RECORD, Volume 25, No. 3’

San Francisco Annual Meeting
October 17-20, 1999

Session 75PD
Actuarial Software: Build or Buy
Track: Computer Science
Key Words: Computer Systems
Moderator: STEPHEN J. STROMMEN
Panelists: MARK D. J. EVANS

SUSAN M. LEE

STEPHEN J. STROMMEN
Recorder: JEFFREY JEROME KRYGIEL

Summary: The panel analyzes the choices between purchasing actuarial software
and developing the software in-house. The panel also offers contrasting views of
the advantages and disadvantages of the two approaches, as well as a combination
approach.

Topics include:
- Determination of software needs
Evaluation of software packages
Combining in-house developed software with commercial software
Modifying commercial software to the needs of the organization
Staffing and training for in-house developments versus staffing and training for
installation of purchased software

Mr. Stephen J. Strommen: As actuaries we all know that we tend to use large
volumes of data in our work and we apply very complex analyses to that data. The
types of things that we do simply are not amendable to the old yellow-ruled paper,
and pencil method. We rely on computers extensively. As a result, one of the
issues facing the management of any actuarial function is the determination of how
to obtain the computer software that is needed to carry out the work. The first
question that needs to be addressed is whether to build or buy.

We have a panel of three people who have quite a bit of experience dealing with
some of these issues. Mark Evans is second vice president and actuary at AEGON
U.S.A. in Louisville. Mark has had pretty good success with the approach of
building much of the software that he needs, so he'll take that point of view in his
discussion. Susan Lee is an actuary at Allstate Life & Savings in Chicago, and she
has had pretty good success with buying much of the software that is used in her
actuarial function. She'll be leaning towards that point of view in her presentation.

I'm an associate actuary at Northwestern Mutual Life in Milwaukee, and | will be
giving a case study of the procedure we went through at our company a couple of

"Copyright © 2000, Society of Actuaries

Actuarial Software: Build or Buy 2

years ago when we were deciding whether to build or buy some of our actuarial
systems.

Mr. Mark D. J. Evans: As Steve mentioned, I'll be talking about the advantages of
building actuarial software systems. Let me first describe briefly the different parts
of my presentation. First, I'm going to tell you a little bit about my background so
you know where I'm coming from. Then I'm going to do a situation analysis of
some of the background that leads to my conclusions. That will lead into a
discussion of my philosophy about actuarial software development. Then I'm going
to talk a little bit about how the actuarial and information services (I1S) departments
should interface. That will set the groundwork for the core part of my presentation,
which is "Build It and They Will Come."

I've been involved mostly with individual life, and some with individual health and
annuity products. | spend a lot of time on experience studies, mortality, lapse, and
a little bit of time with morbidity. | put a lot of work into research, specifically
different valuation issues as new things come up, mostly from a GAAP perspective.
I spend quite a bit of time with corporate modeling and acquisition analysis also.
I've also done work on the strategic analysis of distribution systems, and for the
past two or three years, I've been heavily involved in product development.

With modern computer languages, you do not have to worry about a lot of the
housekeeping that you did years ago. That enables you to develop the computer
programs pretty quickly, especially those that actuaries use. For that reason there
is a very large number of applications. For the actuary who is moderately proficient
at programming and able to write, type into the computer, and completely debug
the program, an application can be built faster than they could even explain it to a
conventional programmer.

This leads to a philosophy of actuarial software development. Certain premises are
necessary. First of all, all actuaries should be computer-literate; 1 am talking about
going beyond knowing how to put formulas in a spreadsheet or knowing how to use
Word. | am talking about a competency in a procedural language, whether it is C,
Basic, Fortran, APL, JAVA, or what have you. Why is this? Let's face it. As Steve
was alluding to, actuarial work involves a large number of calculations. It's only
logical that we are going to use computer tools and skills to solve these problems.
Another point | want to make is if you don't program, you are not going to have an
appreciation for the kind of problems or the kind of areas you can get into when
you have computer tools available to you and you do know how to use them
correctly.

In addition, there is a high overlap between the actual thought process and the
skills we have to have to be good actuaries, to be able to get through the exams,
etc., and the type of thought processes, skills, and talents that are needed for
developing programming proficiency.

Another consideration is that actuarial programs tend to be computationally
complex and very specialized. As a result, there is a fairly narrow range of what is
done compared to the universal software development environment, and because

Actuarial Software: Build or Buy 3

of that there are not a whole lot of programmers out there that are real comfortable
working with actuarial software. Those are reasons that actuaries need to be
computer-literate, and they need to be deeply involved in the development of
actuarial software.

Along those lines, | feel strongly that actuarial programming should take place in
the actuarial department, not in the information technology (IT) department. You
would have greater accountability. You would tend to get faster turnaround on
your projects. You are going to get better quality because the people doing the
programming are closer to the business unit. You will also have a better
understanding of the needs of the business unit. On the other hand, of course,
there are those large systems that cut across many departments and those types of
programming fall more naturally within the domain of your data processing
department.

Of course, if you are doing programming within the actuarial area, you still need to
cooperate with the IT department. You will work closely with them. Actuaries with
programming expertise can help with that relationship. First of all, when you have
something you need them to do for you, for whatever reason, it is going to allow
you to better judge the difficulty of various IT projects. If they tell you that it will
take two years to do something that you know can be done in two weeks, it's
helpful if you know that. The other advantage is when IT is developing systems, if
the actuarial department has programming proficiency, the actuaries will be able to
write code, etc., that will help debug major systems.

