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This panel will consider the question of uncertainty in loss reserves including discus-
sion of sources and measurement. The panelists will analyze the same data set from
different perspectives and discuss the strengths and weaknesses of the approaches.

MR. ROGER M. HAYNE: I am an actuary with MiUiman& Robertsen in Pasadena,
California. The panelists are Spencer Gluck and Tom Wright. Spencer is also a
consulting actuary with MiUiman & Robertson in the New York/New Jersey office.
Spencer has many years of experience in loss-reserveanalysis for primary insurers and
reinsurers, large and small. For a number of years, Spencer has been working with
stochastic models for loss-reserveanalysis and the measurement of uncertainty in
loss-reserve projection. He has made numerous presentations regarding these models
and serves on the Casualty Loss-Reserve Subcommittee of the Actuarial Standards
Board (ASB) and was active in drafting the standard of practice on discounting
reserves. He chairs the Special Subcommittee of the Actuarial Standards Board to
write the standard of practice on reflecting risk and uncertainty in loss reserves.

Tom Wright is a chartered statistician in the U.K. and has worked as a statistical
consultant in commerce and industry since 1984. He's been in property/casualty, or
as they say in the U.K. general insurance, since 1988 including three years as a
senior statistician in a large U.K. consulting firm called Bacon and Woodrow. He's
now a partner in a smallerfirm of consultants, English,Wright & Brackman which
was formed in 1993.

We're going to discuss measuring uncertainty in loss reserves. The way we're going
to structure this presentation is I'm going to lay the groundwork by identifying some
of the issues, and maybe defining a few of the buzzwords. Then Tom is going to
make a presentation on one set of methods that he has developed to estimate the
variability. Spencer will make a presentation on another s_ of methods that are
somewhat akin to Tom's. Then I'll come back in the end with a short presentation
on a third way of looking at these things.

The first question that you should ask, is what are you measuring the variability in?
Are you talking about variation or variability in the unpaid amounts? Is that the
expected value of the unpaid amounts? That's different. Are you talking about the
mean or are you talking about the entire distribution? Are you worried about the
uncertainty in a particular parameter for a particular distribution? These things are
important and this comes into one of my biggest bugaboos which is the use of the
term confidence intervals when you're talking about loss reserves. Normally a

*Mr. Wright,not a memberof thesponsoringorganizations,is Partnerof English,Wright&
Brackman in Epsom, Surrey, England.
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statistician is going to talk about a confidence interval as an interval about a parame-
ter. What we're going to be addressing here are not intervals about parameters but
distributions for the entire aggregate reserves. There's a big difference, and you'll
want to be clear that you know what you're talking about when you mention these.

Generally, we identify three different sources of uncertainty. One is called process
uncertainty which involves purely random fluctuations. Whether a claim is a dollar or
$10,000, and whether a claim happens or not, this area of uncertainty is totally
inescapable. You will always have it. The next level of uncertainty is a question of
whether the parameters that you have in your models really are the right parameters.
This is a little bit more difficult to measure. A third area of uncertainty is the question
of whether or not the models that you're using are the right models. So we're going
to adopt the terms process uncertainty, parameter uncertainty and specification error
or specification uncertainty for those three sources of uncertainty.

The first one is easiest to measure. You set up the models by throwing a die or with
random picks out of claim distributions. Once you have all your assumptions, you
can turn a bunch of cranks and get a handle on that. Parameter uncertainty is a little
bit more difficult. Specification uncertainty, or specification error, is even more
difficult.

Generally I've seen a couple of major ways to approach quantifying uncertainty in loss
reserves. One is a macro approach. The macro approach will look at the aggregate
data and the triangles alone. Both Spencer's and Tom's approaches end up being
macro approaches. They'll assume some sort of a curve or some sort of a runoff
surface on the loss data and try to fit some kind of a model to that. Oftentimes,
they're going to be stochastic. They're going to make some assumptions as to the
underlying distributions so that you can derive some information about not only the
process but the parameter risk and hopefully something about the specification error.

I would like to call the second genre of approaches micro because they kind of start
off at the lower, smaller level and looking at the individual claim, the phenomenon,
and the processes that do generate the losses. Here we'll take a look at models
based on the collective-risk approach and these are the models that I tend to like a
little bit more. They do address the actual uncertainty that arises out of claim count
and claim size. There are ways that you can build in parameter uncertainty. It turns
out that Tom, at least in his first paper, starts off with a collective-risk approach,
makes some assumptions, and ends up coming into a macro approach. Tom creates
a bridge between the micro and the macro approaches.

I sent both Tom and Spencer a data set. The data set was composed of several
loss-type triangles: one triangle of paid losses, one triangle of incurred losses, a
triangle of claims closed with payments, and I believe I sent a reported claim triangle
along with a vector of exposures. These data were for a reasonably short-tailed
liability line. We're not talking about heavy tail environmental or anything like that (not
even as long-tailed as medical malpractice). There has been much happening with the
data. There have been changes in the rates at which claims were being closed.
There have been changes in the relative adequacy of the case reserves, it is some-
thing that's close to a real data set, but it's also highly pathological. So I threw down
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the gauntlet to both Spencer and Tom to try to estimate the uncertainty present in
this data set. _rfth that, I think I'll tum it over to Tom.

MR. THOMAS S. WRIGHT: I'm going to talk about two stochastic methods, which
for the purpose of this talk, I'm calling Method A and Method B. Method A uses the
aggregate incurred data. By incurred I mean aggregate paid plus outstanding. So of
the triangles that were available, I'm using the aggregate-paid-loss triangle and the
outstanding-loss triangle. Adding the two together gives what I call aggregate
incurred.

The second method, Method B, is an average-cost-per-claim method, so it uses the
aggregate-paid-loss triangle and the triangle of nonzero claim numbers. It uses
operational time. The average cost per claim is modeled as a function of operational
time instead of development time. Operational time is defined as the proportion of
claims closed at any point, it is the cumulative number closed at any point divided by
the ultimate number; it starts off at zero at the beginningof each originyear and
eventually reachesone.

Roger saidthat he regardsmy approachesas bridgingthe gap between the micro and
macro approaches. Both these methods sort of do that. They are macro in the
sense that they're methodsthat are meant to be appliedwhen you only have
aggregate data available. But the methods are developedon the basisof mathemati-
cal models of the undedyingclaim processfor individualclaims, so they start off as
micro models in Roger'sterminology.

Both methods have a certain amount of leeway with regard to makingassumptions
within the framework, so I've applied both Methods A and B with two different sets
of assumptions. The key assumptionof Method A is the assumptionabout what
bias exists in case estimates. Generallyyou find that the amount that is eventually
paid is usuallylesson averagethan case estimates at any point. You have to make
an assumptionabout that, but the data does obviouslygive you some information
about what the appropriatefactor is.

So, in Table 1, I've run Method A with two values of this bias factor and the results
give you an idea of the sensitivityto that assumption. Under one assumption, I have
$202,000 for the total reserveand another gave me $213,000. The standard error
in the right-hand column includesboth process uncertainty and parameteruncertainty.

The process uncertainty is the uncertainty due to the inherent random nature of the
claim process. The parameter uncertainty is the uncertainty due to the fact that we
have a finite amount of data, so the parametersof any model are not going to be
100% reliablyestimated. Both those componentsare included inthe final column.

For Method B, the main parameterthat you have to specify is something calledthe
variance indexwhich I'll explain later. You can see it's a more objectivemethod in
the sense that it's not so sensitive to the value specified for this parameter. The
reason I've applied both these methods is because the availabledata includedall three
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of these triangles--aggregate paid losses, outstanding losses, and the number of
nonzero paid claims. I don't have a single method that uses all that information
simultaneously, so I've applied both methods and then performed a sort of judgmental
averaging of the final results. This is how I allow for model specification uncertainty.

TABLE 1
RESULTS

Method Assumptions Reserve Standard Error

A o/s bias factor = 1.5 $202,000 $12,000
A o/s bias factor = 2.0 213,000 12,000
B varianceindex=2.0 213,000 14,000
B variance index = 1.6 210,000 13,000

Final Estimate 210,000 13,000

What do the methods have in common? They're both based on a mathematical
model of individual claim payments. They're both fitted by iterative-weighted least
squares. That's because the mathematical model gives both an expression for the
expected liability and a variance. It turns out that the variance is a function of the
mean. Normally, to fit a model by least squares, the variance would specify the
weight given to each data point, so a point with a high variance which is relatively
uncertain would get relatively little weight in fitting the model. Such a point has
relatively little influence in determining how the model is fitted.

