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ABSTRACT 

There are three commonly used methods for compiling expo­

sure and death data for use in obtaining crude mortality rates. 

They are lives, policies and amounts of insurance. Most major 

~ctuarial studies use amounts of insurance in an attempt to 

reflect the financial impact of the deaths. When using amounts 

of insurance it is necessary to recognize the greater possibil­

ity of fluctuations due to claims for large amounts. Robust 

procedures, with their automatic reduction of the contribution 

Jf outliers, may provide some relief. This paper investigates 

the properties of estimators based on lives, amounts and robust 

~lternatives. It is concluded that lives provide the best esti­

mator, even when there is a moderate dependence of mortality 

rates on amounts of insurance. 
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1. INTRODUCTION 

Host modern mortality studies tabulate data by using 

amoun·;s of insurance. This has several benefits, one being 

that the problem of multiple policies on a single individual 

is el~minated. A second reason is based on the evidence that 

morta~ity rates decrease as the amount of insurance increases. 

The rt~ported mortality rates should reflect the financial 

loss !especially if the rates are to be used for gross premium 

and ~!serve determinations) and the use of amounts provides 

an aui;omatic weighting. 

As a preliminary step toward evaluating robust estimators, 

it is first necessary to determine the properties of the stan-

dard estimators. The determination of crude mortality rates 

can be modelled as follows. Let n be the number of observed 

lives. Define independent and identically distributed random 

variables X. = amount of insurance on 
l 

life i. Let e1 ,e2 ,···,en be independent random variables 

with ei possibly dependent upon xi but independent of 

x1 ,· · · ,Xi-l'Xi+l' .. ·,Xn. Further assume that the ei have 

identi.cal distributions. Let ei = 0 if life i survives and 

ei = 1 if life i dies. The standard estimators are 

, qL = L:E• i/n and qA = L:Si Xi/L:Xi, the estimators based on lives 

and amounts respectively. In this paper all sums run from 

i = 1 to i = n and so indication of the index and limits on 

sums ~rill be omitted. 
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Let F(x) be the distribution function of the random 

variable X which has the same distribution as each Xi. 

2 Define a.=E[X] and ~ =E[X ]. Further define q =E[Bi] and 

q(x) =E[Bi!Xi =x]. Then q=E[E[Bi!Xi]] =E[q(X)] =Jq(x)dF(x). 

Since q is the probability of death of a randomly selected 

life, qL is likely to be a superior estimator of q. Of 

more interest for insurance purposes is the probability of 

death of a randomly selected dollar of death benefit. This 

quantity is qA = E[eixi ]/E[Xi] = Jxq(x)dF(x)!JxdF(x). It has 

been accepted that qA is a good estimator of qA. 

The criteria to be used to evaluate the merits of the 

estimators are bias and mean squared error. In all cases it 

will be assumed that qA is the quantity to be estimated. 

The bias of q is defined as b (q) = E[q]- qA and the mean 

squared error is MSE(q) =E[(q-qA) 2 ] = Var(q) +b(q) 2 . 

In the following sections only two forms of the function 

q(x) are investigated. The first is q(x) =q =qA' the case 

in which mortality does not depend on amount. This assumption 

is referred to as Case 1. Case 2 is q(x) = b +a .tn(x). In 

this case q = b + aE[.tn X] and qA = b + aE[X .tn X]/E[X]. 

2. EVALUATION OF qL AND qA FOR CASE 1 

For Case 1, E[qL] =L:E[Bi]/n=q and Var(qL) =L: Var(ei)/n
2 

q(l-q)/n. The estimator _qL is unbiased with MSE(qL) 

q(l-q)/n. 
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For qA' E[qA] =E[E[L:SiXi/L:XiiX1 ,···,Xn]J =E[qL:Xi/L:Xi] =q 

and Var <CiA) = E [Var (L: e i Xi/L:Xi I xl' ... 'xn) J + Var (E[L:e i Xi/L:Xi I xl' 
2 2 2 2 ···,Xn]) =E[q(l-q)L:Xi/(L:Xi)] +Var(q) =q(l-q)E[L:Xi/(L:Xi) ]. 