One comment you hear a lot when actuaries are trying to develop applications is
that IT often does not want actuaries messing with a company's data. They feel
actuaries could get in there and mess it up, so they can't write this program. They
want to do it for you. They say they can't get to it for three years, but that is just
the way it is. In many cases, that is unacceptable. Most operating systems you
have now provide a workable alternative. It is very easy to restrict files to a read-
only basis so that you can't change the data even when you are using it as input.
You have it available on a read-only basis, and in the few situations where it
doesn't work that way, you can simply get copies of production files.

As | see it, the advantages to building rather than buying software are as follows.
First, a lot of the work we do is very experimental in nature. What we think we are
going to have when we start out and what we end up with is quite a bit different.
This takes a lot of reprogramming and changing it as we go along. Second, we
tend to do a lot of prototyping where we will have a system up and running, and
early in its life we will be making a lot of changes to it. We want to be able to do
that quickly and easily.

Similarly, you might have applications where you are looking at frequent
modifications, or where you are wanting to do things differently or trying different
things. Once again, that's a situation where you want to be able to build your
system. If you have custom or unusual products or other actuarial problems that
are a little bit out of the mainstream, you are not going to be able to purchase
software to do that. The same statement goes with respect to complex formulas.

Actuarial Software: Build or Buy 4

If you have unique data storage in existence at your company, or if you are doing
original research, don't expect to go out and be able to buy the research software
package.

Now, to put these advantages in context, there are several real-life examples that
I've either been involved with or familiar with where you needed to build. First,
with mortality and lapse analysis, a lot of companies have their data stored in
different types of formats and different types of file layouts. Different companies
have different ideas about significant factors affecting mortality. Some companies
say that policy size has a big impact on our mortality or underwriting classification
or what underwriting rules we have for different blocks or whether we sell it on a
monthly direct bill or annual. Since that is likely to vary from company to
company, it makes it pretty difficult to go out and purchase the standard software
that is going to handle everything.

Related to that is how you slice and dice your expected rates. This is going to vary
quite a bit from company to company, and how you organize those expected rates
within your computer files is going to vary quite a bit also. This leads to the point
that it can be difficult to go out and buy software to do this as opposed to building
something in house.

Similarly with ad hoc reporting, the very name itself tends to say that this is
something that is going to be a little bit different from what you have done before.
The needs, the various selection criteria, and the various subtotals, are likely to
change with each application, and you are likely going to need to build that
reporting functionality.

Let me convey one specific situation that I was involved in early in my career. We
wanted to analyze a lease-back agreement and be able to test various payment
patterns, look at present values, and tax impacts. Initially our financial department
went out to different banks. They could not do anything with it because they didn't
have programming capabilities, and there were not any available in the
marketplace because this application is fairly original. There was no software you
could buy. Within the actuarial department, we were able to quickly and easily
develop a program to do this, which told them how they needed to analyze the
different proposals they had and told them which proposal was the best.

There are quite a few packages out there that you can buy that will do reserves and
cash values for traditional life insurance plans as opposed to universal life. But if
you have unusual plans or unusual grading (minimum cash values for three years
grading to lllinois modified preliminary term method after 17), you may have more
than a little bit of trouble having purchased software do that. However, that is an
application where if you are able to build and it is a problem, it is not that bad.

There are situations for valuation systems, and even administrative situations,
where you have innovative products or complex products. You are not going to be
able to go out there and buy something, or if you can buy something, it is
something that you are going to have to spend a lot of time modifying.

Actuarial Software: Build or Buy 5

Another consideration is when you are involved in original research. Don't expect
to be able to go out and buy software that is going to help you. You are going to
have to build it. When the FASB was struggling with how to do GAAP for universal
life (UL), they were getting a lot of comments from actuaries. Those comments,
frankly, were not all that effective because the actuaries were addressing it at a
conceptual level. With my company's huge interest in this topic, we got involved in
this discussion. We sent the FASB detailed numerical examples of how different
approaches would work. We were able to do this because we had the computer
programming capability and the infrastructure in place to be able to build these
models to feed this information to the FASB. This helped guide them in their
decision-making process. As a result, we were able to gain credibility with them
that others were not.

Our company, being a big UL writer, was interested in early adoption of FAS 97.
There was little or no software available to help us at that time. We had already
developed extensive models of our UL, for both in-force and new business. It was a
lot easier to leverage those existing models and just add FAS 97 calculation
capability as opposed to start over with new software.

Similarly, we had done a lot of research on deferred acquisition cost (DAC) for
traditional business and had come up with some unique methods that we felt met
our business needs and fairly reported our earnings to shareholders. Once again,
we were treading on new ground. We were doing a lot of experimentation and a lot
of stochastic scenarios to see how different DAC techniques would respond to
different lapse patterns. Once again, there was not any software that we could buy
that would allow us to do it, which is why it was important to be able to build it.

We also spent a lot of work with my company on the home-service market, where
profitability by field office can be very important because it can vary quite a bit
from geographical area to geographical area. We developed a system to study
profitability by field office. The particular approach we used was not an asset-share
pricing-model approach. We were looking at deviations as the percentage of
premium due to claims, persistency, and expenses. The formulas we used on this
case were not particularly complex, but once again they were unique, and it was
not something where we even had the option of going out and buying the software
to do it.

