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1. INTRODUCTION

The theéry of life contingencies has been historically
developed from a deterministic point of view. 1In calculating
individual annuity and insurance values, actuaries have
ignored chance fluctuations in mortality, morbidity, interest,
expenses, etc. They have traditionally, however, implicitly
considered chance fluctuations by using conservative assumptions
for each of the factors entering the formula. Im recent years
Hickman (1964), Pollard and Pollard (1969), Hickman and Gavda
(1971), Taylor (1972), Boyle (1973) and Panjer (1978) have
considered the role played by the time of decrement (death,
disability, etc.) as a random variable in the calculation of
actuarial functions. As a result, it is known that most
actuarial functions are expected values of interest functions
when time of decrement is considered as a random variable.
Pollard (1971, 1976) and Boyle (1973) have considered interest
rate fluctuation by treating the interest rate (or equivalently
the force of interest) as a random variable., They each con-
sider very special models for interest fluctuations. Boyle
examined the case in which the force of interest in any year
is a Normal variable but uncorrelated with the force of interest
in any other year (a somewhat unrealistic assumption). Pollard,
on the other hand, used a second-order autoregresive stochastic

process to model the force of interest.



In this paper we attempt to develop some general theory
for both continuous and discrete models. The cases considered
by Boyle and Pollard will be seen to be special cases of

examples in this paper.

Let v(t) denote the present value of 1 payable in t years
(t 2 0). Let 8(t) denote the force of interest at time ¢ in
the continuous case and let Gt denote the force of interest in

the t-th year in the discrete case.

Suppose that {8(t); t 2 0} is a continuous parameter
stochastic process and that {Gt; t =1,2,...} is a discrete

parameter stochastic process.

Then the transformed variable A(t) = jt §(s)ds is also a
continuous parameter stochastic process andathe transformed
variable A(t) = ; 63 is a discrete parameter stochastic
process. As a r:;ilt, for appropriate values of t, it can be

seen that A(t) = -log v(t) and that v(t) = exp{-A(t)}.

Let Mz(y) denote the moment generating function (mgf) of

the random variable z; that is )

M,(u) = Elexp(uz)]

where E is the expectation (over z) operator. Using this
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notation, one can express various moments of the random
variable v(t), for fixed ¢, in terms of the moment generating
function of the random variable A(t). The expected value of

v(t) is then
Elv(t)]) = Elexp{-A(t)}] = MA(t)(-l)

which is the moment generating function of A(%) evaluated at

u = -1, In general, the r-th raw moment is
Elv(t)"] = Elexp{-rA(t)}] = M,  (-2)
and the cross product moments are, for fixed ¢t and s,
Efv(t)Tv(s)91 = Elexp{-ra(t)-qals)}l = Monre)sqnce) (=10
In particular, for r = ¢ = 1,

Elv(t)v(s)] = MA(t)+A(s)('1)'

t
Now consider the annuity certain functions aE’= J v(s)ds
t 0
and a£7=' I wv(s). We first examine the continuous case. The
s=1
expectation of aﬂ is

+
v

t

t
EL EE]] = E[J v(s)ds] = J Elv(s)lds = J MA(S)(-I)ds.

g 0
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The corresponding second order raw moment is

t t tct
E[J I vir)v(s)drds ] = J J Elv(r)v(s)ldr ds

- 2
El(ar)"]
& oo

trt
= IJ Mptr)ence)(~1)dr ds

and the cross product moment is

- _ tee t(s
E[aﬂ aa] = E[J Ja v(r)v(w)drdw ] = JOIO MA(r)+A(w)(-1)dr dw

In the discrete case similar results hold, namely

t
Elagl = EoMpgg) (=10

g=1
Ellap? = 1 o M (-1)
7 ozl pog A(r)+ble) ?
t 8
and E[aa aa] = wﬁl ril MA(r)+A(U)(-1)'

Similar results can be obtained for annuity-due values and for
series of non-level payments. For example, consider an annuity
payable at the rate B(s) at time s, (0 < s < t). Then the

t

series has present value J B(s)v(s)de with mean present value
0

t t t
E[J B(s)v(s)ds] = J B(s) Elv(s)lde = j B(sg) MA( )(-Z)da
0 0 0 8
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and cross product moment

t 8
E[{J B(w)v(w)dw} - {J B(r)v(r}dr}]
0 0

t¢s
= j J B(w)B(r) MA(r)+A(w)('1)dr dw.