The purpose of fitting the model is primarily to estimate the mean. If the variance is a
function of the mean, obviously you must proceed iteratively. You have to make
initial assumptions and specify the variance so you can fit the model that estimates
the mean; then you get new estimates of the variance. Those estimates specify the
weights for a second fit, so you have to proceed iteratively. That process is equiva-
lent to minimizing a function known as the deviance or maximizing something called
the quasi-likelihood which is a generalization of maximum likelihood estimation. This
sort of technique (iterative-weighted least squares) can be done using GUM which is a
specialist package for doing precisely this. GLIM stands for generalized linear interac-
tive modeling. It can also be done in SAS which is a very well established statistical
software package. The facility to fit generalized models has only been introduced into
SAS in the last year or so. I haven't actually used it, but I'm told it now can be done
using SAS. Both methods are published in the JIA and PCAS references I mentioned,
and both have been applied many times in practice.

An informal survey was done by the General Insurance Study Group Meeting in 1993
at the Institute of Actuaries. The actuaries present were asked whether they used
stochastic methods for claims reserving. Forty percent of those respondents who
were involved in claims reservingsaid that they had used a stochastic method in
practiceat one time or another. Table 2 showsthe numberusingvarious classesof
stochastic methods. The first one is log incrementalstatic methods where you take
logsof aggregate payments andfit a model by ordinarygeneral linear modeling. The
second one is a dynamic logincremental modelthat usesthe Kalman filter-type
approach. The third one is bootstrappingwhich is a method Spencer has used in the
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past. Finally, operational time stochastic methods such as those used in my Method
B are in the last column. So they have been quite widely used in the U.K.

TABLE 2
NUMBER OF ACTUARIES WHO HAVE USED

STOCHASTIC METHODS IN PRACTICE a

LogIncremental LogIncremental Boot Operational
Static Dynamic Strapping "time

Consultants 3 3 1 7
Uoyds/RI 2 0 0 0
Insurers 7 1 2 3
Total 12 4 3 10

abasedoninformalsurveytakenat Instituteof Actuariesin1993 by theGeneralInsuranceStudy
Group.

I'm going to talk about Method A, which is the aggregate-incurred-lossmethod. It's
basedon a mathematical model of the underlyingclaim payment process,but it could
be regardedas a macro model, it's meant to be appliedwhen you don't have data on
individuallosses, but you do have an aggregate-paidtriangleand an aggregate
incurred. Even so, the model is arrivedat by consideringindividualpayments (see
formula below). The number of individualpayments is/V_ It's a number occurring in
development periodd. The size of an individualpayment isXd. In the model, the
expected number of payments occurringin any givenperiodfollows a curve of the
form shown in Chart 1. It's proportionalto the developmentperiodto the power of
some parameter multipliedby e to the power of some other parametertimes the
developmentperiod. That's a gamma-type curve. The rationalefor usingthat, apart
from the fact that empirical studiesseem to show that it's a realisticshape, is that a
claim is paid when a numberof independentprocessesare completed. First the claim
has to be reported;then it has to go throughvarious stages of processing. Each is
regarded as an independentwaiting process which can generally be well modelled as
a negative exponentialof the time for an event likethat to occur. The sum of a
number of independentnegative exponentialsis likea gamma distribution. So that's
where this form of equation comes from. That gives the expected number of claims
occurringin any development period and the variance of the number in any develop-
ment period is proportionalto the mean; that is we have Poissonclaimnumbers.
This is a standard model for that type of data.

METHOD A: UNDERLYINGMODEL

Number of Claims: E(Nd) = d a • e-_
Var(Nd) = E(Nd) (Poisson)

Size of Claims: E(Xd) ocd _
Var(Xd) o¢E(Xd ) 2 (constant c of v)

For the size of claims, X_ is the size of an individual payment made in development
period d. The model allows for the fact that payments frequently tend to increase in
size as development progresses because larger claims tend to take longer to settle
than smaller claims. SOthe equation is in the form: expected value of individual
claims is proportional to dAto the power of some parameter. For the variance of
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individual claims, the coefficient variation is assumed to be constant. The percentage
variation in claim sizes is constant, or in other words, the variance is proportional to
the mean squared.

CHART 1
METHOD A--MODEL OF MEAN NUMBER OF CLAIMS

Probability Density

/
Delay

First, Chart 1 is a model for the number of claims. This is a gamma type curve for
the probability density for the delay until payment. In a finite time interval represent-
ing a particular development year, the expected number of claims closing in that
development year is represented by this area, the expected value of/_.

For the size of individual claims, the model in Chart 2 shows that the expected value
is proportional to d_. So the case when payment sizes don't depend on delay, is
given by _ =0 shown by the straight line. Normally you have something like the
curved line where Jl takes some value between zero and one so claim sizes tend to

increase but not proportionately to the delay.

Combining those two components of the underlying process, claim numbers and
claim size, and by doing a little bit of mathematics, you can arrive at the equations
shown below. The Ydhere is the aggregate amount paid, the total of payments
made in development period d. It turns out that the expected value of that is again a
gamma-type curve as a function of d and the variance is proportional to the mean
multiplied by dA. The parameter A describes how claim size depends on delay.

METHOD A: AGGREGATE PAID LOSS Y_
Pd= E(Yd) _ d B1 . e-B2.d
Var(Yd) o¢d _ • Pd
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That model looks like Chart 3. The curve is the expected value of Y_of the total
payments made in development period d. The other curve shows the variance of _f
in a case where/I is greater than zero. That is when claim sizes tend to increase with
delay. If _1is equal to zero, then claim sizes don't tend to increase with delay. You
simply get the variance proportional to the mean so the region enclosed by the dotted
lines would be widest where the curve is highest. Because the width of that region is
two times the standard deviation, it would be proportional to the square root of the
curve. Where _1is greater, then there is a bulge to the right because the claims tend
to be larger.

CHART 2
METHOD A--MODEL OF MEAN SEVERITY

Mean _-1.7
Severity
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O

CHART 3

METHOD A--MODEL OF AGGREGATE PAID LOSSES (Y,)
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That model for the variance determines how the gamma curve for the mean should
be fitted to the data. Because the variance of each data point can be specified in
terms of the mean, you have to use iterative-weighted least squares to fit the model.
The weight given to each point is inversely proportional to the variance. Chart 4
shows a curve of some incremental aggregate paid losses and a fitted curve.

CHART 4
METHOD A--AGGREGATE PAID LOSSES: DATA AND FI'I-I'ED METHOD

X

d

There's one other point I should mention. How can we determine a suitable value for
A? The value of ,_ describes where the variation in the data is greatest and therefore
how much weight should be given to the data in fitting the model. We look at
standardized residuals which are the differences between the data and the model

scaled down according to the variance assumption coming out of the model. If the
model is right, when you do that you should have constant variance for all the
development periods. So you can look at the plots of these residuals to determine if
the variance is constant (Chart 5).

So far I've assumed that our data is aggregate paid amounts. You can also use this
approach with incurred data and it's generally better to do that if incurred data is
available (as it was in the example data set provided by Roger). Claims are reported
before they're paid so if you use that data, there's less projection to be done. This
can improve the estimates quite substantially. To do that we add outstanding to
cumulative paid and then make an adjustment to the outstanding component to allow
for the fact that case estimates are biased in general.
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CHART 5

METHOD A--STANDARDIZED RESIDUALSVERSUS DELAY (,4=O.0)
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Chart 6 illustrates what I mean. In Chart 6 the bottom curve is the cumulative paid
amount for a single origin year. The top curve is paid plus outstanding or what I call
incurred. You can see that it reaches a peak at year 5 and then decreases; that's
quite common. It starts to decrease when case estimates tend to be replaced by
smaller actual paid amounts. Because the model is applied to incremental data (the
total amount paid in each development year), and because you're using a gamma
curve, you can't have decreases. It has to be positive. We'd like to have the total of
all claims reported in that development year, i.e., the total amount actually paid rather
than case estimates. To get at that, a bulk adjustment is made to this outstanding
component. The middle curve is arrived at in this case by assuming that the out-
standing amounts on average have a bias factor of 2. This might seem to be a high
factor, but that includes the fact that there will be case estimates set up for claims
that are eventually settled for no cost. So a factor of two is not unusual. By
assuming a factor of two we get the middle curve which is halfway between the
bottom and the top curves. You can look at that middle curve incrementally rather
than cumulatively and make a judgement about whether it seems to be following a
gamma curve. If it does, then it's appropriate to fit the model to that data. It has a
shorter tail than the bottom curve, so you generally get more reliable results.