Similarly, with expense analysis, approaches vary widely by company. The data
and budget information tends to be stored in company-specific formats. Philosophy
on this varies quite a bit from company to company. Once again, you are looking
at probably having to be able to build this as opposed to being able to purchase
software to do this.

Switching gears, at AEGON, we don't typically buy options for equity-indexed
liabilities. We usually do option replication. If you are going to do that, you better
understand that concept well. The only way to understand it well is to be able to
model it and see how it would do under different stochastic scenarios and under
actual historical environments. Once again, no known existing software package
was able to do this. We had a very specialized custom need, and we wanted to be

Actuarial Software: Build or Buy 6

able to research different ways of hedging our liabilities. Many of those ideas were
not in a textbook, and we weren't going to be able to find software out there to do
the analysis.

I would also like to make some points about the use of purchased software
packages, like TAS and PTS. You will have issues arising as far as getting data into
and out of those systems. They are not going to do it for you. | suppose you could
key it all in, and | suppose you could cut and paste a column at a time. But
presumably you have more important things to do. The efficient way to address
that data input and data output is to be able to build interfaces, both coming in and
coming out, according to your needs.

Many purchased software systems let you go in and put your own custom code
right into their program, or you even have access to their source code in case you
want to change it. You are going to be much better equipped to do that efficiently
if you are already familiar with the procedural programming language because you
are going to have a better understanding of how your languages are going to
interact with the system they already have.

There will be an article coming out from the Computer Science Section's newsletter
talking about what courses the universities and colleges are recommending for
actuarial students to prepare them to enter the actuarial world. We have good
results from all of the different actuarial schools as far as responding to this survey.
On average, they recommend about six credit hours with a good mix of
spreadsheets, math packages, and procedural programming languages. | would
say on average that is about six semester hours. That should give students about
half of what is needed. But I do want to say that the vast majority of the colleges
and the universities do see this as an important area.

Ms. Susan M. Lee: Like Mark, | am going to start off with a little bit of my
background and give you an overview of my presentation before I get onto my
"buy" soapbox. | am going to present a framework that we like to use whenever
we come to the build/buy decision.

The past five years | have been mainly working with supporting and developing
proprietary and vended software systems. These systems are used for cash-flow
testing, economic value analysis, and asset/liability management. Prior to that, I
spent nine years in product development. My computer experience includes a
variety of languages and a variety of platforms. | am also the Y2K coordinator for
our actuarial department, as well as an IT liaison. What | wanted to point out in
regard to computer experience is that it is ever evolving. Once we were
predominantly known for a programming language (APL) and that is changing. We
constantly have to keep up our skills and move forward with the industry as it
moves on.

What is your company's technology strategy? Do you want to be known for

building software products? Managing information is an enormous challenge for
everyone. It doesn't face just the life insurance industry; it doesn't face just the
financial industry's market. Technology innovation has increased our capabilities

Actuarial Software: Build or Buy 7

for creating and storing data. The environment is complex, and it is ever
expanding. Look at the state of the Web today. If you went back ten years ago,
who would have thought we would be in the position we are now?

Application life cycles are shrinking. Before you might have had 7—10-year life
cycles on some of the applications you would develop or buy. Today those are
shrinking and are down around 2—3 years. What will happen in the next few years?
Will we be looking at a 3- to 6-month life cycle for applications? Currently Microsoft
is fitting itself within that 2- to 3-year range. They had Office 95, then 97, and now
we are on 2000. Will they be upgrading every year? As we use those tools, we
need to keep pace with that technology.

As | touched on before, the technology solutions should be developed through
outlining your business drivers. Technology should be an enabler. It is not a
driver. It should not be a goal. What is required to position your company to win?
If building a software application will position you to win, then that is what you
should do. But is that consistent with your corporate vision? Do you want to be in
the position of maintaining these systems in the long run? Probably five out of six
or seven would say, "No, I'm not in the computer science field. I'm in the
insurance field; I'm in the banking field; I'm in the financial institution field." Keep
that in mind when you are looking at this.

Another point is that you need to leverage, and leverage is very important whether
you build or buy. It helps you to minimize your cost, eliminate duplicate work, and
it ensures that it supports your company's strategic direction. This is strategic
direction not from a software perspective, but from a business perspective. If it
intends to expand into certain marketplaces, what is going to be the technology
that allows it to do that? You need to weigh the department's needs versus the
enterprise's needs. Will this be an application you can use across all business
channels? You need to look at the cost versus the functionality. A good example of
this is brokerage houses that made a large investment in the Web, but they are
seeing wonderful paybacks today. They balance the cost versus the functionality.

Don't forget about the future. The solutions that you adopt today will need to work
tomorrow. With our shortened life cycle (2-3 years out), will what you implement
today position you well going forward? You need to identify re-use opportunities so
that a particular application used in one part of your company has other uses in
other parts of the company. You need to weigh tactical or short-term solutions
versus the long-term strategy.

What | would like to do now is to review a typical decision-making cycle. | want to
go through a process that we use for some of our large-scale endeavors. The idea
is that you should constantly look at whether you should build or buy. You don't
want to pigeon-hole yourself into one particular venue.

