
RECORD OF SOCIETY OF ACTUARIES 
1995 VOL. 21 NO. 3A 

MONTE CARLO SOLUTION FOR ACTUARIAL PROBLEMS 

Instructor: ANDREW F. SEILA* 

The teaching session reexamines Monte Carlo solution for actuarial problems. 

MR. ANDREW F. SEILA: I 'm Andy Seila and I 'm a professor of management science at 
the University of Georgia. Before we get started, I would like to poll the audience. How 
many of  you have used simulation to solve some sort &actuarial problem in practice? 
That looks like perhaps 60-70% of you. I would conclude that simulation is a tool that is 
commonly used in the day-to-day course of actuarial analysis. 

I noticed that the theme of this meeting is, in a word, professionalism. I spent some time 
thinking about how the topic &simulation fits with that theme and I realized that it fits 
quite well. Let me explain. Any time an actuary performs an analysis, it must be judged by 
the standards of the profession. In other words, the work you do must be able to stand up 
to criticism by others--management, regulators and consumers. Thus, it is not sufficient to 
just do a simulation analysis; the analysis must be above reproach. It must be defensible. 
In this session, I want to talk about simulation methods and generally accepted standards 
for applying those methods in practice. 

Our objectives are three: to survey some basic simulation methods and indicate what tools 
and techniques are used when simulation is applied to solve a problem; to show that 
simulation is an all-purpose tool for problem solving if the problem involves analyzing a 
model; and finally to alert you to some potential dangers when using simulation. In this last 
category, I will caution you concerning the random number generator you use and also 
discuss concerns with output data analysis. 

SIMULATION VERSUS MATHEMATICAL ANALYSIS 
First, I would like to define what I mean by simulation and compare it to other techniques 
for model analysis. Monte Carlo simulation is a collection of techniques to extract 
information from a stochastic model. We have a stochastic model and we want to use that 
model to tell us something about the system that it represents. Simulation provides some 
techniques, based on sampling the behavior of the model, to provide this information. 
Mathematical analysis is another method to extract information from a stochastic model. 
So, simulation and mathematical analysis work to achieve the same goals, but their 
approaches differ. Let's illustrate this idea using an example. 

For our example, consider a simple aggregate claims model, where Yis the aggregate 
claims, N is the number of claims received in a month and X~, X2, and so on are the claim 
amounts for individual claims. Further, assume that N has a Poisson distribution with mean 
10.0. Then, the mean number of claims per month is ten and the variance is also ten. 

N 
r=Ex, 

i=1 

*Mr. Seila, not a member of the sponsoring organizations, is a Professor of Management Science at the 
University of Georgia in Athens, GA. 
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Also, assume that claim amounts have a lognormal distribution with parameters/z=0.7 and 
o2=-1.80. Claim amounts are expressed in units of thousands of dollars. Then, the mean, 
variance and standard deviation of the individual claim amounts are 4.95, 123.88, and 
11.13, respectively. The following example shows how these were calculated. 

i i  2 
k t * - -  

E(X)=e 2 = 4.95 
Var(X) = e 2u +O2(e o2_ 1 ) = 123.88 

o(X) = ~ ( X ) =  11.13 

Suppose that we want to get the following information from the model: 
1. Mean of total claims, which we denote by E(Y); 
2. Variance of total claims, or Vat (Y); and 
3. 90th percentile of total claims, denoted by ~.9(Y) 

First, let's consider the mathematical approach. This method uses probability theory to 
compute the parameters. The first two are easy to compute from the first two moments of 
the individual claims distributions and the number of claims per month. The calculations 
are shown in the example that follows. So, the mean of the aggregate claims is $49.53 in 
units of thousands of dollars, and the variance is 1,484.12. We can take the square root of 
this to get the standard deviation of 38.52. These calculations were easy. But, what about 
the 90th percentile of the distribution of aggregate claims? The entire distribution of Y 
must be known to compute this parameter. Actually, I understand that this parameter can 
be computed for this particular model using some techniques by Gordon Willmot and 
Harry Panjer. Let's just say that if it can be done mathematically, it depends generally upon 
the specific distributions involved and the calculations will be difficult and tedious. 

E(Y) =E(N)E(X) =(10.0)(4.95) = 49.53 
Var(r3--Var(~[E(X)]: +E(.,V)Var(X) 

=(10.0)(4.95)2+(10.0)(123.88)=1,484.12 

o(Y)=~,484.12=38.52 
But... 

~b.9(Y)=? 

The simulation approach samples observations of Y and computes estimates of the 
parameters we want to know using these observations. I have implemented the simulation 
using a spreadsheet, Microsoft Excel, with a simulation add-in package, Crystal Ball that 
implements some simulation capabilities. With the simulation approach, we would proceed 
as follows: first, sample N, the monthly number of claims, from a Poisson distribution with 
mean 10.0. Next, sample each of the N claim amounts from a lognormal distribution with 
parameters 0.7-1.80. Now, add the claim amounts to get the aggregate claims for the 
month. We repeat these three steps 2,000 times (independently) to produce a sample of 
2,000 observations of aggregate claims. 

Chart 1 is a screen shot of this model implemented using Microsoft Excel and Crystal Ball. 
I'll comment a little more about spreadsheet add-ins for simulation a little later. In this 
model, we see all of the parameters in the upper left comer. The cell containing the 
aggregate claims for one replication is cell B-10, which is shaded. The calculations for the 
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Chart 2 shows the histogram of the aggregate claims data in column F of the spreadsheet. 
This graph was also produced using Microsoft Excel. We distribution is highly skewed, 
with a fairly heavy tail. Now we are ready to compute the characteristics of this 
distribution. 