That's all I have to say about Method A in general terms. Now let's look at the
example data set. I used a bias factor of 2 which I've already shown you. In Chart
7 we used a bias factor of 1.5, so the middle curve is arrived at by knocking off a
third of the difference, or a third of outstanding.
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CHART 6

METHOD A--ORIGIN YEAR 1981 (o/s bias=2.0)
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METHOD A--ORIGIN YEAR 1981 (o/s bias = 1.5)
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Once completed, you can look at the bias adjusted incurred data on an incremental
basis for each origin year (Chart 8). It appears to follow a gamma curve. So it does
seem to fit the model. This graph is for one origin year, and shows the adjusted
incurred data and a fitted curve.

CHART 8
METHOD A--BIAS ADJUSTED INCREMENTAL INCURRED CLAIMS
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Then we must decide what parameters are appropriate to describe how the size of
losses depends on delay; we look at the standardized residual plots in Chart 5. These
plots show the difference between the data and the fitted curve divided by the
standard deviation as assumed in the model. So if the model is correct, the standard
deviation of these should not depend on the delay. We're looking for a constant
variance, the same variance at both ends. Because there are always more points at
the left end than at the right end, you would expect a higher spread of points at the
left even if the variance is constant. This is a case where I thought that there was an
increase in the variance as delay increases, so I refitted the model with the perimeter
of A equal to 0.5 which makes these points come in a bit (Chart 9). The model is
assuming that there's a higher variance in the right tail. So when I adjust for that, the
vanance becomes less; however the results were not very sensitive to the value used
for that parameter.

Table 3 is a complete set of results of the example data set using this method. The
standard error for each origin year includes both parameter uncertainty and specifica-
tion and process uncertainty. I'm not going into more details as to how those
components are calculated. I've already given you a reference to the paper. For your
information, it would be possible to separate those two components.

241



RECORD, VOLUME 20

CHART 9

METHOD A--STANDARDIZED RESIDUALS VERSUSDELAY (,4=0.5)
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TABLE 3
METHOD A-RESULTS WITH BIAS FACTOR = 1.5 _ =0.0-0.5)

OriginYear Reserve StandardError

1981 $63 $13
1982 76 26
1983 228 50
1984 133 96
1985 650 184
1986 1,276 374
1987 3,771 750
1988 11,290 1,483
1989 29,840 2,704
1990 64,805 4,877
1991 90,236 7,579

Total $202,368 $11,629

Method B is the mean claim amount as a function of the operational time method.
Again it is based on a model of the undedying payment process. Xd again is the size
of an individual payment. The expected value of Xd is some function, any function,
of operational time at all. Operational time goes from 0 to 1 and sort of follows up. I
don't have a graph of operational time against development time; it is just the
cumulative distribution function of delay to payment.
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METHOD B: UNDERLYING MODEL

• Mean Claim size is a function of "operational time:" e(Xd) = m (T)

• Variance of claim size is a power function of the mean: Var(Xd) c¢m (T) "
• _ = 2 for constant c of v

Now the reason for modeling mean claim size as a function of operational time, is
because this automatically takes account of changing settlement rates. If claims are
settled more rapidly in late origin years, then we don't have to worry about that. If
we were modeling against development time, this would be a complication that
would have to be allowed for in the model. The other element of this model is that

the variance of individual payments is proportional to some power function of the
mean. If you want to assume constant coefficient of variables for payment sizes, the
index shouldbe set to 2.

Operational time, as I said, is the proportion of claims closed. To calculate the
operational time at any stage of development you must have an estimate of the
ultimate number of claims. Here's a simplified example of this method. In Table 4
we have just three origin years, and this shows the number of claims closed in each
of three development years. In the final column there is an estimate of the ultimate
number of claims, obtained by projecting that triangle to each development year.
Table 5 shows how these claim numbers translate into operational time for each
development period. Our first figure for 1989 is 0.1 because in the first development
year of 1989, ten claims were closed out of an estimated total of 50 so at the end of
development year one, the operational time is ten divided by 50 or 0.2. So the mean
operational time in that development year was 0.1. At the end of development year
two, for 1989, a total of 30 claims have been closed out of 50 which is operational
time 0.6. We've gone from 0.2 at the beginning of development year two to 0.6 at
the end of development year two, so the mean operational time for the second
development year of 1989 is 0.4.

TABLE 4
INCREMENTAL NUMBERS CLOSED

Year 1 2 3 Total

1989 10 20 10 50
1990 20 20 100
1991 30 45

TABLE 5
AVERAGE OPERATIONAL TIMES

Year 1 2 3

1989 0.10 0.4 0,7
1990 0.10 0.3
1991 0.33

That was claim numbers. We also have aggregate paidlossesshown in Table 6.
This is also an incremental triangle, not a cumulative one. By dividing those amounts
by the number of claims closed, we get this triangle of the average cost per claim or
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per payment. From the two triangles, you can plot the average cost per claim against
the average operationaltime for each cell (Chart 10). Our model is that the average
cost per claim is some function of operational time so we have a curve. In this case
a straight line seems to fit reasonably well, and we can project that curve to calculate
the reserves. For any claim not yet paid, we can calculate its operational time and
just reed off the expected amount of the payment from this fitted model. Of course
there is also a variance assumption in the model so it also gives you the variance of
each payment yet to be made. We can calculate the expected amount and the
variance of all outstanding payments.

TABLE 6
AGGREGATE PAID LOSSES

IncrementalLoss Amounts

Year 1 2 3

1989 150 800 900
1990 600 800
1991 1,650

Average Costs

Year 1 2 3

1989 15 40 90
1990 30 40
1991 55

CHART 10
AVERAGE COST AGAINST OPERATIONAL TIME
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This is a very simple example. That process of estimation is very simple as shown in
Table 7. For 1989, we have 40 claims closed so far, and an estimate of 10 out-
standing claims. The average future operational time is therefore 0.9. Because a
straight line model was used, we can just use the average, rather than calculating the
operational time for every future payment. The average future cost of the 10
outstanding claims can be read off of the previous graph showing the fitted model.
It's the fourth column. Then just multiply the number outstanding by average future
cost to get the reserve. It's a very simple example, but it gives you some idea of
how the method works.

TABLE 7
RESERVE CALCULATION

Number of Claims Average Future
Operational Average

Year Closed Outstanding 13me FutureCost Reserve

1989 40 10 0.90 107,50 1,075
1990 40 60 0.70 85.85 5,151
1991 30 15 0.83 99.91 1,499

The assumptionsabout the mean and variance of individualclaim payments translate
through a bit of simplemathematics into a model for the samplemean for the data
actually available--the total aggregate paid divided by claim numbers. You can fit
that model by iterative-weighted least squares and then look at the residual plots
again to see whether the variance assumption is about right; adjust the index in the
variance model if necessary. First, you get the variance assumption right through that
process and then you can try fitting different models for the mean as a function of
operational time such as a cubic or some other polynomial function or whatever other
function seems to fit.

You can use standard statistical tests to compare different models. Once the
variance assumption is correct, you can calculate ratios of the residual sum of squares
and do F-tests to determine which model most closely follows the data. Then you
can use the best model of mean as a function of operational time to calculate the
total mean of all future claims by totaling the prediction for all future claims.

Fitting by iterative-weighted least squares (also known as maximum quasi-likelihood
estimation) gives you the standard error of each parameter as well as giving you
parameter estimates. You can use those to calculate the parameter uncertainties in
the final estimates. So that's the parameter risk in the three components of risk that
Roger was talking about.

For the second component, process risk, we have a model for the variance of each
indMdual claim amount. It is proportional to the mean to the power of alpha. The
constant proportionality can be determined from the magnitude of the standardized
residuals. Having done that you can sum this over all future claims to calculate the
future process variance attributable to claim sizes. There is also another component
of future process variances to deal with; the number of future payments is uncertain,
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and that can also be taken into account. It's a lot more complicated; you will have to
look at the paper to get the details.

Here are the final results of applying this Method B to the example data set Table 8.
Reserves and standard error of prediction include both parameter uncertainty and
process uncertainty. The model allows this standard error to be broken down into its
component parts as shown by the four columns of Table 9. The first one is the
parameter uncertainty. The second one is the standard error due to uncertainty about
future monetary inflation, something I haven't discussed. Again, you'd have to read
the paper to get more information. There are two components of process uncertainty
in these final two columns: the uncertainty due to variation in the size of individual
claim payments and the uncertainty due to variation in the number of future claim
payments. For the overall standard error on the previous table, those four elements
are all mutually independent, so the overall standard error the square root of the sum
of the squares of the four components.

TABLE 8
METHOD B RESULTS

Standard Error of

Origin Year Reserves Prediction

1981 $ 58 $ 135
1982 117 198
1983 255 303
1984 549 452
1985 1,238 690
1986 2,993 1,106
1987 7,120 1,788
1988 16,407 2,881
1989 33,468 4,443
1990 63,493 6,708
1991 84,611 8,007

Total $210,307 $13,273

Briefly I'll go through graphs of how this method was applied to the example data set.
Chart 11 shows just the data. It's a graph of the mean claim amount against
operational time. In this example, we had some years that were fully developed so
the data goes right up to operational time one. There's one line for each origin year,
and you can see a clear pattern.