The first thing you need to do is to gather your requirements for the particular
application that you're looking at. You have some type of financial process.
Perhaps it's some new product that you're coming out with, and you want to know
how to get it to market or you've got the valuation of a particular product and you

Actuarial Software: Build or Buy 8

want to know what type of system to put that on. Not only do you need to solicit
feedback from people who work with the product, but what about people outside.
For example, you're working with a business unit that only sells term products.
Why not also include in the conversation systems supporting those term products—
your UL lines and your annuity lines. There might be some synergies there. Again,
you want to be able to leverage your technology solutions. Then you need to
consolidate all this feedback. You really need to be careful in isolating what are the
"nice to haves" and what are the "need to haves."

Then you need to go out and find the available systems. Here's where you get into
that build/buy decision-making. Who are the vendors? Could you upgrade a
current system you have or should you build a new system? Once you reach that
point you're going to break off into two different branches. Bring in the vendors;
see what they can offer. Mark mentioned that sometimes vendors don't support
some of the unique bells and whistles you have. Find out what is missing, and
what it would cost to get those things put in. You also need to do feasibility studies
of upgrading and building your systems. Do you have a department that can
maintain these applications once they build them? When you need an upgrade,
who do you go to if you have a system that's built in-house?

You need to solicit the feedback from both vendors and clients. If you have
vendors that come in and do demos, get the reaction from people. Also, interview
their clients. This can be very important. It will allow you to determine how
responsive the vendors are, and what problems they have had implementing the
system. Be aware of who you are going to get into a relationship with potentially.

A very valuable tool that we use is the preparation of a cost-benefit analysis (CBA).
This is the tool that we use to allow us to determine the appropriate tract for us.
This can be a very valuable tool to you, and you should do it regardless of whether
you decide to build or buy. It does not have to be something that is elaborate and
takes weeks to put together. You can put some of these together in 10-20
minutes. It does not have to be complex.

Finally, you need to score your vendor systems as well as the capabilities you have
from building it in house in terms of the cost and in terms of the functionality. That
will lead you to your decision. My experience at Allstate over the past five years is
that 8 out of 10 times we follow this process and we have resulted in the buy
decision.

Now | mentioned | would go over how to do a cost-benefit analysis. The first thing
you have to look at is what are the associated costs. Again, this applies whether
you are going to build your application or whether you're going to buy it. You need
to look at your employee compensation. How many programmers, consultants, and
clerical people is it going to take? Don't forget to include inflation adjustments and
overhead backers for the management of that development staff, its employee
benefits, and its office space. A lot of times these are costs that go unnoticed when
you build your applications. You need to consider these.

Actuarial Software: Build or Buy 9

The other thing is contract resources. If you are with a small company, you may
not have the actuarial staff or IT staff to build applications. It doesn't mean you
can't hire consultants to build applications for you. Don't forget to include those or
any other professional services. Here again you have to include management time.
The management will need to set the direction, the requirements, the time line, and
assist in the testing. Don't forget a management overhead factor.

Another big thing is the hardware. Allstate was affected by this a few years ago,
and we looked at leaving a mainframe environment and going to a PC-based
environment for a variety of our systems. That meant a hardware investment: PCs
and servers. As costs come down, PC-based applications become a viable option.
Don't forget to include those in your analysis. If you go to a PC-based vender
system, make sure you find out from them what the optimal configurations are.
Don't just assume you can load it to your standard PCs that are in your
workstations. Chances are you can't and you might have to go out and buy
additional hardware. The same would hold for when you're building applications.
Do you want to stick with the same technology you are using? Obviously, you have
identified a process that needs to be done. Does your current technology address
it? What is the optimal solution? It isn't just writing the program. It is also the
operating system and the hardware. You have to take all those factors into
account.

Don't forget peripheral software. Something Mark mentioned in his discussion was
that when you do buy software, you often have to provide links from the variety of
sources you have for data. If you are using Microsoft Office tools, don't forget
about those licenses as well. There may also be travel, education, and training
expenses.

Now we get on to the benefits. It looks like there are a lot of costs with very few
benefits. That is a function of the way that we have designed our CBA process.
You look at reductions in head count. When we go from this system to that
system, whether we build it or buy it, what type of cost savings are we going to see
in terms of reduction in head count? How much automation were we able to
achieve? If we used to have a staff of five actuaries working on our monthly close,
this new system might bring that down to three actuaries working on our close.
Those are the types of benefits that you can realize, but there are also soft
benefits. You may be able to get your numbers sooner, and you will be able to do
more analysis. These benefits are difficult to factor in.

You should also consider potential reductions in resources. If you used to hire a
company to do your cash-flow testing for you; if you purchased some software, you
may no longer have to hire them because you can do it yourself. So those are the
types of benefits you can use in the CBA.

The other thing to keep in mind about this evaluation cycle is don't sweat the small
stuff. You are not going to do it for nickel-and-dime applications. You are going to
put those in a spreadsheet. You're going to put them in a real simple visual basic
application. What we are talking about here is the company investing significant
dollars in either building an application or buying an application. You might want to

Actuarial Software: Build or Buy 10

set a threshold for anything under a certain amount. You want to use reason, and
you want to prototype. If there's something new, some regulatory ruling for which
you want to see the impact on your company, you are not going to go out and buy
a vended system. You are going to prototype first, see the impact, and then you
will go through a complete CBA process to determine whether you want to program
this into your systems or just buy a system that can do this? The idea of a cycle is
that it circles back around.