CHART 2 
DISTRIBUTION OF AGGREGATE CLAIMS 

¢J 
C 

Cr 
.= 
U. 
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Aggregate Claims 

This chart shows the computations for point estimates and confidence intervals for the 
three parameters we want to know. We point estimate for the mean is 50.67 in units of 
thousands of dollars, and the 95% confidence interval is 50.67 plus or minus 1.71. 

This range includes the value we computed earlier using mathematical analysis, 49.53. 
Similarly, the point estimate and confidence interval for the variance are 1,499.12 and from 
1,411.61-1,598.21, respectively. The formulas for computing this interval are shown in 
the following example. This range also includes the true value, 1484.12, which we 
computer earlier. 
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Estimate E(Y) by 
n 

~ = 1  ~ = 50.67 
F/ I= l  

Confidence interval: 
T+Z s = 50.67q-1-71 [95%] 

~ 2 - -  
v~ 

Estimate Vat (Y) by 

1 
s2=  n-1 ~-= (Y"-Y)2 = 1'499'12 

Confidence interval: 
(n-1)s  2 < VAR(Y) < (n-1)s2 

1,411.61 < VAR(Y) < 1,598.21 [95%] 
37.57 < o(F) < 39.98 

Now, unlike the mathematical approach, we can also estimate the 90th percentile, or any 
other percentile, for that matter, of the distribution of aggregate claims. The computations 
are shown in the following example. We just find the sample 90th percentile, and use two 
other percentiles computed from the normal distribution to find the confidence limits. This 
nonparametric confidence interval is described in the textbook on mathematical statistics 
by Hogg and Craig, I believe. We see that the confidence interval is between 
88.57-98.92. I believe this is a 95% confidence interval. Since we don't have an analytic 
way to compute this parameter, we can't be sure that the true percentile is in this range, but 
we can be fairly confident it is some value in here. 

Estimate qb.9 by 

YC.9,) where }'(1) <- YC2)-<'"-< Y~.) 

Y0s000) = 95.58 
Confidence interval: YCr) < d~.90 <Ycr') where 

r = L.9n - ZI_ ~ ~ J  and 
r '  = ].9n + Zt_ ~ ~ J  

if n is large. 
Yo773) = 88.57 < qb.9 < 98.92 = Yos27) [95%] 

Let's compare the simulation and analytical methods. First, mathematical analysis works 
for a limited number of  parameters in a limited selection of  models. Analysis needs a new 
technique for each new type of model or each new parameter. Thus, if you want to 
compute the same parameter for a new model or a new parameter for the same model, you 
will generally have to start from scratch and derive new formulas or algorithms to compute 
the parameter. Analysis also gives "exact" answers, given the model's assumptions. I put 
"exact" in quotes because the model often must be greatly simplified to allow analytical 
solutions to be applied. Mathematical methods usually involve less computation time. 
There are exceptions, but generally, it is true. 
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On the other hand, simulation can produce only estimates of parameters since the tech- 
nique works by sampling from the distributions in the model. As a result, simulation 
normally involves more computation time. However, simulation can be used to analyze 
models of much greater complexity than those that can be analyzed using the mathematical 
approach. Importantly, simulation uses exactly the same techniques to analyze all models, 
regardless of complexity. Thus, it is no problem to make the model more complex and 
more realistic, and then to compute estimates of the parameters you want to know using 
simulation. So, simulation can be used to analyze models too complex for mathematical 
treatment. This approach also can be used to estimate parameters that can't be computed 
analytically. If you use simulation, you do not need to be concerned with whether the 
model has been solved. Moreover, you use basically the same methods to analyze all 
models using simulation. You don't need a different bag of tools for each type of model; 
one set of tools works for all. As a bonus, simulation is almost always much easier to 
explain and demonstrate to management, so model solutions are easier to sell. 

I am not trying to promote simulation as a replacement for mathematical methods. There 
are many models where the mathematical approach is preferred. What I am trying to say is 
that simulation is a method of very general applicability that can be applied to models that 
do not yield to mathematical analysis. The disadvantages of simulation are that it requires 
more computation time and the results are only estimates of parameters. Computation 
time is very inexpensive and expected to become even less expensive in the future, so the 
first disadvantage is rapidly disappearing. Frequently you want to know parameters only 
roughly, say, plus or minus 10%. In this case, exact values are of no more use than a 
confidence interval. Indeed, the error introduced by the simplifying assumptions in the 
model is often more than the sampling error of the estimators in the simulation. If the 
model must be further simplified to enable a mathematical solution, the solution may be 
precise but not accurate because it is a solution to a model that does not accurately 
represent the real system. Indeed, the error of approximation can't normally be 
determined. On the other hand, the sampling error can and should always be computed 
from the simulation. 

So, we have a tradeoff: We can either simplify the model and make it less realistic so it can 
be solved mathematically for the parameters of interest, or we can keep the detail in the 
model but settle for estimates of the parameters. The choice here is, of  course, a matter of 
your judgment. To illustrate this point, consider the aggregate claims model again. Let's 
compute the 90th percentile by treating aggregate claims as a normal random variable: 
(We know from the histogram of the simulation that this is not true, but it is a simplifying 
assumption.) The calculations are shown in the following example. From these computa- 
tions, we get 98.84 as the approximation. If we compare this approximation to the 
confidence interval computed using simulation, we see that this value is just barely in the 
confidence interval. This gives us some confidence that the approximation is reasonable. 
That is, we computed the same parameter using simulation and an approximate mathemati- 
cal method, and got values that agreed. This demonstrates another use for simulation--to 
validate analytical approximations. 