Thus, moments of interest functions used by actuaries can
be expressed in terms of moment generating functions. Explicit
knowledge of the mgf will allow direct evaluation of such
moments. Such moments are taken with respect to interest rate
fluctuation. We now consider application of these results to
insurance and annuity situations in which the time of decrement

is also a random variable.
2. APPLICATION TO LIFE CONTINGENCIES

For the sake of brevity, we consider here only the net

single premiums for a whole life insurance and a life annuity.
Consider a life aged x. Let ¢ be a random variable denoting
the time of death of the life (aged x at time 0). Then the
pdf of ¢ is
f(t) = Py Hppr ! t 20 -

For a fixed force of interest § = -log v
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Eivt] = Zj R

Blag = al

vivty = 728 @8?
V[a—ﬂ] = ZJE viv?y .

where £ is the expectation and V is the variance operator with
respect to t and the actuarial functions are computed at the

indicated force of interest.

Now consider the fluctuating interest situation. We are
interested in the statistical properties of v(t), a(t) = Jt v(s)ds
and perhaps JtB(s)v(s)ds. They have expected values EIE2 gv(t)],
I,E, fal(t)] agd E\E, [J;B(s)v(s)ds] respectively where £, is
the expectation over A(t) for fixed t and E] is the expectation
over t. By applying the results of section 1, these values

can be rewritten as

E by, (1)1 = Jo My p)(-1) flE)dL,

t ot
Ez[Jo MA(S)(—J)ds]— Jojo MA(S)(-I) f(t)ds dt

= |, (-z)J fe)dt ds
JO 8(s) s

- JO Mare) (71 oPy ds ,

and similarly
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o«

B(s)M
0

t
B(g)M

(-1)de] = J
0

E][J

If we let Gf(t)

aes) 71

Afls)

we have

(-1),

d
- 3t L9 My iy

t
MA(t)(—Z) = exp{-[o 6;(s)ds}.

P, ds , respectively.

Substituting back into the equation for the expected values,

we write the expected values as

jz eap -
r

and J B(t) ezp{-[
0

t *
-8

* . = 1

61(s)du} P ux+tdt A ’

0

5‘
a’l,
z

t
_ * .
) exp{ Jo Gl(s)ds} £Pp dt

t
* - ’
, 61(s)ds} Pa dt

respectively,
as present values with a deterministic force

>

#
éz(t),t 0.

Consider now the variance of v(t).

decomposed as

fv(t)] + Vv

E V2

viv(t)] 7

iy [v(t)]

= EJEMA(t){-B) - y&(t)
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Thus the expected present values can be expressed

of interest

It can be similarly

A(t)(-l)]



4 d
If we let 62(t) = - 37 log M

viv(t)]

_ 2
= EJEMA(t)(-Z) - MA(t)(-I) ]
2 2
+ EJ[MA(t)(-I) ] - EJEMA(t)(-l)]
= 2
= E][MA(t)(-2)] - El[MA(t)(-l)]

_ (7 ® 2
= JO My,p)(-2) FE)dt - (JO Mypy)(-1) FlE)dt}

(-2), we obtain

6;(s)ds} u_., dt

tpx x+t

o,

dt1é

oo t %
- [jo exp{-Jo Gz(s)ds} P Vort

which can easily be determined.

For the

Via(t)]

annuity function a(t) we obtain similar results.

E1V2[a(t)] + V1E2[a(t)]

t(t t
2
El[JOJO MA(r)+A(s)(-1)dr de} -El[fo MA(S)(-J)ds]
t

@t t
= JOJJ Mp(pjenrs) (710 4Py Wpyy drdesdt
o’ 0
[ 2
- {Jojo MA(s)(-l) Pz Vare ds dt }

@

My rpyence) (710 gPg drds - {J MA(S)(-I)spxds}'

0

(-1) dr ds

{
J HA(r)+A(s) rPx
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3. THE NORMAL CLASS OF PROCESSES

Suppose that, for fixed ¢, the stochastic processes 6(t)
and ét are Normal processes with mean F[{&(t)] = u(t) and
variance - covariance function ¢[§(s),8(t)] = y(t,s). Then
Af(t) = Jt §(s)ds is a stochastic process with mean E[A(t)] =
Jt u(s)dg, variance V[A(t)] = tht y(r,s)dr ds and moment

