALPH BUNCHER: This paper is being presented because I believe
this topic can best be resolved by both actuaries and those who work in
biostatistics and epidemiology joining forces and pooling their
knowledge. The topic of interest is the SO called Healthy Worker Effect -
said to be a variety of select mortality. My ultimate goal is to prove
that in some circumstances working is healthy. In trying to arrive at
that conclusion, one must first resolve a number of issues of bias and
analysis which complicate the understanding of the problem. An
abbreviated survey of the literature in this field has demonstrated to me
that there are many factors that must be considered. We shall discuss
these issues in this paper.

In this discussion I shall first describe the studies of occupational

mortality as they are usually done, then I shall define the Healthy
Worker Effect and give the standard epidemiological explanations, and
finally discuss some of the possible alternative explanations and
confounding factors.

Let us discuss one variety of occupational mortality study. This type of
study goes under many different names such as a historical prospective
study or a cohort mortality study. A group of workers who become the
cohort to be followed are defined based on a common work environment.

Usually this definition involves specific work exposures or potential

exposures, certain calendar years of interest, a minimum time on the job,
and occasionally, demographic limitations such as males only. The health
factors of interest are usually death from chronic disease, especially
cancer. Thus those individuals newly hired, or who have only been
exposed for a few years in periods of time too short for a chronic
disease to appear, are of much less interest than those who have been on
the job for many years and for whom many years have passed since their
first exposure to that work environment.

Thus, a typical study might have the following characteristics. All
employees who worked for the ABC Chemical Company during the interval

from i January 1948 through 31 December 1974 are eligible for the study
cohort. Each person must have worked at least one year in the
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manufacturing area during that period of time. Thus, persons such as

guards, truck drivers, secretaries in the office, and gardeners would be

excluded. White collar employees and other management personnel would be

included provided they either worked in the factory along side of the

hourly employees and thus were also exposed to the chemical or if they

had previously been hourly employees working in the factory prior to

their promotion to a management position. The minimum exposure of one

year allows sufficient time on the job so that one could anticipate a

biologic effect being likely and at the same time eliminates from

consideration those employees who worked only for short periods at this

plant. Such short term employees are more likely to have worked for only

short periods of time at several other locations making exposure status

very difficult to measure and making follow-up more difficult.

When one is measuring mortality, one notes that the persons in the cohort

are only at risk of dying after they have worked at least one year during

the time period under consideration; otherwise, these individuals would

not be in the study had they died prior to completing one year on the

job. In terms of exposure, one measures all of the time the employee

spent on the job whether during the calendar years in the cohort

definition or during those years prior to the ones under study since

prior years also involve exposure to the chemical. These prior years are

involved with calculations of the risk and estimating minimum number of

years on the job or after initial exposure before one sees the effect, if

any.

We are here discussing only studies that yield death rates for each cause

of death. The denominator consists of person-years at risk of dying.

Some studies use the deaths as the base (denominator) and look at the

proportion of deaths due to each cause; these proportionate mortality

studies are not under discussion.

Each worker in the cohort is then followed to some fixed date to

ascertain whether the individual is still alive or has died. Thus, all

persons in the study might be followed through 31 December 1978 and their

vital status as of that day is determined. Usually, most of the workers

are still on the job or are retirees whose whereabouts are known to the

company because of benefit plans such as an annuity contract. Those

individuals who have left employment must be found through various

follow-up mechanisms to ascertain their status. This can be done through

contacts in the workplace, telephone directories, drivers license

records, city directories, and by ascertaining status from the U.S.

Social Security Administration. If none of these methods work which is

usually true for some 10% or less of the cohort, then special searches

must be made. Given that many of these studies involve several decades

of old work records, a 90% follow-up rate is usually considered adequate

although 95% and above is considered good. The crucial problem is the

question of whether those who have not been followed have a vital status

and distribution of causes of death similar to the rest of the cohort.
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One then creates a life table analysis or more commonly a comparison of
the observed death rates with those to be expected in some standard

population group. The usual standard is the vital statistics population
of the United States which provides adequate numbers and is easily

available in publications of the federal government. It is also possible
to use the vital statistics of the state in which the plant is located as
a comparison group but this introduces smaller numbers and raises the
issue of whether the death actually occurred in that state or whether the
work force was sufficiently mobile that persons, especially after
retirement, moved to other states and died there thus calling into
question the standard of using the vital statistics from the state in
which the plant is located. Obviously, it would be very useful to have a
set of vital statistics for employed persons or employed persons plus
retirees as a standard rather than include all of the vital statistics

population. Unfortunately, this concept is both difficult on a
theoretical basis (try to define exactly who should be in such a
comparison group and get others to agree) and on a practical basis is not
generally available to occupational epidemiologists in any form at this
time.