Aggregate claims model revisited. 

N 
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Compute the 90th percentile by treating Y as a n o r m a l  random variable: 

¢ ,  = E(r) + z ,  vA,[P-~ 
= 49.53 + 1.28(38.52) = 98.84 

I'm not sure that I am in the position of being able to make a recommendation to you, but if 
I am allowed one, it is the following: If you can find an acceptable model that can be 
analyzed mathematically, use it. But, usually, in the real world, the models are too 
complex to fit in this category. Therefore, we are frequently left with simulation as the 
only viable analysis tool. Fortunately, simulation can be applied to virtually any model. I 
express this as: if you can describe a model, you can simulate it. 

AN EXAMPLE MODEL 
I want to quickly go over another example model that might be more interesting to you. I 
am not an actuary, so I may abuse some terms. I f I  do, please excuse me. The central idea 
here is that we can use the same techniques to analyze a much more complex model. 

This example is of life insurance for a single premium variable annuity with ratchet. It was 
originally motivated by Ronald L. Klein at Life Reassurance Corporation of America. 
Consider a single-premium variable annuity where the initial age of the owner is known. 
For this example, assume that the maximum age for life insurance benefits is 90 and the 
maximum age for annuitization is 85. Of course, life insurance benefits are provided at the 
time of death, which is random, and the account is annuitized at the time chosen by the 
owner, which is also random. Let D represent the number of years from initial purchase 
until death. Also, let Rj denote the rate of return in yearj. Assume that Rj is normally 
distributed with some mean (/z) and variance (02"). Of course, these values will have to be 
provided to implement the model. Note that I will use capital letters to denote random 
variables and lower case letters to denote nonrandom numbers. 

Further defining the model, let x o be the initial purchase amount, which must be specified. 
Since all values computed for the account are proportional to Xo, we will just let x o be 1.0, 
and call the account value the value index, because it is the value per unit invested. Now, 
let xj be the value of the account in thej-th year after purchase. Then, xj is related to x o and  

the Rj is, as follows: xj = x o (1 + R~) (1 + Re) . . .  (1 + Rj). We will denote the value of the 
annuity at the time of death by xD, since D is the year of death, measured from the start of  
the annuity. LetA represent the number of years from initial purchase until annuitization. 
Obviously, A depends upon the age of the person purchasing the annuity and their age at 
retirement. We will assume that data are available for estimating the distribution ofA. 

Now let's consider the life insurance policy. You are more the life insurance experts than I. 
We'll just make some reasonable assumptions. If  the policy is annuitized before the owner 
dies, there is no liability for life insurance. Basically, the policy no longer exists. If  the 
owner dies before annuitization, there will be a liability, which is determined in the 
following way: First, the maximum death benefit is twice the initial account value, i.e., 2 x  o 

Under no circumstances will the company pay more than this upon death. The five-year 
ratchet establishes the minimum death benefit for a five-year period. If the value of the 
account is greater at a five-year epoch than the current ratchet value, the ratchet value 
becomes the account value. Let Fj denote the ratchet value in yearj. Then, Fj is the 
maximum of the initial value and each of the following five-year values: xo, xs, x ~ o . . . ,  xk. 
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At this point, we can define the death benefit, B, as the maximum of the current value at the 
time of  death and the ratchet value at the time of  death or B=max (xD, fD ). SO the com- 
pany's liability is the minimum of either two and the difference between the death benefit 
and the current account value if death occurs before armuitization (Y= min (2%, B-xD) if  
D<A, and zero otherwise). What we want to know is what is the expected value of  the 
company's liability? 

This model is an order of  magnitude more complex than the first model (the aggregate 
claims model that we looked at). The calculations are longer and more tedious. There is 
no possibility, I believe, of  computing the expected value of liability, using straight 
mathematics. But, we can use exactly the same techniques we have been looking at to 
estimate this parameter. This is an important point: Using simulation, you can use the 
same bag &tools to analyze a stochastic model, regardless of  the level of  complexity. 

I have implemented this model on Microsoft Excel using Crystal Ball, once again. Chart 3 
shows a screen shot of the model. You can see that the death benefit is boxed here in the 
middle of  the screen. You can see that the initial parameters are in columns A through C, 
and the model results, including the death benefit, are in columns E, F, G, and H. 

Chart 4 shows the probability distributions for age at death and age at annuitization. Using 
a spreadsheet, we can plot these distributions as shown. Interestingly, the distribution for 
age at death, which was taken from an actuarial text, has a little blip at age 80. Maybe that 
is a typo or some other error. 

Table 1 illustrates the life table used in the model. It 's not particularly fancy. I will note 
that to sample from a discrete distribution, we need the cumulative distribution function 
rather than the individual probabilities. In fact, this model uses the conditional distribution 
of  age at death, given the person reached the age they were when the annuity was pur- 
chased. So, part of the computations involved computing this conditional distribution; as 
well as the corresponding conditional distribution for age at annuitization. 

Chart 5 is the histogram for the death benefit index. Recall that we used the term "index" 
because the death benefit was based upon $1 invested. Note that this distribution has a 
very large spike at 0 and at 2. Many of the annuities were cashed in before the owner died, 
and for those where the owner died, many reached the maximum liability of 2. 