Chart 12 is a deliberately overparameterized model fitting that data. The idea is to
quantify the magnitude of the random variation in the data in order to get a correct
variance assumption, and to see how the variance depends on the mean claim size.
The variance appears to be increasing at this end, but that's partly due to the fact
that the numbers of claims are smaller. Each of the data points is a sample mean.
It's the total amount paid in a particular development period divided by the number of
nonzero payments. The variance is greater near operational time one partly because
there were smaller sample sizes--a smaller number of claims in each development
year for the later operational time. That's taken into account in the model.
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TABLE 9
METHOD B RESULTSCONTINUED

Parameter Inflation Severity Claim No.
OriginYear Uncertainty Variation Variation Variation

1981 $ 5 $ 1 $ 89 $ 104
1982 10 1 121 156
1983 22 3 180 242
1984 47 6 264 363
1985 102 14 397 554
1986 227 35 618 888

1987 473 84 955 1,434
1988 850 197 1,456 2,328
1989 1,236 407 2,108 3,689
1990 1,757 781 2,980 5,694
1991 2,130 1,151 3,443 6,811

Total $6,236 $2,680 $5,373 $10,061

CHART 11
METHOD B--INFLATION ADJUSTED MEAN CLAIM AMOUNTS
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CHART 12
METHOD B--DATA AND FITTED MODEL ZERO
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Chart 13 is a graph of standardized residualsversus operationaltimes. We see that
when the residualshave been standardized(scaled down to allow for the variance as

dictated by the model), the spread is less at the top end than it was on that graph of
the data. That's because standardization allows for the smaller sample sizes in each
sample mean for the later operational times.

What we're really interested in is looking at the standardized residuals against the
fitted mean, because the assumption is that the variance depends on the fitted mean,
(proportional to the fitted mean to some power alpha). So to verify that alpha is
correct, we should see constant variance going from left to right in Chart 14 where
alpha equals 2.0. I thought there was decreasing variance as the mean size in-
creased, so I tried it again with alpha equal to 1.6 which helped a bit (Chart 15). The
results, as I said at the beginning, were not very sensitive to the value used for that
variance index. So you can see from the data that the range 1.6-2 is about right
and as every value in that range gives a similar final result, it's not worth worrying
about exactly where the value is in that range.

Chart 16 shows the data with the initial, deliberately overparameterized model. The
smooth curve is the final curve that I fitted to a cubic equation. The initial curve had
about.eight parameters; the smooth one had about three. The variation of the initial
curve around the smooth one is quite small compared to the size of the random
variation that's going on in the data. This is formalized by the statistical tests. I
obtained a small F-statistic showing that the smooth curve fitted well compared to the
initial one, so I used that curve to calculate the results.

248



MEASURING UNCERTAINTY IN LOSS RESERVES

CHART 13
METHODB--STANDARDRESIDUALSVERSUSOPERATIONALTIME(oc= 2)
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CHART 14
METHODB--STANDARDRESIDUALSVERSUSFITTEDMEAN(oc= 2)
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CHART 15
METHOD B--STANDARD RESIDUALSVERSUS FITTED MEAN (co= 1°6)
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CHART 16
METHOD B--FITTED MODEL ZERO AND FINAL MODEL
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MR. SPENCER M. GLUCK: One of the disadvantages that I have is that Tom and I
have been talking about these models for years. We have relatively similar models, so
I'm going to have to try to gloss over the points that have already been made and I'll
emphasize some of the differences and show you how I do my model fitting. When I
emphasize the differences, of course it's necessary for me to talk about Tom's
models.

None of us are measuring specification error. In the U.S., many people talk about
process and parameter risk as if they are the only two risks. I think that custom
developed in the context of ratemaking where the thing you're projecting is a future
mean described as a parameter. So you just distinguish between the variance around
that mean, the process risk, and the possibility that the mean is wrong which is then
described as the parameter risk. But in this case, when we're talking about a
modeling framework, we're talking about the parameters of the models themselves
and the projection could be wrong because the model structure is wrong and because
the parameters themselves are wrong. That's why we have the specification error.
The difficulty in specification error is that you can't measure it directly because all the
means that we have of measuring e_or presume the model structure to be correct. I
think specification error may well be very large. One of the reasons that it's good to
have a number of different models is to give you some feel for how large the
specification error might be. If you have a number of different models giving you the
same results, then you appear to be well specified. If they give different results, that
gives you some measurement or at least some feel for specification error.

The disadvantage of regression models is they are not specifically connected to the
collective risk model, although Tom hasmade a connection. We measure process
risk in the regression model by just looking at the model, looking at the summarized
data and determining how much variation there is in the summarized data. Of course,
because we have a whole model structure involved, we have a difficulty with specifi-
cation error.

The advantage is that we start with data in a triangular form; we model it in a
triangular form, and therefore we have methods for the whole distribution of errors,
not just the standard error. We can actually look at that distribution at any given
point for every individual cell in the future projection period. For example, in the
typical reserve analysis framework, we're really interested in the error of the total
reserve. But if it's a payment model, you'll have a projection of the payments in the
next calendar year. For example, if you were trying to use those results in an
investment strategy, you might be interested in the distribution of likely results by
calendar year of payment and you can get that. In another case, it might be particu-
lar accident years only. If you were in a ratemaking context, you would be more
interested in the recent accident years.

The second one is very significant in that, yes, we want to know the projection
intervals for their own sake to know what their uncertainty is, but here the projection
intervals that you come up with are also a diagnostic on your model. It's directly tied
to how successful your model has been. Then of course when we're in a modeling
framework we can directly measure the parameter estimation error.
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My models are going to look like Tom's models, but there are some differences. The
differences are more in the variance structure. The basic model is for in-period
payments. This formula is basically the same as Tom's. The first term, the alpha, is
simply a scale parameter. Then we have power term and an exponential term and
then finally the error term which is muitiplicetive in this case because I'm going to use
a log transformed model. So in this case, I'm talking about percentage errors log
normally distributed. The scale parameter, %/' means there's a different scale
parameter for every point in the triangle. Of course, if that were true, then you'd
have as many parameters as points before you even reached the other parameters.
So we're going to simplify that structure to some extent. You can't really use all
those parameters.

Pii = °%i" (1 + i) B . e6j • _-i_

i = Year of Origin (74... 91)

j = Delay (0... 17)

Calendar year of payment = i + j

=d are scale parameters

/_ + 5 are shape parameters

Ei/ are muitiplicative errors

The formula below shows the scale parameter structure so that I don't have as many
different parameters as it appears. This is again more parameters than I'll tend to use
in the real model. I can have a free scale parameter for every accident year, and I
can have a free parameter for every calendar year of trend. You notice the calendar-
year parameters start in 1975 rather than 1974 because the 1975 parameter is the
percentage trend from 1974 to 1975. If each of those parameters were different,
then the scale term for any one cell would be the accident-year parameter times the
product of all prior calendar-year parameters up to that point.

The starting point model is the simplest one. I assume that one calendar-year trend
can account for all the variations in scale. In that case, I just simply have a single
calendar-year trend parameter. I drop the subscript so the scale term associated with
the single point is the product of the one accident-year parameter (it's really just a
general scale parameter for the whole model now), and the trend parameter for the
appropriate number of years. I will always divide the paid data by either an exposure
count or an ultimate claim count, so it becomes reasonableto adjust only for trend in
a good stable data set. This was not a good stable data set. Roger made sure of
that for us.
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SCALE PARAMETER STRUCTURE

Accident Year Scale Parameters."

AY74 .... AY91

Calendar Year Trend Parameters:

CY7s.... CY91

i+j

°ci/ = AYi " r[ CYk
k = 75

If one AY parameter and one CY parameter:

oci/ = AY • CY i÷/-Ts

In the formula below I've inserted the scale parameter structure where I previously

just showed oc;i. Then we have the shape parameters to the right. Then I take a log
transformation so this all becomes linear in the parameters. You see the error term

now additively, but because it's a log the _.Ts are log normally distributed errors,
meaning there is no probability of readings of zero or less. So if you have a data set
with readings of zero or less, you have some trouble and you have to deal with it.
It's usually reasonable to do that for in-period payments. This is in contrast to Tom's
model in which he's starting from the collective risk model and coming up with a
specific error structure. Here we're just presuming percentage errors. Because the
model forms generally don't go to zero or negative, his model can't handle zero or

negative payments that are systematic. Because he's not using log normally distrib-
uted errors, it will handle a zero or negative payment as a random event but, he's still
constrained to a form if the mean that he's fitting is strictly greater than zero.