0 0’0
generating function (at u = -1)

t 1 tet
(-1) = exp{-I u(s)ds + rl I J Y(r,e)dr ds}.
0

M
aAlt) oo
t
Similarly A(t) = 21 85 is a stochastic process with mean
t s=1 4
¥ u(s), variance z £ y(r,s) and moment generating
s=1 r=] s=1
function (at u = -1)
t 1 t t
ezp{- L wu(s) + 3 L I Yy(r,s8)}.
8=1 r=1 g=1

The case considered by Boyle (1976) is a special case of

Normal Process with

]
Q
™
3
[}
(=]
-

Y(r,s)

(]
A1

2

In this situation the moment generating function of A(t), at
x = -1, is

o =10 = cxp{-tis - 0o/2
apesl 1) = cxp{-tic - ¢ )}
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which is the discount factor for ¢t years at a constant force

of interest - 02/2. Similarly, at u = -2,

2
MA(t)(—Z) = exp{-t(2y - 20°)}

the discount factor for t years at a constant force of interest

2u - 202.

We shall consider some examples in which interest rates at
different points in time are correlated. It is not unreascnable
to assume that the relationship between interest rates at two
different points in time depends only on the length of the time

interval between the two points in time. We then write the

covariance as y(r,s) = y(|r - 8|) which is a function of a single
variable, the distance |r -s|. Boyle's example is the special
case where Y(0) = 02 and y(x) = 0 for = = 0.

4. SOME EXAMPLES - DISCRETE TIME

First, assume that the covariance between the forces of
interest at two different points in time depends only on the
length of the interval between those two points in time. Then
the covariance can be written as
yilt - ef).

clé,,8 21
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Suppose now that {Gt; t = 1,2,...} is a discrete parameter
stochastic process such that, for fixed t, Gt is Normally

distributed with mean py and variance 02. Let p(|t - &|) =

Y(|t - sl)/02 denote the correlation coefficient between Gt

t
and 6 _. Then A(t) = L Gs is Normally distributed with mean
¥ s=1
ut and variance
2 t t 2 2 t-1
6 L L pl|lr - s|) =0 p(olt + 20° I (t - rlolr)
r=1 g=1 r=1
2 t-1
=0°{t +2L (t - rlpo(r)}
r=1
since p(0) = 1.
z z-1
Let G(x) = 7t I (x - r)p(r). We then have immediately
r=1
that
_ _ 2
E[v(t)]) = MA(t)(-l) = exp{-tu + 0° G(t)}
and

2 _ 2
ELv(t)°) = MA(t)(-Z) = exp{-2tu + 40° G(t)}.
We now obtain the cross product moments

Elv(s)v(t)] = MA(s)+A(t)(-1)'



-12 -

Since E[ét] = y, we have E[A(t) + A(8)] = (t + &8)u. We will

use V[§,] = o ana crs,,8,1 = czp(|x - y|) in computing

ViA(t) + A(s)]). Suppose ¢ < t. Then
A(t) + A(8) = 2A(s) + A(t) - A(s),
so that

vLA(t) + A(s)]

4vlA(s)] + 4cla(s),a(t) - A(s)]
+ V[A(t) - A(e)]

2 8 8 8 t
=0°{¢4 T I opllr-wl)+4q ¢ I pl|r-w|)
r=1 w=1l r=1 w=g+l
t t .
+ b I ollr - w|)}
r=g+1 =g+l
2 8 t t t
=¢°{¢4 T I opllr-w|)+ I I pl|lr-w|J}.
r=1 p=1 r=g+l w=g+l
Now the second double sum can be written as
t t t-g-1
z I pllr - w|) = (t - g)ep(0) + 2 b (t - 8 - r)plr)
r=g+] w=g+l r=1
t-8-1
=t -8 + 2 z (t - 8 - r)p(r).
r=]
The first double sum is similarly
|
l s-1 t-8 t-1
I s+ L (8 -r)plr) +8 L plr) + T (t - r)o(r).
l r=1 r=1 r=t-g+1
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As a result, we have