I can't stress enough that once you either build or buy an application, you have to
continually address whether that still meets your business needs. Today you might
build; tomorrow you might buy. You might be back to building in another 2-3
years.

I have quite a bit of experience with buying, so now I'll get on my buying soapbox.
I'd like to share with you some of our experience at Allstate. The things you need
to keep in mind are contract and legal issues when you do buy vendor software. Of
particular interest is the scope of your license. Are there any restrictions on the
number of users or the site? You need to be wary of your maintenance fees. Will
they increase perpetually? Can you lock in your maintenance fees? You also have
to consider the training and customer support services they provide. The problems
that occur with upgrades to Microsoft Office for those who not only build their own
applications but also buy them were mentioned recently at the Computer Science
Council Section. What is the position of your vendor when Microsoft makes an
upgrade? If your company goes from Office 97 up to Office 2000 will your vendor
system work? You need to address that up-front, and that is a legal issue, believe
it or not. You also need to know about the warranties. How do you enforce quality
after acceptance?

A lot of times actuarial vendors will put out software in kind of a beta version. They
rely on the users to test the software. If you have it in your contract what the
warranties are regarding their distribution of software and their testing, you have a
better chance of understanding and using and working within that system to get
things corrected. You should not have to pay for getting things corrected. It
should not be an enhancement to the system. If you have unique features to the
product lines, you sell enhancements need to be addressed separately.

Confidentiality is a big one with Allstate. Take caution to prevent disclosure. If you
have a lot of proprietary methods, and if you want a vendor software application to
support those, you need to share information with the vendor. Make sure you have
proprietary caveats put in your contracts to ensure that that information doesn't go
into the general system or is not shared inadvertently with other users.

Vendor relationships are very important. This is a partnership that is entered into.
You have mutual goals and you need to enroll your vendors in the bridge-building
process. Mark mentioned that in his presentation as well. If you get your vendors
to be cognizant of what your needs are, then you will have less worry on the back
end in getting your data systems to speak to each other. The process of getting
the data from one system into another will be less complicated.

Actuarial Software: Build or Buy 11

There are also fringe benefits to buying. The biggest benefit is portability of skKills.
Turnover in the actuarial profession exists. If you know a particular application at
your company and | have that application at my company, it makes it very easy for
me to hire someone from your company because they bring prior skills. | don't
have to train them on my system because my system is a vendor package. Let's
say I'm a builder of actuarial applications. Once you have been at my company,
where are you going to go? You are less marketable because you don't have the
same background as someone coming from a company that has the same system.

There is enhanced confidence from management. The idea of safety in numbers. If
a particular tool is regarded as best in class in the industry, it is going to sit well
with your management when you give the numbers from that system. It doesn't
get past the issue of garbage in, garbage out, but at least you know the garbage
was processed the same way.

Consistency is important. When you use one application for a variety of sources,
you don't have to reconcile. When you build there will always be the issue of
business unit A that built an application for pricing; business unit B built an
application for pricing. They both sell the same product; they just have different
expenses because they have different distribution channels. Then you get the
question of consistency and reconciling their results don't seem to mesh. Vendor
systems avoid that by buying a single system that is used across the board.

Here are some of the examples of where Allstate has decided to buy software
applications. We have bought the systems that underlie our financial projections
for cash-flow testing, economic-value analysis, strategic planning, GAAP unlocking,
and duration studies. This has been significant for us in the consistency and
reconciliation stage. We can use one tool to do all of these applications, and it has
cut down our development time in terms of model set-up and model construction.
You build one model, and it moves from one process right into the other. We have
purchased product illustration software used by our field offices and our reserve
and nonforfeiture value rates and calculation systems are all vendor packages. Our
policy administration systems are all vendor packages. Even the tools we use for
competitive analysis work the databases and the query tools are all vendor
products. Although Mark has decided to build an application that does their
mortality and expense experience studies, we have actually purchased products
that enable us to do that.

In conclusion, if you do buy products, focus on those that offer components. This
way you can assemble them such that they meet your own needs. Lastly, | would
like to leave you with something I found in an IT article. The biggest imperative
facing IT shops is the ability to increase their success rates. IT projects have a
30% chance of not being delivered at all; a 70% chance of being over-budget, off-
specifications, or significantly late. Mark says, "Build it and they will come.” | say,
"Build it, and with these kind of odds, they're not staying.” What’s more important
is, can you, as a company, absorb this type of cost? When you go with a vendor
system, that cost is spread over all its client base. If you're building, the cost is all
your own.

Actuarial Software: Build or Buy 12

Mr. Strommen: I'd like to run through a case study of the decision that my
company had to make about two years ago when we were dealing with this decision
of building or buying actuarial software for pricing and modeling systems.

We had a problem situation. We had been in the habit of in-house development for
many of our systems, and virtually all of our actuarial systems. We had pricing
systems that were built in DOS APL by our pricing actuaries over a period of time,
and there was a separate pricing system for each of our major product lines. But
given that they were developed by actuaries and not people with systems training,
there was poor documentation and back-up. Maintenance was a little bit weak, and
in some cases, it was hard to reproduce some of our old results, like, for example,
an old dividend scale or a pricing for a prior series.