Thus qA is also unbiased while its mean squared error depends 

on the distribution of X. If the amounts of insurance are 

considered to be nonrandom, the mean squared error can be ob-

tained by removing the expectation and using the actual values 

of the amounts. A numerical value for the expectation may be 

difficult to obtain; the following theorem provides a method of 

obtaining its asymptotic value. 

Theorem: Let x1 ,x2 , .. · be independent and identically 

distributed random variables with means ~x and variances cr~. 

Let Y1 ,Y2 ,· ·· be independent and identically distributed ran-
2 dom variables with means 1 y and variances cry. Let 

crxy =Cov(Xi,Yi) and assume Xi and Yj are independent for 

i ;ij. Let Wn =L:Xi/n and Zn =L:Yi/n. Let f(w,z) be any 

real-valued function with first and second derivatives existing 

in a neighborhood of (~x'~y). Then Jrl(f(Wn,Zn)- f(~x'~y)) 

~V where V has a normal distribution with mean zero and 

variance 

Proof: See Theorems 4.2.3 and 4.2.5 of An Introduction 

to Multivariate Statistical Analysis, T. W. Anderson, Wiley, 

1958. 

64 



5 

2 
TousetheTheorem,let Xi=Xi, Yi=Xi and f(w,z) 

w/z
2

. Then n Var(qA) =q(l-q)E[Wn/Z;J -->q(l-q)E[X 2 ]/(E[XJ) 2 

q(l-q)i3/a 2 . Since 13;;,;a2 with equality only if X has all 

its mass at one point, MSE(q);;,; MSE(q 2 ) (asymptotically). 

3. ROBUST ALTERNATIVES 

It was not expected that estimation by amounts would be 

superior to lives when the mortality rate is independent of 

the amount of insurance. The additional variability due to 

the amounts is not offset by the weighting of the deaths by 

amounts. In his text, Mortality Table Construction (Prentice­

Hall, 1978), Batten observes that "complications arise when 

this method [use of amounts] is employed, notably when several 

huge claims in a single cell distort the resulting mortality 

rate. The effects of such fluctuations can be so~ewhat muted 

by the elimination, in both exposure values and deaths, of 

any protection in a single policy in excess of some predeter-

mined level" (page 217). 

The method suggested by Batten is similar to several 

robust methods. The method developed by Huber ("Robust Esti-

mation of a Location Parameter," Annals of Math. Stat., Vol. 35, 

pp. 73-101, 1964) estimates the mean as the solution ~ to 

n'iJ=l:;zixi +2:(1-zi)(IJ+ca sgn(xi--;:l)) 

I xi - '0: I s; co and zi = 0 otherwise. 
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1 if x > 0 and -1 if x < 0 and a is the standard devi-

ation of X. The value of c is selected in advance; Huber 

recorrunends 1,;; c,;; 2. This estimator has minimax variance over 

the class of variables containing symmetrically contaminated 

normal random variables. The greater the contamination, the 

smaller the value of c should be. Huber's method is essen-

tially a two-sided version of Batten's suggestion with the 

cutoffs set at il ±ca. In most cases the value of a will 

also need to be estimated. 

A second robust estimator is trirruning. In this case, all 

amounts above or below the cutoff are eliminated from consid-

eration. In general, these alternative estimators can be 

defined as q =~eih(Xi)/~h(Xi). The three methods described 

above use the following h(x). 

(i) One-sided reduction 

qR:h(x) = X 

m+k 

(ii) Two-sided reduction 

qH: h(x) m-k 

= X 

m+k 

(iii) One-sided trirruning 

qT : h( x) = X 

x,;; m+k 

x;;,: m+k 

x ,;;m-k 

!x-mJ ,;; k 

x ;;,: m+k 

x ,;;m+k 

0 x>m+k. 