This characteristic of the distribution is even more apparent here on the cumulative 
distribution of  death benefit as shown in Chart 6. We see that approximately 85% of the 
replications resulted in no liability. About 10% resulted in the maximum liability of two, 
and the rest were distributed between these two limits. This is a pretty weird distribution, 
and I doubt seriously if it could have been found with strictly mathematical means. 
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CHART 4 
DISTRIBUTIONS FOR AGE A T  DEATH AND AGE AT  A N N U I T I Z A T I O N - -  

MICROSOFT EXCEL/CRYSTAL BALL MODEL 
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CHART 5 
DISTRIBUTION OF DEATH BENEFIT INDEX 

CHART 6 
CUMULATIVE DISTRIBUTION OF DEATH BENEFITS 
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Chart 7 shows the results of the data analysis. We see that the point estimate for the mean 
death benefit index, that is, the mean liability, is 0.2108 in cell G-4. Moreover, we have a 
95% confidence interval of between 0.2026-0.2190 given in cells G- 19-G-20. We have 
also computed statistics for the age of the annuity at death in column H. One nice charac- 
teristic of simulation is that it is easy to compute multiple parameter estimates from a single 
r u n .  
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CHART 7 
RESULTS OF DATA ANALYSIS 
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SIMULATION SOFTWARE 
There is a great deal of software on the market that can be used for simulation. I would 
like to present a brief overview of the sot~ware and give you my ideas concerning the 
advantages and disadvantages of each general class. I will start with spreadsheets. 

The two-dimensional and three-dimensional tables used by spreadsheets are a familiar 
method for organizing calculations. Spreadsheets are without question the modeling tool 
used by the largest number of people. Moreover, I think the power of spreadsheets is not 
well understood by most users. They have excellent functions for mathematical, financial 
and statistical calculations, so you do not have to write these yourself or try to find them in 
a software library somewhere. The graphical facilities allow the simulation results to be 
presented using the same software, and all spreadsheets also have very good report 
generation capabilities. In other words, you can do all of your work using the same 
software. This is sort of one-stop-simulation shopping. Spreadsheets are interactive, so 
you get results immediately and you can respond to those results immediately. This allows 
the spreadsheet to operate as a decision support system. Finally, spreadsheets make good 
prototyping tools for models that may be too large and complex to actually run the 
simulation in the spreadsheet. 

That is, you can use the spreadsheet to test and refine the model prior to actually making 
the simulation run using other software that is faster and allows larger models. 
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While I strongly recommend the use of spreadsheets, I want to caution that they are not 
simulation nirvana. First, the built-in random number generators are usually 16-bit genera- 
tors and not recommended. Normally, these random number generators are implemented 
in a function such as RAND 0 or @RAND. They are fine for prototyping, but for serious 
simulation work, they should be avoided. Later we will discuss why these random number 
generators are inadequate. 

Fortunately, there are add-in packages for simulation that provide much better random 
number generators as well as specialized functions for sampling from a large number of 
distributions. I will have more to say about this a little later. A second problem with 
spreadsheets is that recalculation can be slow. Simulations must be replicated in order to 
get the data to compute confidence intervals. Replications normally are produced by 
recalculating the spreadsheet. If the model is complex, the recalculations can be quite time 
consuming compared to other software options. Fortunately, spreadsheets are being 
programmed to recalculate faster, and computers are faster. So, for moderate-sized 
models, this is not a major problem. The final problem I see with spreadsheets is that 
models will not be portable to other computers. The model will be portable only if the 
same spreadsheet is running on the other computer, or if another spreadsheet is running 
that can read the original model's file format. Contrast this to writing the simulation 
program in a general language such as Pascal or APL. Then, the model can be run on any 
computer that has the appropriate compiler or interpreter. This can be important if you 
want to write and test a model on a desktop computer, then run it on a large mainframe 
computer. 

There are a couple of very nice simulation add-in packages that are available for Lotus 123 
and Microsoft Excel. One of these is Crystal Ball, which I used to help with the simulation 
examples we just looked at. Another is @RISK, which you have probably seen advertized. 
These packages provide good random number generators so you do not have to use the 
built-in generators. They also provide convenient functions for generating random variate 
from a large number of distributions. Facilities for doing the replications, storing the data 
and graphing the results are included too, Actually, the main reason I advocate the use of 
these packages is to use the random number and random variate functions included in 
them. I find it easier to use the built-in capabilities of the spreadsheet to do the other 
activities in a simulation. 

Of course, spreadsheets are not the only choice in simulation software. There are many 
other possibilities, from general purpose languages to very specialized simulation software. 
Let's look at general purpose languages such as FORTRAN, Pascal, or C. If they are to be 
used for simulation analysis, these languages must be supplemented with a library of 
routines for random number generation and for generating variate from various distribu- 
tions. There are several providers of these routines, for example, IMSL and NAG. 
General purpose languages have the advantages that they are familiar and the programs run 
quite fast. Most people have studied one or more of these languages, so the learning curve 
is not too steep. The simulation programs--at least in source code form--are also 
portable to any other computer that has the same language compiler. These languages are 
so ubiquitous that they are available for virtually all computers, from the smallest micro- 
computers to the largest multiprocessor mainframes. General purpose languages have the 
disadvantage that they are not interactive. Programs must be written using a text editor, 
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then compiled, then run, then revised, and so on. The simulation program development 
process is extended because of this relatively unwieldy sequence. 

APL is also a possible simulation language. I would put this language in a class by itself 
because it is an interactive language that is very high-level and quite well-suited to 
mathematical calculations. It is also quite fast, and one advantage over general purpose 
languages is that it is interactive, so programs can be written, tested and revised more 
quickly. If you use APL, you should check out the random number generator carefully, as 
you should with all simulation software. One disadvantage of APL is that it is not gener- 
ally available, so the programs are not portable from one computer to another. So, if you 
develop a simulation on one computer, you are usually stuck with running it on the same 
computer. 