When total mortality of the work cohort is compared to total mortality of
the vital statistics population, the usual finding is that the number of
observed deaths is less than the number to be expected based on the vital
statistics population, not infrequently being 70 to 80 percent of the
expected. The expected numbers are derived using individuals of the same
sex and race in five year age groups and for either specific calendar
years or perhaps five year calendar intervals. Deaths (the numerators)
come from vital statistics while the population base (the denominators)
comes from census data. Variations on this theme are possible. The
point to be made here is that these other demographic variables are
controlled for and hence are not responsible for differences between the

observed and the expected number of deaths.

Since the observed number of deaths in total is typically less than the
expected number of deaths in these occupational epidemiology studies,
this finding has been called the Healthy Worker Effect. The title
implies that those who worked in the factory were selected individuals
from the vital statistics population such that only healthier individuals
were in the work force.

Two explanations are usually given as the explanation of the Healthy
Worker Effect. The first is that the medical preemployment examinations
select out the unhealthy and the second is that there is self selection
such that the unhealthy do not apply for employment. Each of these
explanations contains obvious elements of truth whether they provide a
complete explanation for the effect or not. Physical examinations can
select out those with a bad heart, malfunctioning lungs, kidney or liver
disease, and other signs of impending mortality. On the other hand, the

ability of even modern medicine to predict mortality several years hence
applies only to a small fragment of the population. Thus this type of
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selection could only explain a small portion of the commonly observed

20-30% reduction in mortality found and called the Healthy Worker

Effect. Moreover, the nature of this medical selection is such that the

Healthy Worker Effect should only appear for about a decade after initial

employment. Finally, many preemployment ph_alcs/8 have been

sufficiently perfunctory that only the most gross abnormalities were

likely to have been found and become cause for rejection. We note that

current employment law, which rejects criteria predictive of mortality

unless those criteria also indicate that a person cannot perform a job,

may in future studies produce changes in this portion of the effect.

A second portion of the effect is the bias produced by self selection on

the part of the individuals who might apply for the jobs. Thus workers

with cystic fibrosis and other lung diseases are unlikely to apply for

positions in dusty environments. Physically frail persons may not apply

for heavy physical labor. Persons who react to various chemicals or have

allergies or other departures from the usual may choose to avoid working

in a factory type environment looking instead for a job in an air

conditioned office building.

Is there an analog to the Healthy Worker Effect in other studies? One

answer is to recall the well known life insurance "select period" found

as a routine part of the preparation of mortality tables for persons with

life insurance. This select period is explained because an applicant for

life insurance must meet certain underwriting standards. Thus those

insured on a standard basis have started in a pool of applicants from

which were eliminated those who are insured on other than a standard

basis and those who are considered uninsurable. Actuaries then find that

the rate of mortality is lower for a group of lives just insured on a

standard basis at age 30 than another group of lives age 30 similarly

insured a year ago. In turn each of these has lower mortality than

another group age 30 who were insured 2 years ago at age 28, and so forth.

Jordan (1967) tells us that a select period may last as long as ten

years, and sometimes even up to 15 years. I have never seen a reference

that would indicate that a select period would last longer than 20 years

even given a special life insurance physical examination which most

persons would consider far more rigorous than a preemployment physical
examination.

The life insurance information seems to tell us that no matter how

rigorously we select a group of individuals who represent one-third to

two-thirds of the total group , after two decades the survivors of the
select group will be the same as the survivors of the unselected group.

This observation should not come as a great surprise to anyone since it

is merely the factual representation of our inability to predict medical

events far into the future and our observation that entropy increases so

that the survivors of a highly selected group are eventually the same as
those not selected. Thus we are left with the conclusion that selection

is a self-limiting process.
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Clearly then, if we are to interpret the Healthy Worker Effect as a
selection-at-time-of-employment effect, our other experience suggests
that this selectivity will disappear after a couple of decades. Any
investigator who wishes to point out that a Healthy Worker Effect has
been found in an occupational epidemiology study should show us that
effect separately based on the first decade after selection and the
second decade after selection. If there is a component of better health
after the first two decades of work, then an alternative explanation must
be sought.

