
Abstract. 

ROBUSTNESS OF MoVING WEIGHTED 

AVERAGE GRADUATION FORMULAS 

Vonald A. Jane~ and Kathleen Pu~tell 

The theory underlying the Moving Weighted Average 

graduation method is restated in the language of linear 

algebra which provides for an enrichment of the family 

of formulas. A comparison of the results of applying six 

members of the family to 100 simulated data sets is provided. 
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Introduction. 

First, our apologies for not discussing the robustness 

of Moving Weighted Average (M-W-A) formulas in the technical 

sense of this conference. It is our intention to explore the 

richness (i.e. robustness) of the theory of M-W-A formulas. 

By M-W-A formulas we shall mean a set of coefficients that 

serve as the weights in calculating graduated values as weighted 

combinations of ungraduated values. Our distinction between 

M-W-A graduations and Whittaker-Henderson graduations is that 

each M-W-A graduated value is a linear combination of relatively 

few ungraduated values where as the Whittaker-Henderson graduated 

value is a linear combination of all ungraduated values. More-

over, most of the M-W-A values will be calculated using the same 

weights--hence the term "moving". In the Whittaker-Henderson 

method the calculation of each value will use a different set of 

weights. 

Among actuaries M-W-A formulas are restricted to those 

derived to reproduce polynomials of a given degree and to mini-

mize the sum of squared differences of a given order--usually 

denoted In this paper we will enrich the family of M-W-A 

formulas and illustrate the application of some of the new 

members on simulated mortality data. We hope the foundations of 

M-W-A graduation theory will be better understood. As a conse-

quence a rational decision regarding the robustness of this 

method in our computer age can be made. 
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Traditional M-W-A Formulas. 

Now we shall formulate the M-W-A method in the statistical 

framework by use of matrices. We are given a set of random 

variables, 

u" 
X 

X a, a+l, •.• , b. 

We shall assume that their means and variances exist and shall 

denote them by Vx and 
2 

ox respectively. More significantly, 

we shall assume that the variances are equal and that these 

b - a + 1 random variables are uncorrelated. I.e. 

and 

2 
a 

X 

2 a 

0 X 'f y 

This model is traditional in the theory of the M-W-A method 

(see [ 2] , [ 4 1 ) • 

(1) 

(2) 

A M-W-A formula is a set of N + K + 1 coefficients, as, 

s:- K, - K + 1, ..• , N, which are used to calculate the linear 

estimates 

u 
X 

u" x+s X a+K, a+K+l, ... , b-N. 

These are interpreted as estimates of v 
X 

A specific M-W-A 

formula is determined by requiring, (A) these estimators to be 

unbiased for those distributions with V lying on a d degree 

polynomial and (B) among these "unbiased" N + K + 1 term linear 

estimators the variance of ~Zu is minimal. 
X 
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We note that these specifications for M-W-A formulas 

have four parameters, i.e., N, K, d, and z. In the state-

ment of this theory in the study material of the Society of 

Actuaries, N = K = n. Here we shall allow N t K to obtain 

implicitly one solution to the so-called "end value problem" 

and to show explicitly that the usual symmetry of M-W-A formulas 

is a consequence of N = K. 