A number of  general purpose simulation languages are available for all types of  computers, 
from desktop systems to mainframes. Some of the better known languages are 
SIMSCRIPT 11.5, SIMAN, and GPSS/H. There are many others, so don't take this short 
list to be representative. These languages have, for the most part, all of the capabilities e r a  
general purpose programming language, plus they have simulation capabilities (random 
number generators, routines for sampling from various distributions and perhaps data 
analysis routines) built-in. An advantage of general purpose simulation languages is that 
the random number generators and routines for sampling various distributions are 
well-tested and efficiently implemented. You can be sure that the random number 
generator is state-of-the-art. Unfortunately, most simulation languages were designed with 
discrete event simulation in mind. Discrete-event simulation is a modeling methodology 
that is useful to represent many systems involving queuing and service. There may be a 
place for discrete-event simulation in actuarial science and financial modeling, but that is a 
topic for another session, and I am assuming that this is not the modeling methodology 
being used. As a result, simulation languages are not natural to use in financial modeling. 

A final choice is mathematical software such as Mathematica, MathCAD, Maple, Matlab, 
GAUSS, and so on. Over the past few years, quite a number of interactive software 
packages of this sort have been introduced. These are available for all personal computers 
and many high-performance workstations and mainframes. They have great computational 
facilities and excellent graphical capabilities, so they allow the computations to be imple- 
mented and the results to be graphed interactively in the same software. On the negative 
side, however, the random number generators may be suspect. I have had little luck 
finding out exactly what algorithms were used in the random number generators when I 
have asked. The packages also do not have built-in routines for sampling from various 
distributions. Basically, these packages were designed for numerically intensive comput- 
ing, but not simulation. The means of implementing calculations is relatively high-level, 
and many of these packages do not have an algorithmic language. Often this is not needed, 
but in many simulation models it is very useful if not absolutely necessary. If  models can be 
success-fully implemented, many of these packages have good interfaces with general 
purpose languages such as FORTRAN or C, so the calculations can be easily translated to 
these languages for further sampling and study. 

PSEUDO RANDOM NUMBER GENERATORS (RNGs) 
I will use the term random number to refer to an observation that is sampled from the 
uniform distribution between zero and one. The term is also used to refer to an integer 
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observation that is uniformly distributed between either zero or one and some upper limit. 
In practice the former variate is computed from the latter by dividing by the upper limit, so 
the dual use of this term is not as ambiguous as you might think at first. A random variate 
refers to an observation sampled from a specified distribution, such as the normal distribu- 
tion, or the binomial distribution. All sampling on the computer is performed using random 
variate generation routines, which are simply subroutines or functions that retum a value 
that behaves as if it were sampled from the specified distribution. Actually, since these 
routines are deterministic in nature, they are often called pseudorandom number 
generators. I will just call them random number generators, however. I will not specifi- 
cally talk about random variate generation routines because they are built into most 
simulation software, so to use them you just call the appropriate routine and pass the 
appropriate parameters to it. There is well-established literature on random variate 
generation methods also, in case you want to write your own routines from scratch. See 
the textbooks in the list of references in the handout for more information. 

On the other hand, I want to say several things about random number generation routines, 
or random number generators, for short. Every random variate generation routine 
operates by first generating one or more random numbers, then performing some transfor- 
mation on them to produce the random variate. We want the random variate to not only 
behave as if they were sampled from the correct distribution, but also to show the property 
of being mutually independent. Since the random numbers are the basic input to the 
random variate generator, the quality of the random variate is controlled by the quality of 
the random numbers. 

This reminds me of an experience I had several years ago. I had a consulting job that 
involved a large hospital. Medicare had audited the hospital and selected a random sample 
of a little over 100 claims from all of the Medicare claims filed in the previous year. On the 
basis of the audit of these claims, Medicare declared that the hospital owed them a refund 
of $10 million! I was asked to examine the sampling methodology and see if the program 
that randomly sampled the claims might have selected a biased sample. Now, this program 
used a random number generator along with an algorithm to determine which of the claims 
in the population would be selected for the sample. So, my first action was to ask the 
accounting firm (which was one of the then Big Eight) that did the audit what algorithm 
was used in the random number generator. My requests were met initially with si- 
lence~the accountants did not know what random number generator was used. Later, I 
was told that the algorithm was proprietary. Well, that was enough information for me to 
claim that the sample could not be shown to be legitimate, and therefore that the refund 
request should not be honored. It is incumbent upon the person doing the sampling---or 
simulation--to demonstrate that the random numbers used truly behave like uniformly 
distributed, mutually independent random numbers. This is simply a matter of 
professionalism. I will tell you how the matter was resolved in a few minutes when I talk 
about output data analysis. 

Before I talk about good and bad random number generators, I want to show you a couple 
of random number generators so you will see what I am talking about when I use such 
terms as cycle length and seed. A linear congruential generator has the form following: 
Z~.l=(+aZj+b) (mod m) Each random number is computed by transforming the previous 
random number. Thus, we can talk about a sequence or stream of random numbers. The 
first number in the stream is called the seed (Zo). Of course, we can think of any random 
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number in the stream as being the seed for the remaining random numbers. Notice also 
that this random number generator has three parameters: a, b, and m. The values of these 
parameters determine the properties of the generator, so we want to use values that 
produce a sequence of random numbers with good properties. (Ui = Z/m are the pseudo 
random numbers that are uniformly distributed between zero and one.) 