Combined Model:

Pq = AY i __ CYk • (I +J)P • e6i • eij
k = 75

Log-Transformed:

1In P_j = In AY_ + In CY,
k 5

+ # /n(/ + ]_ * 5i + /n E,i

E,.i are % errors, log-normally distributed
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MR. WRIGHT: It is true that the fitted mean in my method is strictly greater than
zero, but there is not any assumption of normally distributed errors in method A or
method B. Both methods give first and second moments for the reserve, and to do
this, only first and second moment assumptions are necessary for the data. There
are no higher order distributional assumptions.

MR. GLUCK: I'd like to be able to model, as Tom does, not only paid data but
incurred data. When you look at it incrementally, incurred data often will have
negative or zero amounts in it. If it's systematically going negative or zero, I basically
use the same approach that Tom did. I multiply all the case reserves by a factor
between zero and one sufficient to eliminate the systematic negative development so
that I can then model it.

In using an incurred data triangle, we make an assumption of constant relative
adequacy in case reserves. Obviously if I multiply all the case reserves by the same
factor, I have not interfered with that assumption. So I don't think I've necessarily
added a bias of any kind by putting that factor in. I've only moved toward the paid
data analysis. If you put in that factor at zero, you would simply wind up with the
paid data and you'd still have a valid basis to model.

MR. WRIGHT: Spencer seems to have misunderstood what I mean by bias adjust-
ment of incurred data. The intention is not to introduce bias, but remove it. Cumu-
lative incurred tends to decrease in the right tail of the run-off when case estimates
tend to exceed the amount actually paid. In statistical terms, case estimates have a
positive bias. The purpose of the bias adjustment is to remove this bias.

MR. GLUCK: I alsoapply a numberof hybrid models. Ratherthan modelingthe data
directly, I apply the same modelto the developmentfactors minusone. Then, of
course,that means that I have to go through anotherstep to get the ultimate losses.
There I'll use deterministicmethods. I use something I callthe generalizedCape Cod
method once the developmentfactors are modeled, to get to the ultimate losses.

The Cape Cod method, shown below, is reasonablywell known. You're projecting a
singlevalue of the ultimate lossesper exposure. (Thiswould only make sense after
the losseshave been correctedfor trend.) You calculate it by the ratio: a sum of the
known losses is in the numeratorand a sum of the exposuresdivided by the appropri-
ate development factor is inthe denominator. The bottom equation is the same
equation.

I've just expanded it becauseI think it's a little more descriptive, it reallyshows a
weighted average of the lossesdevelopedto ultimate for each accidentyear divided
by the exposure. The weights are proportionalto the exposuresand inversely
proportionalto the development factor. They're proportionalto the exposures
becausemore data deserves more weight. They're inverselyproportionalto the
developmentfactor becausethe development projection is lessreliableif the develop-
ment factor is larger.
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CAPE COD METHOD
Notation

LTDi = Losses to date for year i
DF,- = Development Factor to Ultimate
ULT_ = Ultimate Losses
EXP = Exposures

[ U,Tq _ _ LTO,

f EXPi 1

E[EXPjJEL_D__;j
fexe,/ ,TO,×oe,1

fExP,l
_C [_7 j

This particular approach is analogous to using a single-scaleparameter to describe the
pure premiums for all accident years. Now sometimes that one scale parameter idea
doesn't seem to work that well. This applies not only to the stochastic model, but
any time you're using the Cape Cod method. You frequently find that if you're
applying it over a long period of time, you wind up giving too much weight to out-of-
date data in order to project your recent years.

So I've accounted for that by adding another term to the weight: a "decay" factor
(between zero and one) which is then taken to the power of i-j, which is the lag
from the accident year that you are measuring the pure premium from to the accident
year that you're projecting to. This winds up allowing the value of the expected pure
premium now to be a function of the year. It's not constant for allyears, and it
allows it to drift to some degree. This is very much analogous to what's done in
dynamic modeling where a parameter estimate is allowed to drift.

GENERALIZED"CAPE COD" METHOD

{ULT,1 =
e [_---._.j

Z; {_ × DecaY"-"/ ×{,TO,×_1

fEXP, }E I._ x DECAYI'-Jl

0_< Decay _ 1

Special Cases:
Decay = 1 = "Cape Cod" Method
Decay = O _ Development Method

Basically, if you set the decay factor to one you're using the standard Cape Cod
method and if you set the decay factor to zero then you're using a straight develop-
ment approach which is analogous to every accident year having a free parameter.
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When you use something in between zero and one, you wind up in effect with a
fractional number of parameters.

I also apply an operational time model where everything is exactly analogous to
Tom's method. Operational time is the number closed divided by the ultimate

number. T,.i is the operational time at the midpoint of the period. As Tom said, you
could use any number of curves to relate the mean claim size to the operational time.
I use the same curve that we use for in-period payments--the one with the power

term and the exponential term. Again I allow this factor (%j) so I can make as
complex a scale parameter structure as I need to fit the data. In general, I'd like the
scale parameter structure to be assimple as possible. The more complex I have to
make it, the lessconfidenceI can have that my model is really valid. If I've had to
use many parametersand do a lot of monkeyingwith it to make it fit, then I may get
something that looks like it fits well at the end of the day, but I'll have less confi-
dence in it.

Operational Time Model

Operational Time = T

= # Closed/Ultimate #

Tq = T at midpoint of period ij

Mean claim size in period ij

= oc;j • T_.j- e6T'7- Eij

There are some the diagnostics to look at. The scatter plots are very important. I
look at the scatter plots in three dimensions: along the accident-year axis; along the
development-year axis (to see if the development pattern is fitting well), and along the
calendar-year axis, which is probably the most important one, to see if my model
appears to fit well over time. The scatter plots give you something that you don't get
out of any of the fit statistics. Sometimes you can have a very tight fit, but when
you look at the scatter plots you see a clear trend in the residuals that indicates there
is something going on that you didn't model. You might have a great R2, but you
really don't have a good result if you don't have at least a reasonable belief that the
model is valid. That validity means you need random looking errors, especially errors
that are random over time. I do look at fit statistics, R 2. The adjusted R2 is an
adjustment for the number of points you have to model relative to the number of
parameters.

The more parameters you use, the more you penalize the R2. I look for hetero-
scedasticity. Is the relative variance constant in the delay direction? If it is not, t
make a correction for it. I have a particular diagnostic statistic. I also take a look at
autocorrelation coefficients. The problem is ff they don't look good, I don't know
how to fix it. But I guess if they don't look good it does give me some indication
that again the validity of the model is in question. On selected models, I go through
some process to look at projection intervals and standard errors and that's of course a
diagnostic of the model fit as well.
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The adjusted R 2 formula is relatively simple. You take the difference between/_ and
1 and you penalize it by this value N plus P over N minus P where N is the number of
points and P is the number of parameters. I still feel that it doesn't penalize it
enough. This is just a general thing on number of parameters, but it doesn't really
take into account the structure of the parameters. For example, if you set a free
parameter for just the latest accident year alone, that only counts as one parameter.
The reality is you have a great deal of uncertainty in that latest accident-year projec-
tion. If you have to set that parameter free it creates a lot of error in the projection
for the latest accident year. We do pick that up in our standard errors.

Let's discuss the models I fit to this data. The first one is a model of the in-period
payments. Tom didn't model the in-period payments. I like to model them without
the outstanding losses as well. More models gives you some better feel for specifica-
tion error. The hybrid models are the ones where I modeled the development factors.
I did that once with the paid, and twice with the incurred. In one, I used the incurred
data as is. I had positive development in only four columns. After the fifth column,
everything turned negative, but it was really slightly negative so I ignored that. That
might give me a biased high answer. In the fourth one I hit the case reserves with a
0.7 factor. That gave me positive development for I think it was seven columns, so I
had more data to model. Finally, there's the operational time model.

Basically I have found that those curves don't fit that well to in-period incurred data.
Even if it's strictly positive, they drop down to the axis a little too fast for the curve.
So I have a little more success when I model incurred development factors, because
then I pick up that extra scale parameter for shape.

Shown below is an example of some of the first basic output I get. This tells me,
this is model one, the paid one. Here I switched the trend after seven years because
this data set was not consistent at all. In the last eight or nine years of the data set,
we fit a trend of - 1.5% which is odd.