For the matrix formulation of this material we shall be 

RN+K+l, working in, the N + K + 1 dimensional real vector 

space. We shall denote column vectors by an arrow over the 

basic symbol and row vectors by a "T" superscript to denote 

the transpose. Thus, we have 

and, then 

~~~T 
x-K 

u 
X 

~T • ~" 
x-K 

We shall follow the subscript pattern used in (3), i.e. 

(3) 

when the coordinates of a vector are members of one of the sets 

u", V, or u, the subscript on the vector will be the smallest 

of the subscripts of the coordinates. 

To formulate requirment (A), that a M-W-A formula be 

unbiased on d degree polynomials, we shall use D to denote 

the d + 1 dimensional subspace of RN+K+l in which the coor-

dinates of each member lie on a d degree polynomial. Since the 

expectation operator is linear, we can write 
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E[;T -+ -+T E[~" 1 
-+T -+ 

E[ux1 • u" 1 a a v x-K x-K x-K 

Then specification (A) above requires that 

-+T -+ 
for all 

-+ 
in (4) a v x-K v v 

x-K D. 
X 

To formulate the "minimum variance" requirement we shall 

use the vectors 

and 

Then specification (B) above, requires that is 

minimal among linear estimators unbiased over D. 

To translate this requirement from the statistical statement 

to an algebraic statement, we shall express the random variable 

-+ 
u 

X 
as a matrix product. 

matrix such that 

i.e., 

-+ 
u 

X 

Let 

-+ 

A 
z 

u" x-K 
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Then 

(6) 

From (5) we can see that the product can be written as 

the N + K + z + 1 vector 

by defining a-K-s = aN+s = 0 for s = 1,2, ... ,z. It then 

follows from assumption (2) that 

Var(t,T u ) 
X 

and from (1) that 

2 
a 

(a~-k o )(t;T 
0 • • 2 

0 x+N+z 

N 
L (1'1 z a ) 2 

s=-K-z s 

For the case with K = N = n, ( 9) is equal to 

where Rz is the smoothing coefficient of order z . 

(7) 

( 8) 

(9) 

We have formulated the specifications for a M-W-A formula 

as follows: 

For a given K, N, d, and 

such that 

z, determine 
.... 
a in 

~Td (K+l)stcoordinateof d forall din D (10) 

and 

(11) 

is a minimum. 
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M-W-A Formulas and Linear Algebra. 

TO find an algorithm for determination of a I we shall 

rely on a result from linear algebra as reported in (1]. The 

result is as follows: 

Problem: For a given positive definite n x n matrix H, 

a linear subspace L CRn and a linear functional f: L + R1 , 

find a y e Rn for which 

f(b) for all b € L (12) 

and 

is minimal. (13) 

Solution: There is a unique vector y € H-l L that 

satisfies (12). This vector, y, and only this vector, solves 

the problem. 

For the application of this result to the calculation of 

the M-W-A formula, we restate (11) by use of the identity 

A T, 
z 

where llN+K is the (N + K + z + 1) x (N + K + 1) matrix such that 

(-1) Z (~)I • • • 1 (z) 0, ••• 1 0 
z 

( 
0, (-1) Z (~) 1 ... , (z) 0, 

) T 
z 

6N+K 0, 0, 

10 

0, 
z z z 

0, .... , o, (-1) (
0
), ••• , (z) 
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In words, the ith row of T 
LIN+K has i- 1 zeros followed by 

the z + 1 coefficients of Liz and then N + K - i + 1 zeros. 

Now we have 

(14) 

The relation between the elements of the linear algebra 

problem and the M-W-A formula determination is as follows: 

Linear Algebra M-W-A Formula 

RN+K+l 

H 
T 

LIN+K LIN+K 

L D 

f f(V K) (k+ll st coordinate 

y 
-+ 
a 

x-

These identifications are clear with the possible exception 

that is positive definite. It follows from (14) and 

then (7) that if 
-+T T -+ 
a (LIN+K LIN+K)a = 0 for some a, then 

ll z as = 0 for s = -K-z, -K - z + 1, ... , N where a-K-s = aN+s = 0 

s = 1, 2, •.. , z. Hence these 2z + K + N + 1 values lie on a 

z - 1 degree polynomial which would have 2z zeros and hence 

be the zero polynomial. Thus is positive definite. 

From the solution to the algebra problem, we can conclude 

that the M-W-A formula is given by 

-+ 
a 
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where {di; i = 0, l, ... ,d} is a basis for D. The d+l 

coefficients, Ai , can be determined by applying (4) for the 

basis vectors written as 

i 0,11 • • • 1 d 

The inverse matrix of (15) can be easily calculated on a 

computer, or by interpretation as described in [1]. 

If N K = n as in [2], and the bases vector 

vector of ith powers, i = O,l, .•. ,d, then 

.... 
d. 
~ 

0 when i + j is odd. 

is the 

This implies that if d is an odd integer, the system of d + 1 

equations will separate into a non-homogeneous system in the 