Most random number generators used in simulation software packages today are multipli- 
entire linear congruential generators, where b=0. These are used because they produce the 
values relatively fast, and they have been found (with the right parameters) to produce a 
high-quality sequence of random numbers. If m=216, this is called a 16-bit random number 
generator: Zi+~=aZ~ (rood 216). If m=232, it is called a 32-bit random number generator: 
Z~+I = a ~  (mod 232). In this case, there is only one parameter, a, that determines the quality 
of the random numbers produced. 

A random number generator that is used in many simulation packages is the 31-bit prime- 
modulus multiplicative congruentiat generator. The formula used to compute each random 
number from the previous is: Z~+l=aZ~ (mod m). In this case, the value ofm is the largest 
prime number less than 23~, which is 231-1. This generator requires a little more computa- 
tional effort than the 32-bit generator, but studies have shown that it has excellent proper- 
ties, and this is the reason why it is used in so many simulation software packages. The 
Excel add-in, Crystal Ball, that I have been using, uses this generator. Fishman and Moore 
evaluated every possible multiplier, a, for this generator and published a table giving the 
best multipliers. The paper, which is in the list of references, can be used as documentation 
of the quality of the generator if you are using this generator. 

What do I mean by quality of the random numbers? This is a multifaceted question. As I 
indicated earlier, we want the numbers to behave as if they were sampled independently 
from a uniform distribution. But, we also note, because each number is the seed for the 
next number and that all numbers must be between zero and m - 1, that at some point the 
starting number will be produced again, and from this point on the sequence will begin 
repeating. The number of random numbers that can be produced before the sequence 
repeats is called the cycle length of the generator. Obviously, we want the generator we 
use to have the longest possible cycle length. 

For multiplicative congruential generators, when you consider pairs of random numbers 
and plot them on the plane, you will find that they actually fall entirely on a series of 
diagonal parallel lines. So, they are not truly independent. If the lines are close enough 
together, however, they will act very much like independent pairs ofvariate. Similarly, if 
triplets are plotted in three-dimensional space, they will fall on parallel planes, and i fn  
tuples are plotted in n-dimensional space, they will fall on n one-dimensional hyperplanes. 
We want the closest of these hyperplanes to be as close as possible. These are what I call 
good higher-dimensional, or geometric, properties. Of course, we want the random 
number generator to be as fast as possible and to use a reasonable amount of computer 
memory. This consideration about memory usage was important a decade ago when 
memory was expensive. Now, it is much tess of a concern. 

So, how do we know whether a given random number generator is good or not? The short 
answer is that we must rely upon experts to test the random number generator and certify 
the behavior. These tests involve statistical tests as well as analysis of the geometric 
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properties. A number of generators have been tested. L.R. Moore lists random number 
generators that are known to have good properties. In addition, A.M. Law and W.D 
Kelton describe a couple of random number generators that are known to have poor 
properties, the most notorious of these being RANDU, which was part of IBM's Scientific 
Subroutine Package for a long time. As I mentioned earlier, Crystal Ball and @RISK 
provide good random number generators if you are using a spreadsheet to develop your 
simulation. 

I would recommend that you not ever use a 16-bit random number generator for anything 
but prototyping a simulation. The longest possible cycle for these generators is 65,536, 
and most of them have much shorter cycles--shorter than 16,384. You don't have to 
generate many random numbers before you have reached this number and the cycle begins 
repeating. On the other hand, a good 31-bit random number generator can have a cycle 
length of approximately two billion. This is plenty of random numbers for virtually any 
simulation experiment. 

If you use a certified and accepted random number generator, you can be reasonably sure 
that your results are correct, and you are not subject to criticism that you used substandard 
methodology. On the other hand, if you use a random number generator that does not 
have good statistical and geometric properties, you cannot be sure whether the random 
number generator introduced error into the model. Maybe it did and maybe it did not. 
You just don't know. 

ANALYSIS OF INPUT DATA 
Any stochastic simulation will have at least one, and usually more, distributions from which 
observations are to be sampled. Before the model can be considered a valid representation 
of the intended process, data from the distributions must be collected and an appropriate 
theoretical distribution must be fit to the data. For example, in the model presented earlier 
concerning life insurance for a single-premium variable annuity with ratchet, data must be 
collected on the age at annuitization, given the age at purchase, and fit to a gamma 
distribution, or a lognormal distribution, or some other appropriate distribution. Statistical 
procedures are well established for estimating parameters for most common distributions 
using the method of maximum likelihood and other methods. The Kolmogorov-Smimov 
test is available for testing for goodness of fit to the fitted distribution. I will not spend 
time discussing these procedures today because they are available in standard statistical 
texts. Instead, I want to just make a few comments about distribution fitting. 

One option that I have seen used too frequently is to just sample from the empirical 
distribution. That is, no parameter estimation or distribution fitting is done at all. In 
general, this is a bad idea. There are a couple of reasons why I believe it should not be 
done. First, the data are just a sample from the parent population, so your simulation 
would be just resampling a sample. Another sample from the parent population would 
produce another empirical distribution, and sampling from that distribution could result in 
conclusions entirely different from those obtained from the first empirical distribution. In 
short, your simulation results would reflect the specific properties of the sample, not the 
parent population. Second, these effects can be especially strong in the tails of the 
distribution. Since observations in the extreme tails of the distribution can be very rare in 
practice, they will often not be included in the empirical distribution. However, in many 
models the more extreme an observation, the more extreme its effects on the model, and to 
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get an accurate picture of the model performance, you have to simulate the model long 
enough to get some of the extreme observations. If they are not present in the empirical 
distribution, you will never get any of them. 