Notice that I freed up many accident years. This is because the paid models really
didn't fit very well and these would not be models that I chose. The only way to
make the model fit was to allow the accident years to go free which leads to a large
standard error. Also the negative calendar-year trend is not as disturbing as you
might think when you hold it up against the accident years. You'll see that the
parameters are negative because we modeled logs of data. They are increasing so
that you're picking up some of the trend in the accident year; that's why the residual
calendar year trend is negative. The R2 on this model is very high, but many of the
other diagnostics and the number of parameters I had to use would lead me to
conclude that that model was really not performing terribly well.

Statistical Outcome of Regression
Model in use: HOERL2
Calendar parameter coefficients and t-statistics:
A 0.460 14.312
B -0.015 -1.218
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Accident-year parameter coefficients and t-statistics:
1 - 3.053 - 26.333
2 -3.361 -25.109
3 - 3.458 - 22.095
4 - 3.933 - 20.703
5 -4.319 -20.539
6 -4.364 - 19.938
7 - 4.228 - 17.706
8 -3.900 -15.916
9 -3.802 -15.120
10 -3.819 -14.758
11 -3.529 -12.538

Coefficients of curve:
Values 3.992 - 1.401
t-statistics 33.601 -41.355
R 2 0.995
Amemiya's Adjusted R2 0.994

Shown below is one of the incurred models. The R2s are lower, but you're modeling
a smaller piece of data on the incurred. We're modeling incurred but not reported
(IBNR) reserve, the unemerged losses. So you could have a larger percentage error,
which you're going to see in these lower R2s. When the error is expressed as a
dollar amount, you may still have a more accurate projection.

Statistical Outcome of Regression
Model in use: HOERLCC
Calendar parameter coefficients and t-statistics:
A - 0.026 - 2.364

Accident-year parameter coefficients and t-statistics:
1 0.111 0.899

Coefficients of curve:
Values 0.568 - 1.484
t-statistics 1.297 - 7.125
R 2 0.948

Amemiya's Adjusted R 2 0.939

I also have to go through a conversion process. Each model has a conversion
process. When it's just incremental pay data, the conversion process is simple. It
takes the logs. When I'm modeling the development factors, the conversion process
is more complex. I'm calculating development factors, taking the logs of those. Then
the deconversion process puts the logs back into devebpment factors and uses the
Cape Cod model. So I really have to go through the two processes if I want to put
these things on a comparable basis. I go through the whole deconversion process to
look at the actual data, deconvert it, and recalculate the R2s based on those data.

Also here I can make a correction for more parameters. SO in this particular develop-
ment factor model there were nine parameters, but then the Cape Cod method is
outside the regression, and its additional parameters have been added. Here I use the
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Cape Cod decay of 0.75 which can be calculated as the equivalent of 3.375 addi-
tional parameters. So I adjust the R2, accounting for the parameters that I introduced
outside of the regression model as well.

Statistics Relating to Logs of Deconverted Data
Model in use: HOERLCC

Weighted Mean Error: -0.003
R2: 0.952

Amemiya's Adjusted R2: 0.943
Number of points: 138.000
Number of regression parameters: 9.000
Number of Cape Cod parameters: 3.375

My best performing model was the operational time model:

S-_atisticsRelating to Logs of Deconverted Data
Model in use: OPTIME1

Weighted Mean Error: -0.005
R 2: 0.981
Amemiya's Adjusted R2: 0.979
Number of points: 156.000
Number of regression parameters: 8.000
Number of Cape Cod parameters: 0.000

Let's discuss the fit statistics on the competing models. The first two models shown
in Table 10 are models of the paid. As you can see.by the large errors, I had the
least success with them. I also think the other diagnostics, and the way I had to
overparameterize them to make them fit, casts doubt on them. The next two are the
incurred models which both fit well. The operational time model also fits well. It had
the best R 2 statistics and one of the lowest standard errors.

TABLE 10
COMPARISON OF FIT STATISTIC,C

1 2 3 4 5

Converted Data
R 2 99.5 98.1 94.8 96.9 82.2

Adjusted R 2 99.4 97.8 93.9 96.3 80.2

Deconverted Data
R 2 97.7 95.2 82.5 95.0 98.1

Adjusted R 2 97.2 94.3 76.6 92.1 97.9
Standard Error 21.1 17.7 10.0 13.4 10.5

Chart 17 is the scatter plot of the paid model. First is the scatter plot against the
accident year. This is not bad performance, but I did have to use many accident-year
parameters to make it do this well. The diamonds are at the weighted mean at each
point. These are weighted errors. We weight for two reasons. I weight every point
by the ultimate exposures or reported counts for the accident year; it's just a size
weight. Then I may put in a heteroscedasticity model. That becomes an element of
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the weight as well. The square error should be inversely proportional to the weight•
So in looking at these plots, and to put the errors in comparable terms, we have to
look at weighted errors. The chart shows the accident-year direction. The develop-
ment direction chart shows whether I fit the development pattern reasonably well. In
the calendar-year direction those diamonds, especially as we look in the more recent
calendar years, are pretty close to the line, On the other hand, at least by eye, it
looks like we have some spread this way so that we've got more variation in the fit
for recent calendar years.

CHART 17
RESIDUAL PLOT VERSUS TIME CONVERTED DATA
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In Chart 18 the fCcis to the development factors. These are just the pure regression
fits and only tell you how well the development factors are fitting. It's not telling you
how well the ultimate losses are fitting after you run them back through that Cape
Cod model.

CHART 18
RESIDUAL PLOT VERSUS TIME CONVERTED DATA

BODILY INJURY LIABILITY IN PERIOD LOSS PAYMENTS
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Chart 19 is the best model, the operational time model. These all look reasonably
good and reasonably random, which is what you're looking for.

CHART 19
RESIDUAL PLOT VERSUS TIME CONVERTED DATA

BODILY INJURY LIABILITY IN PERIOD LOSS PAYMENTS
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In Chart 20, I have the deconverted data. These are especially important for the
models with development factors if you really want to see the whole process. On
the accident year chart, you can see that this one really didn't perform very well; if
you look at the pattern of those diamonds, you'll see that we didn't have a good fit
to the accident year on a pure-paid development basis.

CHART 20
RESIDUAL PLOT VERSUS TIME CONVERTED DATA

BODILY INJURY LIABILITY IN PERIOD LOSS PAYMENTS

4t_ Jq_'zRZntml-*_mti_2 ¢¢:21_uital

+ +++++++i++++++
..e, @-.--.,_...........i...........t'_ ...........i..........._-_ ...........! _.1

+ i°, ' + + ) i ) i
'." ",_. ...........+°+_ ...........i ...........+-+-_ ..........

I_ __0_ _8

-"................

-e. _e +_m_r"_+_.r_`T_l_)._

- : : no

o i i i ) i i i i "l"

"° 8"¢ ......6+"++++")'"''"'+i""++"-_......................Y'"'+'+"+i.+ "i
) i ) io) i i i -i-

-0.e. )I..-i-...9..-'I'"")..-'L'-'f"-'t'""I"J:'"'H'"'H"H'I')"i"
"6'4 _6 _8 80 8& 84 86 88 90 9_

_IcS_nt Ymmr

i + i i + i i i i i i i-
_ ) ° ' .......... L "+" ..........i............)_+...........i...........+"_i............i+"°+.....

°.+e +--r'-,..............._'"T""_................._.......................+ i & i i " i m ) )o i n _ o o _-

.... ........._............i ............:........ L.._...._..........._..........._....a.....?.....

i i k M _ i +..,. ...... + o, . ..,. ,, +.+_ _.. . ° +
_ _ i o _ o ; "." i "( ; _ ° i i ' 't o +

-0. le -i .............._)_"''_""_ .................!................_ ................)................_ -O. 16 _"'"""_ ............_--,'cr'.-._............_..........._'""_+'"_..........._............t .....

..... __ ) ) _ ) ..L.,..,,L._......'-....-....
--.. _ j ' " P " k "_ "4 " " ")" '' "_4 " " d ' 1_ ................. )" " " p " T _ +" '' m _ n " i " "_" n m " ' " _ ................ _ "_ " _ _'''''4_ ............ ) ............ _'N'r'PTP' "_dkpnanm n : X

-e._ ,- ............._................i.................i .................i.................i................._ -0.4. _,+-...-.-_............i ............i ............i'"_'") ............)............_............_....

J. i ) _ -_ i . i i i i i _ )

--,. _ ............. j ................. ) ................................ ) ............... ) ................. ) i''_ j'''''l'''_'_ ............ ) ............ ) ............ _ ............ y ............ ) ............ ) ............ ) .....