(d + 1)/2 unknowns, A0 ,A 2 , ... ,Ad-l , and a homogenous system 

in A1 , A
3

, ••• , Ad which will all be zero. It follows, with 

some interpretation of the inverse matrix that the coordinates 

of 
+ 
a lie on a 2z + d - 1 degree even polynomial. 

We have set the specifications of the classical M-W-A 

formulas in a linear algebra framework and used a result thereof 

to determine the formulas. With the exception that we provided 

for formulas of unequal length, this is the class of formulas 

developed in [2]. 

One benefit in allowing formulas of unequal lengths (K t N) 

becomes evident when deriving graduated value for the "end values".' 

The traditional 2n + 1 term formula of equal length does not 

provide for graduated values at the n values of the index at 
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either end of the data set. By successively using K = n - 1 

and N = n, K = n - 2 and N = n, etc. until K = 0 and 

N = n, graduated values can be obtained for each index value 

on the low end. ~~~~~~~-~~~~~~~~· n graduated values t the 

high end can be obtained. 
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Some New M-W-A Formulas. 

Previously we have used the result from linear algebra 

to obtain an algorithm for the determination of the M-W-A 

formulas defined by the classical conditions. Now we want to 

turn this procedure around and to define the concept of a M-W-A 

formula in this algebra framework. Our motivation is to 

broaden the family of M-W-A formulas. 

Definition: For a given positive definite 

n X n matrix H, a linear subspace L CRn, and 

a linear functional f: L .... R
1 

I the vector 
.... 

€ Rn a 

which satisfies ~T b = f(b) for all b € L and 

which minimizes ->-T ->- is M-W-A formula. a Ha a 

To interpret the n-dimensional vector 
... 
a as a M-W-A formula 

we visualize successively calculating the inner product of a 

with n coordinates at a time of a long vector of observed 

values. Thus with this definition we have accepted an invariance 

in H, L, and f over the span of the observed values. 

At this point the generalizations of the M-W-A formulas 

will be limited to the natural extensions of the traditional 

ones given in [2]. The starting point is L, the subspace of 

vectors which are "smooth". This has been a set of polynomials--

now we can think of it as the subspace of all linear combinations 

of some set of functions other than powers, say exponential 

functions. 
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To obtain a true M-W-A formula, we must choose an L 

that is satisfactory at all index values--i.e. invariant . 

Otherwise we would generate different 
.... 
a s for different x's. 

While this would give satisfactory results, it would be more 

in the spirit of a Whittaker-Henderson formula than of a M-W-A 

formula. 

After choosing L, then f can be defined. The value 

of f(b) is the "smoothed value" for a "true vector". Thus 

f defines what function of the coordinates we are estimating. 

Usually this is one of the coordinates. It can be a linear 

combination of the coordinates--or a financial function in some 

cases. 

The third step is the choice of H. Traditionally, 

H = ATA where AT is such that AT~ is a vector of a fixed 

order of differences of successive values of u. The order of 

differences is related to the degree of the polynomials in L, 

(see page 14, [2]) , i.e. tl zb or tl z+lb is zero for all b 

in L. Similarly, we can base H on a linear operator which 

annihilates the chosen L. 
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An Example. 

To illustrate and to explore the process outlined in the 

previous section, we have applied six different M-W-A formulas 

to 100 simulated mortality study data sets. Summary statistics 

of the results are shown in Tables 4 and 5. 

Each of the six formulas was a 15 term formula with 

K = N = 7 and f(b) equal to the eighth, or middle coordinate 

value. These are very traditional. We chose to smooth the 

estimates of the force of mortality. The choices for L and 

the linear operator used to develop H, for each of the formulas 

are given in Table 1. For L Table 1 shows the names of the 

subspace of functions. E.G. "Makeham c = 1.10" means that the 

set of functions of the form A+ B(l.lO)x are the subspace L. 

For H Table 1 shows the linear operator whose coefficients 

are the non-zero elements of each row of a 17 xl5 matrix (except 

for formula III which would be 16 xl5) such that the product 

of its transpose and itself provide the 15 x15 matrix H. 

TABLE 1 
FoRMULA 

__L JL 

I First Degree (E - 1) (E - 1) ~:::.2 