Chart 8 shows a plot of the histogram of the age at annuitization, along with a superim- 
posed plot of a fitted distribution. Testing for goodness of fit can often be done with the 
help of statistical software packages such as SAS, Systat, Minitab, and others. 

CHART 8 
OBSERVED AND FITTED DISTRIBUTION OF AGE AT ANNUITIZATION 

MICROSOFT EXCEL/CRYSTAL BALL MODEL 
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The capabilities in this area vary widely from package to package, so if you are thinking 
about buying a statistical package for this purpose you should be careful and check out the 
capabilities in terms of distribution fitting. An alternative to using a general statistical 
package is to purchase a special distribution-fitting software package. I know of a couple 
of these packages--UNIFIT II from Averill M. Law and Associates and BestFit from 
Palisade. These packages will go through and attempt to fit the data to a variety of 
distributions, then tell you how well each fits and which fits the best. Parameter estimation 
is included in the process. If you will be devdoping a lot of simulation models, you should 
check out these packages. 

ANALYSIS OF OUTPUT DATA 
I mentioned earlier a consulting job where the Medicare auditors requested a $10 million 
refund from a large hospital. The auditors could not show that they had used a random 
number generator that performed well, or even adequately, to produce the sample of 
claims. They also did not compute any measure of the sampling error associated with the 
$10 million estimate. When I computed a 90% confidence interval for the actual overpay- 
ment from their sample results, I found that it went from $3 million to more than $23 
million. So, although their point estimate was $10 million, the sample did not contain 
strong evidence that the true overpayment was different from zero. These conclusions 
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were obtained without even looking at the auditing procedure or disputing the conclusions 
on any specific claims. The result was that the hospital did not have to pay back the $10 
million. Unfortunately, I was not paid a commission on the savings. I would have been 
very happy with just 10%T 

After any simulation is run and the output data produced, the final step is to perform a 
statistical analysis to estimate whatever parameter you are seeking to know about the 
system. In the example mentioned about life insurance for a single-premium variable 
annuity with ratchet, we wanted to know the expected value of the liability. So, our 
simulation produces data on the liability and we have to use it to compute point estimates 
and confidence intervals for the expected value. Interestingly, in preparing this session, I 
looked in a number of actuarial publications for examples of simulations of actuarial 
problems. Of the eight to ten articles I found, none of them included multiple replications 
with a statistical analysis of the output data! 

You might ask why we should subject the output data to statistical analysis. Well, first and 
foremost, a simulation is a sampling experiment, so any data produced is subject to 
sampling variation. If we rerun the experiment, using independent random numbers, we 
will get a different set of data. So, we must use some method to compute the statistical 
accuracy of our point estimates. If you just run the simulation once and accept the output 
as the true parameter value, you are doing something analogous to collecting a single 
observation on a claim and using its value to represent the mean of all claims. Without a 
measure of accuracy, which is a confidence interval, you simply do not know how accurate 
your estimate is. If your estimate is not accurate enough, you need a measure of variation 
to compute how many observations, or replications, you need to generate in order to 
achieve an acceptable level of accuracy. 

It is important to subject your output data to statistical analysis. The next question is: 
What types of statistical analysis are appropriate for simulation output? There are two 
basic types of output data: Independent observations fi'om multiple independent replica- 
tions, or scenarios, and time series observations from one or more independent replica- 
tions. The liability at time of death or the value of the account at time of death in the last 
model, are examples of the first type of output data. The simulation is run for multiple 
independent replications. In each replication, the replication ends when the annuitant dies 
and the liability can be computed, producing a single observation. On the other hand, if we 
consider the value of the account each year, over a period of years, or the insurer's liability 
each year, we have time series data. The methods used for statistical analysis differ in these 
two types of data. I don't have time here to talk about time series analysis. This is a 
specialized topic and will have to be the subject of a future session. Fortunately, if the 
simulation run consists of independent replications, the usual statistical methods which are 
described in any introductory statistics text can be used to compute confidence intervals for 
the parameters we're interested in. Let's look at these using the example we've been 
considering. A confidence interval for the mean liability at the time of death is computed 
using the usual formula for a confidence interval for the population mean. When we apply 
it to the data from the simulation, we get the range 0.1583-0.2273 as the following shows: 

Y ±Z~2s ~ 
0.1928 4- 1.96(0.0176) = 0.1583 - 0.2273 
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This is a pretty wide range. If we compute a confidence interval for the standard deviation 
of liability at the time of death, it ranges from 0.5345 to 0.5836 as the following shows: 

(n-1)s2 < VAR(Y) < (n-1)s2 

X~2 

A confidence interval for the 90th percentile of liability at the time of death is from 0.4272 
to I. 1120 as the following shows: 

< , . 9 0  < r(,,) 
(r(s9o), Y(9,o9 = (0.4272, 1.1120) 

This latter confidence interval is a nonparametric interval, computed using the order 
statistics from the sample. You may need to consult a more advanced text on statistics to 
find out how to compute this interval. 

There are a large number of statistical software packages: SYSTAT, SPSS, MINITAB, 
and others, available today for use in analyzing data. These can, of course, be used to 
analyze data produced by simulations. In general, I would recommend that you have your 
simulation to write its output data on a file and use a statistical package to do the parame- 
ter estimation and confidence interval computations. The primary advantage of this 
approach is that there is less room for error because the computation routines in the 
established statistical packages are well tested. Of course, use of existing software saves 
time and effort. Finally, if you put your data on a file, you will not have to rerun the 
simulation if you decide to compute another parameter from the data or do some other 
statistical analysis with the data. On the other hand, sometimes you want to apply 
computations that do not exist in statistical software, or you want to set up the simulation 
so that it can be used routinely by actuaries. In this case, you will want to program the 
statistical analysis along with the simulation. 