° i ) H _ ) ) i i ) i )

$_ 36 60 84 100 13_ 166 _4 _6 fro _O 82 84 8_ 88 90
_m_lopmmnt Par_ (l_ mc_h8) Cilm_der Ymir

263



RECORD, VOLUME 20

In Chart 21 the Cape Cod decay factor is at 75% which ties the years together
closely. I also ran off one at 25% which allows each accident year to find its own
level much better. If you just looked at the accident year scatter plot for that, all
these diamonds now came close to the line. But then the standard error of that

projection was much larger, because on a projection with a reasonably long tail; you
get a point right near the line for recent accident years, but you get more error
allowing the recent accident years to find their own level.

CHART 21
RESIDUAL PLOT VERSUS TIME CONVERTED DATA

BODILY INJURY LIABILITY IN PERIOD LOSS PAYMENTS
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Now we can look at the various models and determine how well the curve fits the
actual data. The solid line is the actual data and the dotted line is a fitted curve
(Chart 22). This is a reasonably old accident year. You have lots of actual data
points.

Chart 23 is the M1 model of a more recent accident year where there are just a few
actual data points. Chart 24 is an incurred data model so the curve starts to drop
much sooner because of the shorter tail on the incurred data. The fit on the incurred

models was substantially better. Chart 25 shows one more incurred model. In this
case it's always dropping, but there is a good fit.

In addition to plotting how the paid-loss is projected in the operational time model, I
can also show you a plot of the actual average sizes which are modeled within the
regression model. Chart 26 is an example of that. I used that same Hoed curve, the
curve with both the power term and the exponential term. The curve went up and
down and tumed back up again which worked very nicely on this data, but it
suggests some caution on extrapolating with the curve. Because the curve has that
extra shape parameter, you do have to be careful about what's happening in the tail
and look at some plots. I guess I'm wary of extrapolation as a general rule, but in
this particular case I think we received generally very nice results on the average claim
sizes. Of course at the tail of the data is an average claim size that you're observing
on very few claim counts, sometimes just one or two or three claim counts in a cell.
So that's where you're going to see more and more erratic actuals as you move to
the right, and that's why we have the model. Chart 27 shows average claim size for
a more recent accident year.

Using that same model, we can also plot the actual and projected payments (rather
than average claim sizes) as shown in Chart 28. What I was trying to emphasize
with these plots is that these fitted data will not always look so smooth because
we've actually fitted an average claim size so smoothly. We multiply those by actual
claims closed in-period. Sometimes the fitted data will look a little erratic, usually in a
shape that matches the actual data. Chart 29 is another example of that.

Chart 30 shows one of the distinctions between my model and Tom's. He uses a
variance structure that comes directly out of the theory he built, but my approach is
much more empirical. I use curves that look fine, and then I check to see if the
variant structure is working or if there's any residual heteroscedasticity. If I see it, I
try to model it and correct for it. I check for weighted square errors against delay. I
only model it in the delay direction which is the same direction that Tom's model
picks up. You can see that I have fit a curve with some significance to the fit on the
way the squared error relates to the delay.

Chart 31 is the operational time model. It's a little harder to see the curve on it. On
these models the reading of the (heteroscedasticity) goes the other way; it's heavy in
the first columns. It's hard to see but the curve is trending down. We corrected for
it and it works much better. Again, there was a lot of (heteroscedasticity) before we
applied the model, but after correcting for it, the heteroscedasticity came down very
nicely in the heart of the distribution. We're less than the 50% level, so we're doing
well on that.
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CHART 30
HETEROSCEDASTICITY

WEIGHTED SQUARED ERRORS VERSUS DELAY
BODILY INJURY LIABILITY--IN PERIOD LOSS PAYMENTS
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CHART 31
HETEROSCEDASTICITY
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So those are my diagnostics. Now let's discuss the standard errors. I use a boot-
strapping approach rather than just the algebraic calculation. The math is less
complicated, but the computer power is more complicated. The programming is also
more complicated. One of the advantages of it is that when I'm using my hybrid
models, which are not a pure regression model, I can still run all of that through the
bootstrap.

Let me give some basic concepts of bootstrapping. Chart 32 is not really an equation
but shows how you apply bootstrapping. When you've got actual data, you apply
regression and that gives you fitted data in the past and in the future which I've
represented with triangles. Subtract the actual data minus the fitted data to get your
residuals. In regression, we require that the residuals be random; that's what we look
for in all the scatter plots; they must also be independent, identically distributed, and
normally distributed. The normal distribution assumption is what makes the regres-
sion estimate optimal. In bootstrapping we drop normally distributed as a property.
We don't presume how the errors are distributed, but it is still important that they are
random, independent, and identically distributed; by random I mean they are not
systematically related to any of the independent variables.

CHART 32
HOW TO APPLY BOOTSTRAPPING

Past Past

I Actual / IFitted _'1

Future

Past Past Past

Now we have this triangle of residuals, and rather than presuming any particular form
for the error distribution, we assume that, if I have 120 residuals, I will use the actual
residuals as the error distribution (Chart 33). So now the error distribution is a
discrete distribution with 120 likely and equal results. I randomly generate residuals
by selecting from that distribution with replacement. So now I take my fitted data in
the past and future, and I randomly generate a whole square or a whole rectangle of
residuals. I add that to the fitted data, and that gives me what I call past and future
pseudodata. So for this pseudodata I know the future. I take the past pseudodata, I
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run it right through the whole regression model, and that gives me a future tdangle of
fitted pseudodata. So now I have a triangle of future pseudodata and a triangle of
fitted future pseudo data. I run them through the whole deconversion process. I
subtract them, and I get a triangle of projection errors on the pseudodata. I then run
that repeatedly 500 or 1,000 times. It uses a lot of computer time, but the comput-
ers keep getting faster and faster, so it's not a problem. It takes a lot of space to
store all those results.

CHART 33

Past Past Past

I ,.sd./1 I.an°omly// IPseu o-//1
I Generated // iDam _ [
I //Randomly
I // Generated
V/ .esidu,,s

Future Future

Past Regression =

I Pseudo-/

+ / Pseudo-
/ Data

Future

/ Pseudo- ,/ Rlted
f D_t_ / Pseudo-Data

Future Future Future

Now I have a projectionof the whole distributionat every point. I have a great deal
of power to look at the data subcombined in any way which is important to the
extent that the projection errors are not independentof each other. Don't forget that
the processrisk will be independentat the different points, but the parameter riskwill
be highly dependent. If I want to look at subcombinations,(e.g., the total reserveor
any combination of three accidentyears) I can combine it any way I want. In Table
11, I have summarized it in total by individualaccidentyear and by individualcalendar
year of payment. We are most interested in the total line in this case.

Notice that there's a biascorrectionand that's because we've taken a logtransforma-
tion of the data, so that means my fitted model is not the mean. If observationsarise
from a log normal distribution,then the fitted model correspondsto the mean of the
underlyingnormal. But if you take the antilogof that value, that does not give you
the mean of the log normal. So it's important, when you're usinglog transformed
models, which a lot of people do, to remember that the fitted model is not the mean.
You have to correct for bias. Becausewe've run off this bootstrap, it gives us the
correctionfor biasdirectly. You can alsodo it algebraicallyif you're willing to
presumethe normal distribution. This is distributionfree, but I have compared my
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results with people who do it algebraically and they usually come out about the same
anyway. So I'm not sure I've added anything.

TABLE 11
BODILY INJURY LIABILITY IN PERIODLOSS PAYMENTS

PROJECTED RESERVES AND ANALYSIS OF ERRORS
Inflation (+) or Discount (-) Rate: 0

_'o__ecsk_nl_ror _ ofVadance

Sta_6cal
Oti_i_ std. (Process) erama_an

year Fit 81as Coe,ectedFit Dev. V_ance Skew En'or _rror

Accident
Year

74 0 O 0 0 0 1.000 0 O
75 0 0 0 0 0 1.000 0 0
76 32 -23 55 52 3 -3.678 3 0
77 0 0 0 0 0 1.000 0 0
78 0 0 0 0 0 1.000 0 O
79 0 0 0 0 0 1.O00 0 0
80 15 -14 29 40 2 -2.697 2 0
81 49 -62 111 136 18 -3,989 18 0
82 64 -68 132 146 21 -3,909 21 0
83 145 -93 235 154 24 -2.564 24 0
84 127 -83 210 155 24 -2.445 24 0
85 455 -120 575 209 44 -1.452 43 1
86 975 -158 1,133 306 94 -0.925 89 4
87 3,079 -203 3,282 533 284 -0.503 249 34
88 11,128 -354 11,4432 1,225 1,502 49.172 1,216 354
89 28,051 -538 28,589 2,282 5,207 0.006 3,458 2,044
90 59,343 -752 60,095 4,361 19,015 0.246 10,837 8,377
91 83,700 -763 84,463 5,939 35,271 0.006 19,876 17,171