2 s-1 t-8
VLA(t) + A(8)] = 0“{48 + ¢ T (s - »)p(r) + ds £ plr)
r=1 r=1
t-1 t-g-1
+ 4 I (t - r)p(r) + (t - 8) + 2 1L (t - g =r)p(r)}
r=t-g+l r=]1

- 202(20(3) + 2G(t) « G(t - 8)},

Similarly for s > ¢, we have

VIACE) + B(s8)] = 20°(26(s) + 26(t) - G(s - t)}
Therefore, for s = t, we have

viart) + A(s)] = 202{20(3) + 2G(t) - G(|t - &)}
Finally, we can evaluate the product moment

Elv(t)°] = expl{-2ty + VI2A(t)1/2),

2 2 t
G(t) = 40"t + 80 £ (t - rl)p(r)
r=1
which is the result obtained by evaluating MA(t)('2)° We now

where VI2A(t)] = 802

apply these results to examples using autoregressive models.

The reader should refer to Box and Jenkins (1970) for the details

of the following models.
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a) Autoregressive Process of Order One - AR(1)

Assume that the force of interest in year t can be modelled
as

8, = U *+ 606,

‘ - u} + ¢

1 t

where {et; t = 1,2,...} are independently Normally distributed

with mean 0 and variance yz. Then, according to Box and Jenkins

(1970)
E[(St] = MU
vis,1 = vic1 - 68 = oF,
and
2 |t-s|
C[Gt,ds] " ¢
i.e. p(r) = ¢ for r > 0.

The model suggests that interest rates in any year depend on
1) the level of interest rates the previous year and 2) some
constant level determined from the force of interest . For
the process to be stationary, we require that -1< ¢ < 1. Note
that the model of Boyle (1976) is this one with ¢ = 0 and

Qo = 1. We now evaluate E(v(t)], E[v(t)2] and Elv(s)v(t)] for
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this model. First,

2
E[v(t)] = MA(t)(—J) = exp{-tu + ¢° G(t)}

where
t-1 t-1
Gt) =%+ 5 (t-riptr) =L+ 1 (t-1) ¢
r=} “ r=1
-t 1+rd _ _J;L
271 <3¢ (1 - 0)2
Similarly,

Elv(t)%] = expl-2¢n + 40%c(¢)}

and for s = t

Elv(siv(t)] = expl-(s + t)u + 0°02G(8) + 2G(t) - G(|t - s|)1}.
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b) Autoregressive Process of Order Two - AR(2)

Assume that the force of interest can be modelled as

Gt =y + ¢1{6t-1 - u) + ¢2(6t-2 - u) o+ €,

where {et; t = 1,2,...} are independently Normally distributed

with mean 0 and variance 72. Then, according to Box and Jenkins

(1970)
E[ét] = U,
1 -9 2
V[Gt]= 2' Al 2 Fl =02:
1+6¢, (1-206,0° -4,
and
2 [t-s| - [t-g|
cle,, 6,1 = 0"y H1 =2y, }

ice. p(r) = Ay 41 -2 vy -

where

RN NSV (SR I Y S RIS
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and wl and b, are the reciprocals of the roots of the characteristic

equation

2
o(r) = 1 - ¢1r - ¢2r =0,

The model suggests that interest rates depend on 1) the
level of interest rates in the two previous years and 2) some
constant level. For the process to be stationary, we require
that 1) ¢1 + ¢2 < 1, 2) g - 67 < 1 and 3) -1 < ¢2 < 1. Note
that the model of Pollard (1971) is this one with ¢1 = 2k and

¢2 = -k and 0 < k < 1.

The expected values Elv(t)], E[v(t)2] and Elv(t)v(s)] can
be computed in the same manner as in the AR(1) case using the

following value of G(x):

z x=-1
Gl(x) = 3+ £ (x - r)p(r)

r=1
x-1 r r

=2+ L (z-r) (A ¥, + XAV )=XG (z) + (1 - A)G,(z)

27 0 171 272 1 2
14+ 9. 1 - %

where G, (z) = % . Loy i »i = 1,2,

i 2
1""4: {J-wi)
The roots of the characteristic function are either both

real or both complex. When the roots are complex, pf(r) is a

real-valued function. Thus, in either case, G(z) is real-valued
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and so, in turn, are the expected values. When the roots are
real, the autocorrelation function p({r) consists of a mixture
of damped exponentials. When the roots are complex, pf{r) is

a damped sine wave. These results are given in Box and Jenkins
(1970). Note that the example of Pollard (1971) admits only

complex roots since ¢1 = 2k, ¢2 = -k and 0 < k < 1.
5. SOME EXAMPLES ~ CONTINUOUS TIME

Again, as in the previous section, assume that the covari-
ance between the forces of interest at two different points in
time depends only on the length of the interval between those

two points in time. Then the covariance can be written as
cLért),6(e)] = y(|t - &|).