Finally, it is often a good idea to plot the output data and subject it to many of the same 
types of statistical analyses that you would apply to data coming from the real world. A 
plot of the histogram or frequency polygon of the data will show quickly the shape of the 
distribution and whether it is skewed or not. If multiple scenarios are compared, a plot of 
their means and confidence intervals will show quickly how they compare. Most of  the 
statistical packages have excellent plotting capabilities (as do spreadsheets) to accomplish 
this. 

MODEL VERIFICATION AND VALIDATION 
All simulation models should be verified and validated before being used for decision 
making. This seems rather obvious to me. Indeed, all models should be verified and 
validated, not just simulation models. What do I mean by verification and validation? 
Remember that we first create a model of the system we are analyzing. A model is not a 
recreation of the system, but an abstract and simplified representation that includes the 
most important features of the system. Verification is the process of assuring that the 
model implemented is the model intended. It is basically a debugging activity. You want 
to assure that the simulation program behaves like the model you intend to implement. For 
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simulation programs this can be a formidable task because the simulation produces output 
that is random, so you can't always predict exactly what will be produced. 

I have a few suggestions concerning verification of simulation models. First, build the 
model without the random number generators initially. Instead, put specific values in the 
place of random variate and check the computations to assure that all formulas are correct. 
You might use values on input files instead of random variate as the source of the variate, 
then read them into the program at the point where you would normally call the random 
variate routine. This gives you the opportunity to compute by hand exactly what should be 
computed and compare it with the values that are computed by the program. Second, 
examine the output for reasonableness. You should frequently have a good feel for the 
distributions of the output data. Often you will know if the output data has a highly 
skewed distribution, or if it has a mass at a particular point. Third, consider extreme or 
unusual cases. Try to create input that should produce these circumstances and see if the 
program actually does produce them. For example, ifa particular policy has a provision 
for coverage that would normally only happen once per 10,000 policies, produce some 
input to make it happen to assure that the logic of the program handles the events cor- 
rectly. Four, ask other colleagues who are familiar with the project to check the model. 
After you have looked at a model long enough, you start seeing what you expect to see. It 
is ot~en helpful to get another point of view, even if it is from a person somewhat less 
intimately acquainted with the project than you. Finally, you can't check enough. Double 
check. Triple check. Then, cheek again. Most models are fairly complex, so it is easy to 
miss an important detail. And remember, the devil is in the details! 

Now, validation, on the other hand, is the process of assuring that the model implemented 
adequately describes the real process being modeled. Validation makes sure the model is 
useful for decision making. Note that you verify a simulation program, but you validate a 
model. In order to validate a model, you have to have data or other information from the 
real system. Basically, in validating a model, you want to compare the distribution of the 
data output by the model, when the model parameters are set to reflect those of the 
existing system with the corresponding data from the real system, and assure yourself that 
the two sets of data come from the same parent population. There are several methods to 
compare these distributions. You could use the two-sample Kolmogorov-Smirnov test for 
goodness of fit, or you could just do hypothesis tests for equality of the means and 
variances of the two distributions. If another characteristic of the distributions is impor- 
tant, you could do an hypothesis test for equality of this characteristic. An interesting 
alternative that has been promoted involves an actual manager of the real system. Have the 
model to produce a report exactly like a report the manager receives from the real system. 
Present her with reports from both the model and the real system, and see if she can tell 
which is the real report. If she can't, chances are good that the model is valid, at least as far 
as the information on the report goes. 

METHODS FOR IMPROVING THE EFFICIENCY OF SIMULATIONS 
I had hoped to have some time to talk about efficiency improvement techniques, or 
variance reduction techniques, as they are often called. Briefly, this is a collection of 
techniques that allow you to compute more precise estimates of the parameters you are 
interested in without having to greatly increase the sample size or computing effort. The 
nice thing about simulation is that you have total control of the experiment. You can 
therefore do such things as induce correlation between output processes, and this 

347 



RECORD, VOLUME 21 

correlation can give you more precise estimates of the mean of the process. These 
techniques can be applied in certain specific circumstances, and they do not always 
guarantee a variance reduction. Indeed, they can inflate the variance! 

Remember that your simulation results are only as good as your (1) model, (2) data 
analysis, and (3) ability to understand the simulation procedure and explain it to others who 
will be using the simulation results. The simulation process is like a chain with these three 
links. It is only as strong as the weakest link, and it needs all three links to operate 
properly. 

Your first objective is to have a correct, valid model. Every model is suspect until it has 
been validated, and yours is no exception. 

You should use at least a 31-bit random number generator. No 16-bit random number 
generator will have the qualities you want for serious simulation. As I indicated earlier, it 
is your responsibility to make sure the random number generator that is the basis for all 
random variate generation computations in your simulation has been tested thoroughly and 
found to satisfy the qualities of a good random number generator. 

Your data analysis should include error estimates as well as point estimates of the quanti- 
ties you are seeking. Error estimates are usually computed in the form of confidence 
intervals for the mean, but they can also be given as the standard deviation of the parameter 
estimator. 

Finally, some efficiency improvement, or variance reduction techniques, are available to 
improve the precision of parameter estimates. These techniques can often provide substan- 
tial improvements in the precision, but they do not come with guarantees. 
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