Is it possible that work is good for you especially in the sense of a
lowered mortality rate caused by working? Obviously there are many steps
to be taken before a causal relationship could be concluded. In this
section, let us consider the likely paths by which work might reduce
mortality. Let us explore the ways in which work might serve as an
"etiologic agent" for reducing mortality.

First, many occupations involve a constant low level of exercise. Few
occupations still involve a great deal of physical exercise in the North
American world of the 1980's. Many occupations require walking perhaps
as much as several miles in a day and climbing stairs or their
equivalent. The literature on exercise and heart disease suggests that
constant exercise tends to reduce the cardiovascular death rate. There

are a number of problems with this literature, and although the
conclusion is generally accepted, there are epidemiologists who either do
not believe in the causal relationship or believe that the risk reduction
is minimal. Nevertheless, the report by Brand et al. (1979) on a cohort
of longshoremen is relatively convincing.

External causes of death, especially accidents, provide another area to
be explored. A great deal of effort is expended by employers and by
governmental agencies such as the Occupational Safety and Health
Administration on the education of workers in accident prevention.
Workers are reminded of safe habits on the job which raises the question
of whether that training has carryover to the nonjob hours such that
those same workers are involved in fewer accidents in the home, in their
automobiles, and in pursuit of their hobbies. Although most work groups
have lower rates of death due to external causes, an interesting finding
in some studies is that high income workers in their 20's may have more
automobile accidents since these persons are better able to purchase the
high performance automobiles which are statistically more likely to be
involved in automobile accidents. The other external causes of death,
suicide and homicide, are also frequently found to be less common in
occupational cohorts than in vital statistics populations. An
interesting possibility of association between a long term job and a
reduction in both suicide and homicide is worthy of additional study.

A third possibility to consider involves conformity to the norm. In
spite of occasional exceptions, one would have to believe that the norm
of the workplace tends to be more healthy than the individual choices
which might be exercised. For example, excessive drinking, excessive
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quarreling, and other personality problems are activities outside the
norm of a working place. The norm would dictate taking care of oneself
such as taking antihypertensive medication. In these matters it is
possible that the social group of the workplace helps the individual
towards healthy behavior which lowers mortality.

Another important characteristic of the workplace is that it provides and
requires a scheduled life for the individual. Some of the findings in
various mortality studies, e.g., those who eat breakfast have lower death
rates, can be interpreted to mean that those people who live a scheduled
life tend to have better mortality than those who do not adhere to such
biologic rhythms. The anecdotal accounts of workers who have retired and
rapidly go downhill to death could be explained by too rapid changes in
these biologic rhythms. An individual without a workplace imposed life
schedule is faced with creating such a schedule.

Obviously many steps must be taken before these potential healthy effects
of the workplace can be claimed. One of the requirements for proving
causation involves demonstrating the time basis of a causal relationship
so that we don't confuse it with an association. For example, one must
be careful to differentiate between work causing better health and the
inverse relationship that poor health causes lack of work.

These problems can be grouped into three categories that need
verification. These three categories could be called selectivity,
balanced risks, and calculation errors and biases. We shall consider
each in turn.

A number of problems concerning selectivity must be resolved. For
example, short term workers, those excluded from the usual cohort
mortality study, may be different from those included in at least two
different ways. First, it may be that high turnover of employees may be
associated with a high death rate. Alcoholics, heavier drug users, those
with strong personality conflicts, etc. may have both a high job turnover
and a higher death rate. Alternatively it may be that those who are
especially sensitive to the workplace environment are the ones who

leave. Those who have an itch, a rash, an uncomfortable feeling,
difficulty breathing, watery eyes, and so forth may leave the workplace

early and be excluded from studies. The concept is of a person who is
exposed only briefly but because of special sensitivity may have been
exposed to a large enough personal dose of the chemical under study to
show biologic effects. Unfortunately, those effects would be almost
impossible to associate with the short duration cause because of the
myriad of potentially conflicting causes for that individual. In these
instances, the observed effect of the workplace would be a lower death
rate because those who would raise that death rate have been excluded