Calendar
Year

92 78,165 -778 78,943 5,183 26,862 0.068 17,970 11,208
93 56,328 -503 56,831 4,188 17,537 -0.043 10,272 7,464
94 30,143 -532 30,675 2,681 7,188 0.044 4,253 2,840
95 14,136 402 14,538 1,534 2,354 -0,080 1,548 820
96 5,195 -195 5,390 802 643 _).393 537 139
97 1,813 -227 2,040 431 186 4).430 170 21
98 721 -166 887 295 87 -1.161 84 4
99 356 -141 497 259 67 -2,029 67 1

100 174 -120 294 230 53 -2.853 53 0
101 79 -83 162 216 47 ..4.335 46 0
102 55 -83 138 192 37 -4,794 37 0
103 O 0 0 0 O 1.O00 0 0
104 0 0 0 0 0 1.000 0 0
105 0 0 0 0 0 1.000 0 0
106 0 0 0 0 0 1.000 0 0
107 0 0 0 0 0 1.000 0 0
108 0 0 0 0 0 1.000 0 0
109 0 0 0 0 0 1.000 0 0

Total 187,165 -3,230 190,395 10,462 109,449 0.176 34,227 82,124

This is the projection for what I thought was my best model, the operational time
model. I came out with a mean of 190 which I believe is about 15 lower than the

mean that Tom got and a standard error of about 10.5. My standard error doesn't
account enough for the potential claim count projection error, so I think my standard
errors are too low. I know how to fix that within my bootstrap. I just haven't gotten
around to programming it yet.
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an example, I have the same model with the actual distribution in Table 12.

TABLE 12

BODILY INJURY LIABILITY IN PERIOD LOSS PAYMENTS

CONFIDENCE INTERVAL ANALYSIS

Probability Distribution of Reserves

Year 5 10 25 50 75 90 95

Accident

Year
74 0 0 0 0 0 0 0
75 0 0 0 0 0 0 O
76 10 15 23 42 72 99 131
77 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0
79 0 0 0 0 0 0 0

80 1 2 5 13 33 82 121
81 18 25 43 76 130 193 267
82 24 33 59 92 156 241 354
83 79 96 146 203 297 395 477
84 59 73 112 169 260 355 494
85 305 351 430 541 680 817 906

86 715 763 922 1,095 1,301 1,529 1,698
87 2,479 2,630 2,911 3,247 3,626 3,937 4,150
88 9,468 9,948 10,625 11,467 12,238 12,990 13,580
89 24,831 25,628 27,111 28,665 30,064 31,461 32,406
90 52,415 54,138 57,054 60,287 63,351 65,481 66,788
91 74,759 76,954 80,255 84,481 88,823 91,846 93,352

Calendar
Year

92 70,679 72,235 75,500 79,031 82,462 85,452 87,684
93 50,271 51,546 54,074 56,559 59,770 62,275 63,930
94 26,310 27,409 28,819 30,720 32,414 34,007 34,908
95 11,971 12,564 13,397 14,608 15,658 16,494 16,975
96 4,149 4,438 4,837 5,363 5,913 6,420 6,786
97 1,392 1,533 1,746 2,012 2,312 2,618 2,760
98 493 561 679 849 1,040 1,257 1,380
99 216 252 324 444 588 781 942

100 83 103 154 238 343 511 696
101 23 31 53 102 198 309 444

102 11 20 36 79 168 308 389
103 0 0 0 0 0 0 0
104 0 0 0 0 0 0 0
105 0 0 0 0 0 0 0
106 0 0 0 0 0 0 0
107 0 0 0 0 0 0 0
108 0 0 0 0 0 0 0
109 0 0 0 0 0 0 0

Total 173,281 176,806 183,486 190,856 197,647 203,681 207,157

500 iterations of the bootstrap through each model. I ran 500 iterations more

once on a couple of the models and they came out about the same.

plotted the results on Chart 34, They show how the various models came out.

will give you an idea of the whole concept of specification error. You can have

reasonably well-specified looking models, but they don't project the same result. If

have a few competing models that you think, based on your diagnostics, look
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reasonably specified, you can actually put those distributions together and get a larger
error measure. The two poor performing models were the paid models (M1 and M2).
I would reject those because the diagnostics were not that good. You can see that
they had standard errors at least twice that of the other models. I felt the validity of
these models was questionable. I thought the best performing model overall is M5.
It was the operational time model, but the standard errors were similar on the M3 and
M4 models and projections were somewhat lower.

CHART 34
TOTAL ALL YEARS

In the projection intervals in Table 13, you see M3 and M5 were well-performing
models. They're overlapping at the 90% projection interval. When I say 90%
projection, I do not mean 5-95; I mean 10-90, so it's 80% wide. They are overlap-
ping so I guess it's reasonably plausible.

TABLE 13

90% Projection
Model Mean Interval

M1 233 206-259
M2 228 206-250
M3 174 161-186
M4 178 160-195
M5 190 177-204
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Roger, who knows the real data behind this data set, has told me that he has
accumulated two years more data since he did this and things keep going down. So
I like the fact that I have the lowest answer.

MR. HAYNE: The micro approach that I applied was based on a collective-risk model.
I looked at the collective risk model in terms of reserves for individual accident years.
I looked at the number of outstanding claims, at the distribution for the outstanding
claims, and I tried to build in some parameter uncertainty. Basically the collective-risk
model simply says you take many samples out of distributions and add them up to
get your aggregate losses. You do this several times. A paper by Glen Meyers and
Phil Heckman published in 1985 or 1987 described an algorithm for calculating the
aggregate distributions. They've also built in certain methods that incorporate
parameter uncertainty. You can actually use those methods to calculate the expected
value for the total and the variance for the total in terms of the parameter uncertainty
and the underlying distributions. It turns out that the parameter uncertainty is handled
by nonzero parameters B and C. In this case, if B and C are not zero, the variance in
the mean will not go to zero as the number of claims increases.

My approach starts off with standard actuarial-type methods. The examples that I'm
bringing up are written up in a paper that I've submitted in response to a call for a
prize paper from the Risk Theory Committee of the Casualty Actuarial Society (CAS).
That paper, along with quite a few other papers that were submitted for that compe-
tition, will appear in an upcoming issue of the CAS Forum. My first approach is to
take the more standard actuarial methods and come up with the estimate of the
expected reserves or the expected outstanding claims. My best estimate is about
$203 million. This compares with Spencer's $190 million and Tom's $210 million.
So we're close.

I attempted to reflect parameter uncertainty by the variation in the projection meth-
ods. In my study, there really is not a lot of process uncertainty. But when you build
in some reflection of the parameter uncertainty, diffusion becomes much greater.
In my case, as I said, I had a mean of $203 million. I have a standard deviation of
about 13 million, which comes in very close to Tom's results which are about $210
million for the mean and a standard error of 13. Spencer's mean is $190 million and
standard error is about 10.

What's encouraging is that we have three methods that are coming at the same
problem from three different angles and the answers are at least close. There is
uncertainty in the loss reserves, but I think we're in agreement that the standard
deviation of 10-13 is not bad. I think reserves in the neighborhood of $200 million
aren't bad either. I wish we could have all come in and given an exact reserve
answer and standard deviation answer, but the real world isn't that way. As Spencer
pointed out, the real data continues to behave very pathologically. We don't know
why, but the payments have just dried up almost in an unbelievable fashion, and the
estimates continue to drop. SO Spencer's closer to where I would be if given a little
bit more information.

FROM THE FLOOR: If you were the appointed actuary for a casualty company, what
would you have felt comfortable with as an estimated mean?
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MR. HAYNE: I don't know. I'd have to evaluate an individual carder. From my point
of view, I'd have to know an individual company's underlying data, or know what's
going on in the company, before I could feel comfortable signing at a certain level.

MR. GLUCK: Let's say that the best you can do, whether you're using typical
methods or regression methods, is conclude that there's a large error, or that you
have a badly behaved data set or an uncertain situation. As the appointed actuary
I'm not going to provide an answer, just another question. Where does that bring
you? If my standard error turns out to be 25% of the mean, does that mean that I'm
happy with reserves 25% below my best estimate? They're within one standard
error after all. I think that your reaction could very well go the other way. If there's a
large amount of uncertainty, I don't think that that should be used personally as a
justification for going well below your mean estimate. If you are unsure about your
mean estimate, wouldn't you be better off being conservative than using that
uncertainty as an excuse to sign off on a result that's too low because you can't be
sure that that low result is wrong? That's my personal reaction to a large standard
e_or, It doesn't necessarily give you a lower reserve that you can sign off on as an
appointed actuary. That's my opinion anyway.

MR. WRIGHT: I have nothing to add. I'm not an actuary, and these are difficult
questions I prefer to leave to you actuaries who are paid to answer them.
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