Suppose now that {6(t); t =z 0} is a continuous parameter
stochastic process such that, for fixed ¢, &§(t) is Normally
distributed with mean u and variance 02. Again, let p(|t - 8l) =
yljt - s])/cz denote the correlation coefficient between &(t)
and 8(s). Then A(t) = JZ §(s)ds is Normally distributed with

mean pt and variance

. (it a(t(t
o” J j pllr - 8|)drds= 20 J J olr - s)dr ds
0’s
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2 tet-a
= 20 J J p(z)dz ds

0’0
trt-z
= 20 J J p(z)de dz
0’0
2 t
= 20 J (t - z)plz)dz .
0

t
Letting G(t) = J (t - r)p(r)dr, we can write the variance

0
of A(t) as 202 G(t). As a result we have

Elv(t)] = My, (-1) = eap{-tu + o? crt)}

and

E[u(t)zj =Myrp)(-2) = exp{-2ty + 402 cre)).

Now examining A(t) + A(s), we find that
VIA(t) + A(s)] = 20° {2G(s) + 26(t) - G(|t - &])}

as in the discrete case. E[v(s)v(t)] is then evaluated as in

discrete case.

We shall examine the continuous analogue of the "Box-
Jenkins" autoregressive models discussed in the discrete case.
The reader is referred to Koopmans (1974). Let y(t) = &(t) -

and let Dk denote the k-th order derivative with respect to t.
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Then the n-th order continuous time process can be described

as

y(t) = a, Dly(t)) + a, DPLy(e)) + ...+ a, D'Ly(t)1+e(t)

where {e(t); t 2 0} are, for fixed ¢, independently Normally
distributed with mean 0 and variance 72. The mean of the pro-

cess y(t) is 0. 1Inverting the process we obtain

y(t) = J hi(r) e(t - p)dr

where h(r) is a function to be defined by the order of the

process.
The covariance function is given by

Ely(t)y(s)] = E f J Bir)h(w) €(t - v) els - widr dw .

Since
Ele(t - rle(s - w)] = YZ wnen t-r = g-w,
=0 otherwise,
we write the covariance as
2 [T .
Ely(tly(s)] = ¥ ) nft - s + r) h(r)dr .
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The characteristic equation of this process is

Its roots PosPosee,r, WY be real or complex, with complex
roots in pairs. We shall assume that the process depends only

on the present and past of the §(t) process, as we did implicitly
in the discrete case. This assumption requires that the real
part of the roots TisToseces?, be negative [see Koopmans (1974,
pp. 104-111)]. Then, for special cases, we need examine only

the case of roots with negative real parts.

a) Autoregreesive Process of Order One - AR(1)

Assume that the force of interest at time ¢ can be modelled

as
§(t) = u + a, Dé(t) + €(t)
or egquivalently

y(t) = a, Dy(t) + e(t) .

The characteristic equation is
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with root a = l/al. Then by the arguments given in Koopmans

(1974, p.110], we can show, for a < 0 (as assumed)

hir) = exp{ar} for »r > 0
= 0 for r £ 0

@

To derive the covariance function, y2 J h(t - 8 + r)h(r)dr,

-0

we distinguish two cases:
Case 1: a < 0, t - 8 >0

In this case the product of the h-functions is non zero when

r>0and t - § + r > 0. Since t - g¢ > 0 we need only » > 0.

Hence
© o«
I hi(t - 8 - r)h(r)dr = [ exp{lal(t - 8 + 2r)}dr
w0 g
1
= -3 explalt - &)},
Case 2: a <0, t - & < 0

In this case the product is non-zero when r > 0 and ¢t - 8 + r > 0.