from the epidemiologic analysis, or even worse included in the comparison
group.
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Another alternative is that the high and low risks of death are balanced
if we were to look at a census of mortality studies and the numbers of

workers involved. It would be excellent to have a sort of input/output
table showing numbers of workers in different occupations and the

mortality rates of those occupations. This combined information in a
form comparable to econometric models could tell us whether those special
work groups such as asbestos workers who are at an increased death rate
balance those who show the Healthy Worker Effect. Most epidemiologists

would point out that the large quantity of workers whose workplace is an
air conditioned office (including actuaries and biostatisticians) have

been little studied because of the assumption that their mortality is at
least as good as those occupational groups who have been found to exhibit
the Healthy Worker Effect. The more general question is to find where is
the excess of mortality that balances out the Healthy Worker Effect
reported in various occupational groups.

Actuaries have done a lot of important work along these lines and
published some of those results in the actuarial literature. I believe
that some cooperative sessions involving both the actuarial community and
the epidemiologic/biostatistical community could produce a great deal of
fruitful information on this subject based on both published and
unpublished sources. Risk levels by occupation are better documented
than numbers of persons exposed to each risk level.

At least five different possible calculation errors and biases should
also be considered in these studies. First, we note that in every study
there is a small segment of persons who are lost to follow-up. These
people tend to be "loners," that is those without very many friends or
much family. The assumption must be made that these individuals are
similar to those in the rest of the study. If the percentage of lost to
follow-up is not very small and these people died from different causes
of death and/or at a more rapid rate, then there is an important bias in
the study data.

It is possible that some of the analysts have overcounted person years of
exposure in the denominator of their death rates. For example, there is
an "immortal period" as mentioned previously during which time e worker
cannot die and be in the study according to the definition of the
cohort. Clearly these person years should not be counted in the death
rates since the worker is not at risk of dying during these years of
qualifying for the study. While I have great faith in the
epidemiologists doing these studies, the complexity of communication
amongst those in charge of worker follow-up, those who record and

abstract the work history, those doing computer programming, and the
epidemiologist suggest to me that this is a possible source of
underestimating death rates.

Problems with causes of death certification must also be understood.

There are a limited number of special coders (nosologists) who do the
work on occupational epidemiology studies and most of these persons are
aware of the special interest in cancer in these studies. If the data
are to be compared to vital statistics death coding, then it is important
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that the special coders do not code differently than those who code vital

statistics. This assumption could use much greater verification. It may

even be that a few death coders sometimes note the occupation in choosing

an underlying cause of death. Physicians filling out the forms might

also be subject to this bias. The ultimate difficulty, for the physician

filling out the death certificate and the coder in choosing between those

who die from cancer compared to those who die with cancer but from

another cause, is almost without objective solution. Clearly the items

in this paragraph relate more to the distribution of the causes of death

rather than the total death rate.

Changes in the death rates also produce some problems since vital

statistics generally take several years before they are published. For

example, we all know that death rates have fallen rapidly through the

decade of the 70s. Within the total, there have been major declines in

cardiovascular death rates even as the rates for respiratory cancer are

rising rapidly. Thus if the 1975 vital statistics are used to provide

expected deaths for the years 1976 through 1978, the actual death rate in

those years will be less than the expected.

A final problem for discussion is the standard of comparison. Working

groups which have been stuc_ied tend to come from industrial states which

are more urban and have higher death rates than the rest of the United

States. What then is the appropriate standard of comparison? Is it the

total United States or the single state of interest? For example, I am

now involved in a study in which the work group has a higher lung cancer

death rate than the total United States but not higher than the local

state rate.

These issues could be resolved by pooling resources of the actuarial

community and the occupational epidemiology community. Many of these

issues could be resolved almost immediately based on personal experience

and reports in the literature; others would require the acquisition of a

more extensive data base. If we are able to understand these secondary

issues, then we can proceed with trying to understand better the Healthy

Worker Effect and whether working causes lower mortality.
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DR. KOCH: We will now have a formal discussion by Tom Herzog. Tom will
dicuss the three papers from the viewpoint of the actuary. He is an
actuary as well as a mathematical statistician for FHA and HUD. His
present duties include statistical surveys, sample design consultation
and analysis using procedures such as log linear models and logistic and
robust regression. He had previously worked with the Social Security
Administration. Discussion from the floor will follow.