For any of these estimators, if q(x) =q then E[q] =q 

and n Var(q) -4q(l-q)E[h(X) 2 ]/(E[h(X)]) 2 . 
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4. AN ILLUSTRATION 

Mortality data was obtained from The Equitable Life 

Insurance Company of Iowa. A sample of 2090 policies was 

fitted to a lognormal distribution. The sample mean and vari­

ance for the logarithms of the amounts were Ct = . 79 and 

&2 = . 81. Assuming these as the exact values leads to 

E[X] = 4044 and E[X 2 ] = 36,762,909. The cutoff points are 

based on the corresponding normal distribution. They are 

exp(7.9 ± .9c). The following table gives asymptotic values of 

n MSE(q)/q(l-q) with the expectations computed by using the 

lognormal distribution. 

qT qR qH 

c = 2 l. 743 l. 830 l. 827 

c = l. 5 l. 631 l. 615 l. 604 For qA : 2. 248 

c=l l. 634 1.411 1.371 For qL : 1 

minimum l. 613 1 1 

c at min l. 25 0 

For Case 1 it is clear that the estimator based on lives 

is superior. It does appear that qA can be improved by using 

one of the robust modifications. When Case 2 is investigated 

it is hoped that the dependency of mortality on amount will 

close the gap between q_
1 

and the robust estimators. 
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5. EVALUATION OF THE ESTIMATORS FOR CASE 2 

It is now assumed that q (x) = b +a .tn x. It is expected 

that the estimators will be biased for and that the vari-

ances will be in the same relationship as in the example in 

the previous section. The combination of bias and variance 

may lead to mean squared errors that are different from those 

in Case l with the relationships depending on sample size. 

A general result may be obtained for the situation in 

which E[e 1 Jx1 J =q(Xi), Yi =h(Xi) and q =L:8iYi/L:Yi. All 

the estimators discussed in this paper can be placed in this 

framework. For computing the bias, E[q] = E[E[L:8i Yi/L:Yi I 
X1 ,···,Xn]J =E[L:q(Xi)h(X1 )/L:h(Xi)J __.E[q(X)h(X)]/E[h(X)]. For 

the variance, 

= E [L:q C xi) C 1-q c xi) ) h c xi) 
21 (L:h c xi) ) 

2 
J 

+ Var(L:q(X1 )h(Xi )/L:h(Xi)). 

Let Tn =L:q(Xi)h(Xi)/n, Un = L:q(Xi)h(Xi)
2
/n, Vn =L:q(Xi)

2
h(Xi)

2 

and zn = L:h(Xi )/n. Then n Var(q) = E[ (Un-Vn)/Z~] + n Var(Tn/Zn). 

If y l = E [ q (X) h (X) ], y 2 = E [ q (X) h (X) 2 ], y 3 = E [ q (X) 2h (X) 2 ], 

a.h =E[h(X)] and i3h =E[h(X) 2 ] then, from the Theorem, 
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Finally, n Var(q) 2 2 4 3 
____. y2/a.h + ylSh/a.h- 2Y1 y2/a.h· 

To evaluate q1 , use h(x) = 1. Then y1 = y2 = E[q(X)] = q 

and a.h = sh = 1. This yields E[qL] = yl/a.h = q and n Var(q) 

= q(l-q). As expected, the mean and variance of qL are un-

changed from Case 1. However, the bias is now q-qA and the 

mean squared error is 2 q (1-q)/n + (q-qA) . If X is assumed 

to have a lognormal distribution with ~ =E[tn X] and 

o2 = Var(tn X) then q = b +a~ and qA = b + a(~+o2 ). The mea­

sures of performance become b(q1 ) =-ao2 and MSE(q1 ) 

(b+a~) (1-b-a~)/n + a 2o4 . 

For qA' use h(x) =x to obtain E[qA] ----+E[q(X)X]/E[X] 

= qA and n MSE(qA) = n Var(qA)----+ (S/a. 2 )[qA (1-qA) + ao2(1-2qA)] 

using the lognormal assumption. Using the values of a., s, ~ 
and o 2 as in the illustration in Section 4, MSE(qA) <MSE(q1 ) 

if .656la2(n-l)- 2.6308a + (5.2617a -1.2480)qA + 1.248oqi > o. 