We also had modeling systems that had been developed in a completely different
department. They were in a financial planning department separate from the
actuarial department. Those systems were partly in DOS, some parts were in
Windows or the mainframe, and there was a small staff working on it. They were
having a hard time keeping up with changes in accounting and products and
everything else and that staff included only one actuary. There was one actuary
that knew it all.

We had a little bit of a problem. We wanted to set future direction for the software
supporting both pricing and modeling. We needed to address both of those, and we
wanted some kind of connection between the two. We wanted to assure that all the
related needs were met. For example, we're not just talking about forecasting. We
have cash-flow testing, GAAP reporting under FAS 97 and 120, etc. We wanted to
assure consistency between the pricing and modeling efforts. We wanted
appropriate controls to be put in place for documentation and version control. We
needed to keep an eye on costs. We are a large mutual company, but we don't
have an unlimited budget. We went through an evaluation process that was very
similar to one that Susie talked about. These are some of the high points of it.

First, we developed a list of criteria to be satisfied. Second, we reviewed various
vendor systems. We looked at three for a cursory review and then picked one
vendor system to evaluate in great detail. We determined a little bit of how to deal
with some of the limitations we found in that system. Then we estimated the cost
of in-house development if we were to continue our old approach. We laid the
options and prepared a proposal. The first criterion was that the system had to
handle all of our existing products without substantial system customization. Now
the key word here is substantial. That is in the eye of the beholder, but we had our
own criteria for what substantial meant.

The system had to be able to produce the required pricing measures that we use.
Every company has it’s own. We focus on return on equity in some cases and we
have other measures in other cases. The system had to be easy to use because we
have a rotation system among our younger actuaries, whereby they spend about a
year in each product line or in each area. We didn't want a system where an
actuary needed a whole year to learn to use because we'd never get any
productivity. We needed adequate documentation and we had a high standard for

Actuarial Software: Build or Buy 13

that. We needed to know exactly how every number is calculated that comes out of
whatever system is used. We needed a modeling and pricing connection, and as
you know, many of the vendor systems automatically provide both pricing and
modeling connections. That was more important if we went the internal route.

In our case, we also needed to incorporate an external investment projection. We
have an investment department that has its own model. We are very happy with
that. Our task was to be able to use their projection of the existing portfolio and
not to develop a new system to project our investments.

We first evaluated our vendor system and discovered that it was very good for
many of the more modern product designs like universal life, term, and annuities.
We discovered that it require substantial customization to handle some of our older
product designs, especially some of our unique participating products and disability
insurance. We also discovered it was a little weak on its support for GAAP reporting
and the process of projecting margin by year of issue. We also had some concerns
about the capacity and run time. We had been in the habit of running models with
thousands of cells. You can do that when you have a custom-built model because it
doesn't have a lot of overhead. Sometimes it's more difficult in a vendor system
that has overhead to handle almost any situation. It can't be as streamline in that
fashion.

Then we estimated the cost of in-house development. The cost is fairly high to do
this kind of thing. Remember, we already had an existing model, but it was having
trouble keeping up so we had a backlog of things we needed to do. We estimated it
would take six-to-eight person years of development to get our modeling system to
where we wanted it to be. We needed all of the parts to use a consistent language,
have a desktop user interface, eliminate all hard-coded assumptions, and make it
handle GAAP for every product line, and have full GAAP projection capability. That
doesn't include pricing systems. We didn't even bother to make an estimate of the
cost of improving our pricing systems because six-to-eight person years was far
over the cost of any vendor system we were considering, at least in terms of the
purchase price and even considering some of the training that had to go on.

We had to weigh these options and write a proposal. Doing everything in-house
was too expensive. Six-to-eight-person years was just too long. We had some
immediate needs, and we couldn't wait for this to be ready so we had to do
something. On the other hand, the vendor system was not a complete solution in
our case. It didn't handle all of our products without substantial customization, so
we decided to combine the two. We connected our in-house and vendor models
with a user interface shell and a set of file translation utilities so that the data that
are used in one system could easily be used in another system. We also, with
regard to those lines of business that we decided to build in-house software for,
connected our in-house pricing and modeling with the use of some common
modules.

There are a number of advantages of this combined approach. First, we got faster
product development using the vendor system. As | said, we had an immediate
need to develop a new product. The vendor system was there; it could handle this

Actuarial Software: Build or Buy 14

new product off the shelf, so we got it out the door very quickly. We were also able
to leverage our existing Legacy model of the old in-force business, and that was a
big time-saver. We also are able to maintain an in-house development capability,
and this to me is very important because we never have to say that we can't model
that. If our management wants us to do equity-indexed annuities or some new
kind of product, we can develop a model for it even if there is no vendor support.

There are some disadvantages to doing it this way. First, the overall system is
more complex. You know how complex vendor systems are; if you layer an
internal system on top of that, you have another layer of complexity. A user must
master both the vendor system and an in-house system. You also have to employ
extra support resources to maintain both systems and any connections between
them: the file translation utilities and whatever.