MR. THOMAS N. HERZOG: I would like to thank Bob Johansen and Gary Koch

for organizing this session. I would also like to thank the speakers for
their stimulating talks. Since the only paper I have had for more than a
week was that of the Johnsons, my remarks will be brief and of a general
nature.

With the advent of modern computers, the development and application of
multivariate statistical procedures has increased rapidly during the last
two or three decades. Such techniques as multidimensional contingency
table analysis (which Gary Koch has been advocating for some time now)
and regression models of the type described by Norman Breslow are quite
powerful and useful techniques. Some of these multivariate procedures
can be used to construct statistical models that indicate which predictor
variables and interaction effects are important and which are not.

Multivariate statistical techniques have great potential for successful
application in the actuarial field. One important area of potential
application is risk-classification. For example, actuaries might use
these techniques to determine what characteristics account for mortality

differences among insureds. Do nonsmokers have a greater life expectancy
than smokers because they do not smoke or is this difference explained by
the observation that nonsmokers tend to be richer than smokers and that

the rich tend to live longer? The actuary should have sufficient
familiarity with multivariate statistical procedures so that, when the
need to use them arises, he can at least request the appropriate outside
help if he feels unable to carry out the analysis himself.

While these procedures are quite important, they are not always
completely trivial to carry out. One issue which frequently arises here
concerns sample size requirements. Are there enough observations to
examine all of the predictor variables likely to be important? Another
practical issue is how, or perhaps more appropriately, whether to write
your own computer program to perform the desired analysis. Some of these
procedures, such as the regression procedure discussed here by Norman
Breslow, require the use of quite sophisticated numerical analysis
techniques in order to (i) ensure that the procedure converges in the
minimal amount of time and (2) that the convergence is to the "eorrect"

solution. There are, of course, several widely used statistical packages
which may contain the required software. Two such statistical packages
are

(i) The Biomedical Computer Programs, Series P (known as BMDP) which
is produced and distributed by the UCLA School of Medicine, and



1404 DISCUSSION---CONCURRENT SESSIONS

(2) The Statistical Analysis System (known as SAS) which is brought
to you by the folks at the SAS Institute, which was formerly
associated with North Carolina State University.

Both of these packages contain logistic regression programs which are
similar to the type of regression analysis suggested by Dr. Breslow.

Another package which is reputed to be very good is the IMSL package--
standing for International Mathematics and Statistics Library.

Let me now move on to some additional specific remarks about the

individual papers just presented.

As an addendum to the Johnsons' discussion of competing risks, I would
like to suggest an additional reference: A monograph written by Z. W.

Birnbaum (1979) entitled On the Mathematics of Competing Risks. This
monograph is an introductory report on the mathematics of competing risks

which attempts to unify the theory common to several disciplines_
including actuarial science and biostatistics. It is available_ free of
charge, from the publications office of the National Center for Health
Statistics.

I will now make some remarks which some of our biometrician friends here

may possibly regard as controversial. I would, therefore, be most
interested in their reaction to my ensuing comments.

The recent actuarial literature, as well as the biostatistics literature,
contains a number of papers on Bayesian approaches to the construction of
life tables. In particular, I refer to the papers on Bayesian graduation
by Kimeldorf and Jones (1967), and Hickman and Miller (1977 and 1979).
In addition, Cornfield and Detre (1977) have written a paper entitled

Bayesian Life Table Analysis. There is also a Lindley (1979) article
entitled Analysis of Life Tables with Grouping and Withdrawals. This
work describes a Bayesian approach to a problem considered earlier by
Breslow and Crowley (1974). Some of the advantages of a Bayesian
approach to graduation are that:

(i) It forces the analyst to explicitly state his principal
assumptions;

(2) It permits the analyst to make use of his prior subjective
notions of the salient aspects of the data;

(3) It is a unified and formal approach; and finally,

(4) It provides a posterior distribution of the statistics of
interest, thereby allowing the analyst to compute estimated
variances of the statistics of interest.

In my own work at HUD, I have used a Bayesian graduation procedure to
construct a double-decrement table for single-family FHA 30-year term
mortgage insurance contracts.
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Moving briefly to Dr. Breslow's presentation, I had a slight concern with
his application. If I consider his final model as a multidimensional
contingency table, the table would have 7 dimensions since the regression
model has 1 dependent and 6 predictor variables. Thus, I would have only
268 observations partitioned into a minimum of 128 cells--a very sparse
table indeed. Hopefully, Dr. Breslow and/or Dr. Koch can allay my concerns
here.