To complete the illustration, the most recent Large Amount 

Study (TSA Reports, 1975) was used. That study found mortal­

ity on policies for more than $50,000 to be 90% of overall 

mortality. To apply this result to the Equitable data, the 

cutoff was reduced to $15,000 and qA set at .02. This pro­

duces a =-. 0016 and b = . 034. When placed in the above 

formula, it is seen that qA will have the smaller mean 

squared error if n ~ 12,205. This is an extremely large num-

ber of lives to observe for a single cell. 

69 



10 

As a second example, consider the cell with the largest 

exposure ($98,367,065 at ages 45-49) in the Basic Male Table 

used in constructing ~he proposed New Minimum Mortality Stan-

dard for the Valuation of Standard Individual Ordinary Life 

Insurance. Assuming an average size policy of $7000 (from the 

1ife Insurance Fact Book 1978) a sample size of about 14,000 

results. The mortality rate was .00235 for this cell, lead-

ing to a=-. 000122 and b = . 00348 

as in the first illustration but with 

using the same principles 

2 1-1=8.45 and a =.81 

to provide for an average policy size of $7000. With these 

parameters, a sample size of 265,352 is required before qA 

will have the smaller mean squared error. In addition, when 

a is negative, the bias in &1 will be positive and thus it 

can be expected that the error in &1 will be on the conserv­

ative side. 

It is reasonable to conjecture that the robust approaches 

will provide a suitable compromise between amounts and lives. 

A smaller bias than &1 and a smaller variance than qA may 

yield an estimator that is optimal for moderate sample sizes. 

For the estimator qR define h(x) = x if x s; exp(l-l+co) = li 

and h(x) = o otherwise. Then 

a.Hc-o) + liO-Hc)) 

2 
Sil! (c-2o) + li (1-il! (c)) 
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y1 ba.h + aa.[ (1-1+a H(c-a) -a exp(-(c-a) /2)/J2TI] 

+a/5[1-!(1-Hc)) +a exp(-c 2/c)/J2TI] 

y2 bSh + aS[(I-l+2a 2 )cli(c-2a)- a exp(-(c-2a)2/2)/J2rr] 

+ao 2[1-!(l-Hc)) +a exp(-c 2/2)/J2TIJ 

11 

where 2 a.= exp(1-1+a /2), and is the stan-

dard normal cumulative distribution function. Using the val-

ues from the Equitable illustration, the calculations for 

qR are presented in the following table. 

c b(qR) n Var(qR) Prefer for 

(qL) .00130 .020902 n < 2046 

0 .00084 .022913 2046 s: n < 9118 

1 .00043 .027645 9118 s:n <29,717 

1.5 .00025 .031107 29,717 s:n<78,026 

2 .00013 .034704 78,026s:n<434,935 

{qA) 0 .041402 n:;,: 434,935 

It turns out that the formulas for qT are identical to those 

for qR with 15 = 0 used throughout. For this example, when 

selecting the value of c optimal for a given sample size, 

qR will always have a smaller mean squared error than qT. 

The formulas for qH will be two-sided versions of those for 

qR. The mean squared errors are about the same, but there 

could appear to be no practical motivation for adjusting the 

small amount policies. 
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6. APPLYING qR TO PRACTICAL SITUATIONS 

In applications, It is necessary to estimate 

in order to use qR with a given value of c. Instead of 

using the sample mean and variance of the in(Xi), it would 

be in keeping with the spirit of robust estimation to use 

robust estimators for these quantities. Huber suggests a 

method for use when both location and scale are unknown. 

There are many other proposals that use similar reasoning (see 

the paper by Lenth in this volume); none has overwhelming sup-

port. The method uses iteration to find the solution to 

0 and 

E['f(X) 2J 

where 'f ( x) = x for I xI :s: c and 'f ( x) = c for I xI ;,; c . 

E['f(X) 2] = 2!1?(c) -1+2c 2(1-Hc)) -2c exp(-c 2/2)/.,12TT. Values 

for various c are tabled below. An effective method of 

c . 5 

.1851 

1 

.5161 

1.5 

. 7785 

2 

.9205 

solving the two equations is to define weights 

2.5 

.9776 1 

Wi -- \ll(xi_cr-.11\ li(xi_cr-·0'). , ·- )/' ·- The equations are then easily solved 
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that the depend on l..l 

obtaining 11 

and cr suggests starting with 

all and ~2 
CJ ' resetting the with 

these values and then obtaining new l..l and cr. This pro­

cess is to be continued until the values of l..l and cr sta-

bilize. 