Thus, we need r > s - t. Hence

J h(t = s + r)h(r)dr = exp{alt - s + 2r)}dr

Js—t

- 3% exp {als - t)}.
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Combining the two cases, we find that the covariance be-

tween §(t) and 6(s) can be written as

CL8(t),8(8)]1 = Cly(t),yl(s)] = - %o

2
exp{a « |t - 8|}

Note that the covariance is a function of only the distance

[t - s].
By substituting
2
2 _ Y.
° 2a
we obtain

clé(t),8(s)) = o

and ¢ = ezp{a}

2 -
. ¢)It sI'

which is the result in the corresponding discrete case. We

now obtain the function G(t):

G(t) = I (t - r)p(r)dr

0
ot 1-¢t
iz e (12 o F
__ _t 1 - exziat}
T T e T 2
a
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The moments E[v(t)], E[v(t)zl and E[v(s)v(t)] can now be

evaluated using this function.

b) Autoregressive Process of Order Two - AR(2)

The process is given by

y(t) = a, D y(t) + a 0? y(t) + e(t)

1 2

when y(t) = é(t) - u. It has characteristic equation

with roots

r1 = ” = 0.1 + 7'81

2

and
/ 2
-a, - a, + 4a

r, = 2 1 2 -, + iB
2 2 2 2

@y

where 1 = V-1

According to Koopmans (1974, p.110), in the AR(Z2) case

we can write h(z) as
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ho(z) - h(x)
h(z) = 1 Z !

;v Ty
where
hj(m) = emp{rjx}, x > 0
=0 » x < 0

for rj <0, g =1,2.

Although hz(x) and hz(x) may be complex-valued, h(x) is

always real. As in the 4R(1) case we consider two cases:
Case 1: rl < 0, rz <0, t -8 20

J hW(t - 8 + r)hir)dr

1 Jw
= ——!| [exp{r (t - 8 + r) + r,r} - exp{r (t - 8 + r) + r r}
(gz- rbﬁ 0 1 ! 2 I
- exp{r (t - s + r) + r,r} + explry(t - s + r) + r,r}ldr
1 exp{r (t - s)} explr,(t - 8)}
= 2 2 -
Ary - ry) r, Ty
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after some simplification.

J hi(t - 8 + r)h(r)dr

= I [exp{rl(t
s~t

- 26 -

-8+ 0r)+ rlr} - exp{rz(t - s + r) + rlr}

- exp{rl(t -8 +1r)+ rzr} + exp{rz(t -8+ 1)+ rzr}]dr

7 exp{rz(s

t)} exp(rz(s - t)}

2(r2 - ri)L

=Y

r r

1 2 .

Combining the two cases, we find that

CLé(s),8(t)] = Ely(sly(t)]

expir |t - s|} explr,|t - si}

r2) r r

2 1 2
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t, we see that

By letting s

8
vié(t)] SR A 02-
2r1r2(r1 + r2)

The correlation between §(s) and §(t) is then expressed as

o)
p(lt - 8]) = —=— exp{r, - |t - 8|}
Tg~ Ty
r
- ————l——-exp{rz « Jt - 8}
r2-r1

If r, and r, are real-valued, the correlation is a linear

combination of decreasing exponentials. If the roots are

complex~valued, the correlation is an exponentially damped

sine wave.

X
The function G(z) = J (x - r)p(r)dr can now easily be
0

computed. It is

r z exp{r. t} - 1 r z exp{r,t} -1
2 1 1 2
—— 3 - —_— 3
ry -, | P rg r,-r, | r, r,

and can then be used to compute E[v(t)], E[v(t)2] and Elv(s)v(t)].
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6. CONCLUSIONS

To apply the results of this paper, the following proce-

dure is followed:

1. An interest rate model is selected.

2. The function Gf(x) is determined for the model
selected.

3. The values of E[v(t)], E[v(t)2] and Efv(s)v(t)] are
computed using the function G(x), where the expecta-
tion is over interest only.

4. These values can then be applied in life or other

contingency settings as in section 2.

The methods in this paper generalize the results of Boyle
(1976) and Pollard (1971) by using more realistic models. The
use of the moment generating function greatly simplifies the
analysis. Since the Normal distribution is characterized by
the mean and covariance structure, the exact values of the
expected values in 3. above can be analytically expressed in
simple form. The annuity values can be calculated by integra-

tion (or summation) over the insurance values.

We hope that the results will prove to be useful in a

variety of applications.
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