In conclusion, I urge my fellow actuaries not to end their statistical
education with Part V of the Society's examinations, but to follow the lead
of Bob Johansen and at least become familiar with some of the multivariate

statistical procedures discussed here today.
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MR. ROY GOLDMAN: I would like to ask Dr. Breslow how his model relates to

a log linear modeling. Is it the same thing?

DR BRESLOW: Yes. If one develops the model in terms of the conditional
probability of survival over subintervals, the model states that the
logarithm of the survival rate can be expressed as a linear function of the
co-variables.

DR. KOCH: With respect to the related question that Tom Herzog raised
about the estimation in the example, one of the strengths of the types of
methods that have been used in biomedical research is that if one has a

strong enough rationale to write down the likelihood function for the data,
that is, if one can presume that the mathematical model that one is using
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does adequately represent reality, then it indeed does provide a framework

for generating estimates of the parameters that will have statistical

validity. This can be done even if one has small samples. In actuarial

studies, one often has available large amounts of data and estimates are

produced from such data. In biomedical research, there are small amounts

of data. The question is - what is the difference between the two

frameworks. The difference is simply the mathematical model. In other

words, if one wants to produce estimates that only depend on the data, one

needs a large amount of data. In that case, one can produce those

estimates, and there are neither assumptions nor necessarily any apologies
for them.

On the other hand, if it turns out that one has a small amount of data,

what one proceeds to do is to use a mathematical model. The mathematical

model produces what one might otherwise have obtained with large amounts of

data. Now in this particular case, one has to evaluate the assumptions.

But if one can do analyses like what Dr. Breslow illustrated, one can often

find that the data are compatible with the mode] _o a reasonable degree of

accuracy - in which case one then has the power of the results.

DR BRESLOW: I'd like to follow up on that. That's very much the attitude

here. It was mentioned that we had 128 descriptions of the population, and

certainly with thousands and thousands of observations, one could make a

separate estimate of the survival within each one of those 128 cells. What

we are trying to do with the multivariate model is to borrow strength from

neighboring cells to make that estimate, and the kind of assumption which

is involved is, for example, that the effect of white blood count is the

same for young children as for older children, or that the effect of

treatment is the same whether you have a high white count initially or a

low white count. Actually it is of particular interest to look at

interactions between treatment and the prognostic variables. Very often

one finds that for those patients who are at a very high risk of death,

e.g., persons with cancer, treatment simply does not work as a variable.

Most of the treatment effects seen are in patients who were reasonably good

risks.

MR. EDWARD A. LEW: Time and circumstances do not permit me to do justice

to the three presentations on biometric methods which we have been

privileged to hear. I regret not having been able to see in advance the

manuscripts relating to Dr. Breslow's and Dr. Buncher's presentation.

Fortunately I am familiar with one of Dr. Breslow's recent papers, entitled

"Statistical Methods for Censored Survival Data", published in 1979 in

Environmental Health Perspectives and I judge that Dr. Breslow has referred

to that paper for his presentation.
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The key concepts stressed by Dr. Breslow are the Kaplan-Meier product limit
for estimating survival and Mantel's test for appraising differences
between survival curves. The Kaplan-Meier product limit is essentially the

same as the actuarial calculation of Cp_ , when the time intervals are
s_ll and the distribution of deaths and withdrawals is reasonably stable.
Mantel's test statistic is a more sophisticated version of the chi-square
formula and is based on the fact that under the null hypothesis the vector
of observed deaths in a comparison of Y survival curves has a _¢_

dimensional hypergeometric distribution. The Mantel test statistic has
sometimes been referred to as the proportional hazards (PH) model, because
it assumes that the forces of mortality in each of the _f survival
curves are in constant ratios throughout the time period under considera-
tion. The chi-square formula gives a conservative estimate for Mantel's
test.

The catch in the more sophisticated satistical tests is whether the
implicit assumptions made correspond reasonably well to actual circum-
stances. An example of where actual circumstances may not justify
oversimplified assumptions is offered by epidemiological studies where the
end point is a diagnosis or death from a particular cause and the situation
is treated as presenting a "yes - no" dichotomy. The diagnosis of a
particular disease or certification of death involves a spectrum of
probabilities as to the accurate diagnosis of a particular disease or
accurate designation of the cause of death. It would be more realistic to
describe the situation in terms of a multinomial distribution of

probabilities that the diagnosis of a particular disease or designation of
a particular cause of death is in fact correct.