As an illustration, the methods studied were applied to 

selected cells from the Equitable data. Robust estimators 

were used for each cell with l..l and (j obtained from the 

.tn(xi) and qR obtained using c=l.5. 

Ages Lives Deaths qL SD(qL) Exposures Deaths qA 
------

48-52 261 1 .00383 .0024 1, 711,459 2,500 .00146 

58-62 383 4 .01044 .0066 1,648,600 24,000 .01456 

68-72 300 6 .02000 .0085 1,106,666 19,500 .01762 

78-82 142 6 .04225 .0192 506,629 24,500 .04836 

83-87 76 9 .11842 .0420 217,300 31,000 .14266 

SD(qA) 

.0042 

.0101 

. 0114 

.0246 

.0560 

Ages l..l (j li #c~~~~-Exposures Deaths qR SD(qR) 

48-52 8.370 1. 0396 20,525 5 1,631,084 2,500 .00153 .0032 

58-62 7.865 .9216 10,378 25 1,417,750 24,000 .01693 .0084 

68-72 7.656 -7589 6,597 27 795,785 17,694 .02223 .0102 

78-82 7-578 .6976 5,566 12 337,171 18,632 .05526 .0225 

83-87 7.622 .7597 6,384 3 194,452 31,000 .15942 .0505 

The standard deviations were calculated assuming q (X) = q = qR' 

l..l=l..l and cr=cr. Then Var(qL) = q(l-q)/n, Var(qA) = q(l-q)S/na. 2 
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and 

Var(qR) :q(l-q)[S4i(c-2cr) +o 2 (1-4i(c))]/n[a.~(c-cr) +o(l-~(c))] 2 . 

7. OTHER CONSIDERATIONS 

Robust methods are designed to be superior when the ob-

servations are either contaminated or are from a heavy-tailed 

distribution. The analysis in this paper assumed a normal 

distribution (after the logarithm transformation). It would 

be reasonable to conjecture that the presence of outliers 

would improve the superiority of qR over qA. The deriva­

tion of asymptotic variances under such contamination is only 

slightly more complex. A greater difficulty is that the 

methods of obtaining mean squared errors were all based on 

2 assuming ~ and cr known. In practice, the use of estimates 

of ~ and cr 2 will lead to errors in the selection of the 

cutoff point 6 and in the mean squared error measurement. 

Perhaps the most useful result from this investigation is 

the attention focused on the variance of mortality estimates. 

In particular, when using amounts of insurance (whether adjusted 

or not) it is common to think of confidence intervals in terms 

of Jq(l-q)/n. It is clear that the coefficient JS!a. must 

also be considered when obtaining the standard deviation and 

its effect can be of significant magnitude. 
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8. A NOTE ON USING POLICIES 

The comparisons made in this paper were between the 

ideal, use of lives, and the accepted, use of amounts, methods 

of estimation. If amounts are to be discarded, the next most 

practical alternative is the use of policies, a readily avail-

able quantity. If Pi is the number of policies held by life 

i and ei is as before, define qp = ~eiPi/~Pi. If ei and 

Pi are independent, q =E[Si] =E[qp] and n Var(qp) 

~q(l-q)E[P 2 ]/E[P] 2 . Suppose P-1 has a Poisson distribu­

tion with mean A. Then E[P] = A.+l and E[P 2 ] = (l+A.) 2+A. and 

therefore n Var(qp) -4q(l-q)(l+A./(l+A.) 2 ). Estimating by pol­

icies would be preferable to amounts if l+A./(1+1..)
2 ~ s/a2 . 

This is equivalent to A./(l+A.) 2 ~ Var(X)/E[X] 2 . Since 

A/(1+1..) 2 ~ 1/4 for all A.;;,: 0, qp will always be preferred 

when E[X] ~ 2SD(X). This relationship held for all five cells 

used in the Equitable example. 
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