There are a number of conditions that | think are necessary to make this kind of
thing work. First, you need sufficient know-how and resources to do in-house
development of models of this sort. You need a pretty good-sized actuarial staff to
have these kinds of resources. You also need good relations between the actuaries
and systems developers so they can communicate well. You need management
respect for the actuaries that work with systems or otherwise the actuaries are not
going to want to work on this stuff at all. If you have a situation where your senior
actuaries learned their work before computers existed, and they feel anybody
sitting at a computer screen is doing work analogous to filling in a yellow ruled pad,
that's not the right situation. You need to have your actuarial management
understand the benefit of having actuaries work on some of those kinds of things.

A couple of things to look out for. You need to keep your focus on the business
needs and not cute systems. I'll give one example. | heard a story of an actuary
who was given an assignment to work on a pricing system, and a year later, when
his management touched base, he had developed a very beautiful user-interface
and graphics but there was no pricing system. It just looked real pretty. You need
to keep the focus on the functionality and not on making systems look cute. You
need to ensure that the actuaries leverage the expertise of the systems
professionals so that the actuaries are not trying to do it all. Otherwise, you can
wind up with the situation we had before with our APL systems.

So build or buy? Sometimes you just have to do both. That's what we've done and
we've been very happy with the results.

Mr. Paul A. Hekman: | guess you could say I have a vested interest here. | have
worked for PolySystems about ten years, but prior to that I did a lot of financial
reporting, so | would say | get my kicks more out of seeing people develop efficient
reporting procedures than | do out of selling software. | would just like to share
some experiences that I've had with people that have dealt with these issues.

First, | would encourage that you get involved with your IS people when you're
making these kinds of decisions. This is important for a couple of reasons.
Probably the major one is, if you're going to do valuation systems, you are going to
need to connect your server or your hardware into the mainframe in some way or

Actuarial Software: Build or Buy 15

other to get the data that you need. | know of one case where this was not done
and the user of the system was not able to hook into the mainframe system or
even into the company local area network (LAN). He had to develop a very crude
way of getting the data onto the PC for valuation purposes. It is essential to work
out these details in advance.

Another issue is to not underestimate the value of having multiple users of a
system to check out bugs. | would say, in many cases, when we replace in-house
systems, we discover that there were embedded errors that nobody caught because
there was only one user. That isn't to say that the vendor systems are bug-free as
well. Everybody has them and any system that gets modified frequently is going to
have bugs in it.

I think both sides of the issue were presented here in terms of your own personal
career path. You have to decide what kind of skills you want to take to your next
employer. Do you want to bring a program skill, or do you want to bring an
analytical skill with you? | tend to think that actuaries better spend their time on
analysis rather than programming, but that's a personal choice and that's up to
you.

From the Floor: | spent many years both building systems for companies and
buying systems. | think the panel did an extremely good job in pointing out both
aspects of this issue. My bias is towards buying. In the case of the two systems |
represent, not only do | sell for them, | bought the systems myself just so that |
could have enough fire power to compete with some of the bigger consulting firms.
But one of the points that was not raised is cross-fertilization of a vendor package.
I think Mark said that the vendor packages have more products covered and more
people have used them so there are fewer errors. There are errors in both, but
generally a vendor product is going to have more people looking at it and there will
be fewer errors in it, which also gives you a little higher confidence. Now you could
work that both sides. Many actuaries say, "Well, if we didn't develop it, how could
we have confidence in it?" In addition, | think it's easier to modify a vendor
package than it is to get people to do it in-house. Usually the vendors are more
responsive.

Another consideration, before a company goes to buy, particularly in new
regulatory situations, is that regulations can change several times before a
particular application is developed. | found this on almost all the GAAP issues that
have come out.

One other thing is actuaries are lousy formatters. I've never seen an in-house
system that has good reports and when you deal with management today you have
to have good reports. The vendor systems usually do good reports. In addition,
the documentation by actuaries is poor. You won't buy a package unless they have
good documentation. | put my particular preference to a vendor system.

Mr. S. Michael McLaughlin: My firm is very interested in watching what happens
here, understanding the different systems that are out there, and how our clients
use them. | guess | enjoyed the presentation because it made me think through

Actuarial Software: Build or Buy 16

the wide range of actuarial software that is out there. You have research jobs that
need spreadsheets or other original tools to do your research or prototyping; and
you have experience studies, pricing, product illustrations, reserve valuation, DAC
valuation for GAAP, modeling appraisals, and projections. There is a need for
integration of all these systems with the rest of the organization because we are
not working in isolation from the investment department, the accounting
department, or the policy administration department. In fact, we sometimes need
to do policy administration tasks ourselves for group contracts. We have options
such as building our own software. We have the option to buy in many cases.
What you have to keep in mind is what you are trying to achieve. We're not trying
to build or buy software systems. We're trying to meet some ultimate objective. It
just really seems that the picture is a little more complex. It also seems like we are
spending a lot of money and spending a lot of time with this.

I would ask the question of the panelists and maybe others who are present, does
it not seem that there ought to be some kind of integrated approach here? Do you
see companies taking integrated approaches to evaluating what is their best way to
create, build, buy, and subcontract actuarial software?

Ms. Lee: Companies are seeing the need for standardization. Many companies
have opted for standardization of the operating system, most of the time that being
the Microsoft product line. | think you are going to see this in the insurance and
financial industries as well. Companies realize the efficiency, the ability to leverage
when they adopt standard tools across the enterprise to solve their technology
solutions.