We are indebted to Drs. Elandt-Johnson and Johnson for an illuminating
exposition of the different perspectives on mortality analysis held by
actuaries and medical statisticians. These different points of view stem
from the different kinds of problems and different for_ of data which have
confronted actuaries and medical statisticians.

Actuaries have usually been required to derive death rates for practical
purposes, mostly to provide conservative estimates of future mortality.
They have generally been presented with a relatively large volume of data
and have customarily smoothed the crude death rates derived from such data
to facilitate actuarial calculations. This procedure has rarely involved
studies of the mortality fluctuations in order to learn more about the
ranges of values containing the underlying death rates at some predeter_ned
probability level. In most actuarial problems a deterministic approach has
been sufficient for the purpose. In situations where differences in death
rates appeared to reflect mainly the effects of different types of
selection - rather than variations due to random sampling - a stochastic
approach to judging the significance of differences in death rates did not
seem to be called for.
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Medical statisticians, on the other hand, have as a rule been asked to
determine survival rates, because this criterion was easily understood by
surgeons and physicians as appropriate for judging the efficacy of surgical
or medical treatment. They were usually presented with a small body of
data where variations due to random sampling could play a major role, so

that the significance of the findings had to be appraised in probability
terms. R. A. Fischer had pointed out that studies of variations due to
random sampling automatically led to the concept of a frequency
distribution, and that in such problems it was necessary to investigate
both the nature of the distribution in random samples and the statistics

designed to test the validity of the specifications of the distribution.

Actuaries did not begin to think of the mathematics of life contingencies
in stochastic terms until risk theory had evolved to encompass life
insurance problems (e.g. reinsurance). It is noteworthy, nevertheless,
that Filip Lundberg's doctoral thesis on risk theory written in 1903
introduced the length of time until the event as the basic random variable,
long before R. A. Fischer had laid the foundations of modern statistical
methods. Lundberg developed his thesis while employed by a life insurance
company, so that he presumably had the length of time elapsed until death
in mind as the random variable in life insurance.

While the classical actuarial approach to life contingencies was
deterministic and rested on expected values, it was reformulated with the
advent of risk theory in terms of the random variable "length of time until
death of a life age x." The distribution of this random variable is the
life table. If we begin with this random variable and its distribution, we
are led to a deeper conception of survival analysis. I would recommend the
Johnsons' book on survival analysis, just published by John Wiley, as a
very useful elaboration of the methods used by actuaries and medical
statisticians in mortality studies.

I find myself in complete agreement with the Johnsons that death rates from
the chronic diseases are not independent. Accordingly, I believe the
National Life Tables by Cause to be misleading. A number of life insurance
mortality investigations lend support to the proposition that most chronic
diseases are interrelated.

I would like to emphasize that actuaries have been more cautious than
medical statisticians in drawing conclusions about death rates from small
samples. They have been more conscious of the various types of biases
introduced by observational selections and less prone to judge differences
in death rates in terms of test statistics which assume simple urn models.
This has been particularly true of medico-actuarial investigations which
offer many examples of how random fluctuations in small samples are
overshadowed by biases introduced by self selection, selection due to

screening and partlcu1_Tly class selection. In the words of E. B. Wilson,
the excellence of a person as a statistician may depend largely on his or

her ability to recognize the pitfalls due to observational selection.
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Dr. Buncher's discussion of the question whether the Healthy Worker Effect
is due to select mortality can partially at least be answered by the
1970-74 group life insurance experience for all industries combined. It

shows that the death rates among actively employed men and women covered by
group life insurance were distinctly lower than the contemporaneous
ultimate ordinary insurance death rates in the age range 40 to 70 and
slightly lower in the thirties. Accordingly, the indications are that
selection for active employment is a significant force, especially as the
group life insurance experience for all industries include some occupations
with special hazards. We can attribute this selection to the screening of
a healthy population for employment and to the survival in active
employment of the healthier men and women. Studies by Fox and Collier in
the Office of Population Censuses and Surveys in England have also shown
that the low mortality in industrial cohorts is primarily due to selection
for work and survival on the job.