Mr. McLaughlin: The question is also whether actuarial departments somehow
integrate or plan ahead for the types of software that they want to build, buy, or
subcontract. Is there any sort of organized approach within the actuarial function
to this problem?

Ms. Lee: Related to what | have said before is how our actuarial department needs
to cooperate and coordinate with the other technology areas. If we would decide to
build a particular application or even buy a particular application, it has to be
approved by a group of individuals, which represent the technical architecture that
our company wishes to pursue. For at least Allstate, the actuaries are bound by the
company's direction in terms of technology solutions.

Mr. Strommen: I'd have to say at Northwestern Mutual we have a history of
almost always building everything, and we are beginning to go into the buy arena.

I think we are just beginning with regard to the actuarial function to think in these
terms. But in terms of the overall corporate standardization, there is a lot of that in
place. We have Windows on the desktop everywhere, so we have to fit into the
LAN structure that the IS department provides to us in whatever solution we come
up with. But as | say, with regard to these kinds of actuarial software, we're just
beginning to address a lot of these issues in my opinion.

Mr. Edward C. Jarrett: | have two comments to bring up. First, a lot of our
actuarial tools are just that—actuarial tools. They may have a switch that allows

Actuarial Software: Build or Buy 17

you to supposedly do a certain amount of functionality, but it's our responsibility as
actuaries to evaluate that particular tool to make sure it is doing what we want.

Just because your particular program has a tool to do reserves or switch to do it in
a particular manner, it is your responsibility as an actuary to figure out that it is
actually doing that. In many cases that falls down to an entry-level actuarial
student because that student puts in these factors, and that person comes back to
you. Yes, the system can do that but if you are the actuary that is reporting or
helping your manager make the decisions, it's your responsibility to ensure that it is
doing what you think it is doing. That may involve bringing some data out of the
system and evaluating it with other programs, but it is still an actuarial tool and |
know our particular company has vendor software and we are actuarial consultants.
Many times it is done on a financial reporting basis. You have to put on your
actuarial hat even when using these tools.

The second comment | wanted to bring up is again these are actuarial tools and we
are not in the job of replicating the administrative systems. When you are dealing
with a vendor or dealing with your in-house/purchase decision, be sure you keep it
in the framework of building an actuarial tool and not trying to replace the IS
department. If we try to attract young actuaries into an area where all of a sudden
they are doing administrative IS type work, we are not going to attract them into
that area.

Mr. Harold H. Summer: At Teachers Insurance, we are involved in a buy-and-
build decision right now in terms of our short-term planning. It has been said, and
I've heard from others, that vendor systems such as PTS, TAS, and Alpha are not
adequate in terms of the specificity, in terms of the accuracy that management
requires for the planning process. As a result, you would need to either upgrade
our existing in-house systems or build from scratch our own in-house system.
There are people in our company who feel we can go either way. | was wondering
what experiences others have had.

Mr. Strommen: | outlined my experience with that in my part of the discussion.
In terms of specificity, there are a lot of things that those packages do well, but
there are also things that they do not do. My impression has been that buying a
vendor package can be very helpful. But it will not be a complete solution for
virtually anybody.

Mr. Evans: Mr. Jarrett had made a comment that the actuary is still responsible
for the output, regardless of what system it comes from. | could not agree more
and actually, 1 would like to go along those same lines and take a little bit of issue
at the comment made earlier regarding vendor systems and the actuary being less
likely to know the guts of the system. It's a little easier for the actuary to
understand the models with a home-grown system. | would like to touch on a
couple of other things real quick. The mere fact that some of these vendor-
supplied systems do cover a broad scope is good. A lot of these are really good
systems, but that, in and of itself, does not decrease the opportunity for errors as
compared to what would be the case if you were building a specialized system. The
less scope you are trying to cover, the lower the probabilities for error, so | think |

Actuarial Software: Build or Buy 18

would take issue with just a flat out statement that vendor systems will have fewer
errors. That may be a little bit of an exaggeration.

The last point | want to make is another gentleman was talking about actuaries
being analysts versus programmers. | don't see any dichotomy there. A lot of my
work obviously has been in the programming areas, but that includes running
programs to give me results that | can analyze as an actuary. The fact that | don't
have to go back to a programmer every time | want to look at the numbers sliced
and diced in a little bit different fashion improves my ability to work as an actuary.
I don't see those as career paths that are somehow a dichotomy. They actually
complement one another.

Mr. Harry Potent : We first built software in order to do consulting but now we
sell software. | think the thing that's germane here is not our software products,
but our experience and on the build side, when we didn't know what we were
doing, we were doctors and actuaries. We were using Microsoft products and we
managed to get ourselves into a mess where the system was almost impossible to
upgrade and only one person knew how to upgrade it. When that person left to
take another job, we were fundamentally in a situation where we had to reprogram
almost from scratch. Another important thing to think about is the idea of modular
architecture and four-tiered architectures. | have found that the number of people
who can program is vastly larger than the number of people who are architects.
Architecture can make something upgradeable if you make it cheap to maintain and
it can make it useful whether you are building it or buying it. | would just like to
put in a plug for thinking about architecture before you build or buy.

Mr. Strommen: | agree. That is a very good point.

"Mr. Potent, not a member of the sponsoring organizations, is with Medical Scientists Inc., in Boston, MA.