Polynomials 

II Make ham (E - 1) (E - 1) 1:::.2 

c = 1.10 

III Make ham (E - 1) = !:::. 

c = 1.10 

IV Make ham (E 1) (E - 1. 08) !:::.(E-: 
c = 1. 08 

v Make ham (E 1) (E - 1.10) !:::.(E-; 
c = 1.10 

VI Make ham (E 1) (E 1.12) !:::.(E-: 
c = 1.12 89 
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The choice of the numbers 1.08, 1.10, and 1.12 was motivated 

by the interval of values (1.08, 1.12) given in [3] for the 

Makeham constant c. The M-W-A coefficients are given in Table 2 

at the end of the paper. 

Each of the 100 simulated data sets consisted of the 

deaths and the number of lives exposed at each age from 30 

through 80. The exposures, which are shown below, and the one 

year mortality rates used to simulate the deaths were the same 

for all data sets. 

Age Interval 

30-39 

40-49 

50-59 

60-69 

70-80 

Exposure at each Age within the Interval 

10,000 

5,000 

2,000 

1,000 

500 

The total exposure for a single data set is 185,500 lives. The 

decreasing exposures were used to compensate for the increasing 

mortality rates and thus to have roughly equal variances as 

postulated in the M-W-A theory. 

The one year mortality rates used in the simulation were 

deterinined by a Makeham force of mortality fit to q 30 , q 55 , 

and q
80 

of the New Basic Male Table, (Exhibit 3, [5]). The 

constants were A= 0. 00022154, B = 0.00003935, and 

c = 1.10168484. 
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One data set is shown in Table 3, at the end of the 

paper. 

For each of the six formulas, the four statistics 

70 
L lt.. 3 Graduated ].llk 

37 

73 
and L I True ].l-Graduated ].ll k , k 

37 
1,2 

were calculated for each of the 100 data sets. The values of 

the minimum, maximum, mean and standard deviation for each of 

these sets of 100 observations are shown in Tables 4 and 5 at 

the end of the paper. 

70 
The statistics L lt.. 3 Graduated ~lk, k = 1,2, which are 

37 

called measures of smoothness, can be viewed as measures of fit 

to the underlying function in the traditional sense and in the 

real world--where the true values are not known but are assumed 

to be in some family of functions. For these measures that 

family of functions would be second degree (or less) polynomials. 

These statistics should be small for those M-W-A formulas based 

on differences. These statistics are summarized in Table 4. 

Since this is a simulated environment rather than the real 

world we can measure the fit of the graduated values to the known 

underlying function precisely. These measures 
73 k 
L I True ].l-Grad ].ll , 

37 

k = 1,2 should be small for those M-W-A formulas based on a Makeham 

function subspace--especially the one with c near the underlying 

fitted value. These statistics are summarized in Table 5. 
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From a comparison of the means and standard deviations 

for the sums of the absolute deviations (say by use of classical 

confidence intervals), we conclude that the results for the 

five formulas based on a subspace, D, of Makeham's functions 

are indistinguishable relative to those for a first degree poly­

nomial subspace, D. Given the Makeham function subspace, neither 

the choice of c nor the construction of H s had an impact on 

the sum of the absolute deviations. 
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Summary. 

We have extended the theory underlying M-W-A formulas 

and consequently enriched the family. In an application to 

simulated mortality data the importance of the choice of a 

subspace of "smooth functions near" the underlying function 

can be observed. 

The extended theory may provide a rational basis for the 

selection of the invariant subspace and the minimized sum of 

squares. We have not completed it in this paper. 

Since presentation of this paper at the Iowa City Conference, 

a paper [6] on M-W-A formulas by Ornulf Bergan has appeared in 

the Scandinavian Actuarial Journal, 1979, No. 2-3. The reader 

will find a more extensive development of the statistical 

properties of the generalized M-W-A formulas in that paper. 

The opening question of the robustness of the M-W-A formula 

family in the computer age is left for the readers and the users 

to the answer. 
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TABLE 2 

M-W-A fORMULA COEFFICIENTS 

INDEX I I I I I IV v VI 

-7 .01032 . 01339 .02835 .01296 . 01354 .01409 

-6 .02709 .03413 .05154 .03307 .03439 .03563 

-5 .04696 . 05734 .06976 . 05565 .05758 .05941 

-4 .06708 .07921 .08325 . 07711 .07936 .08148 

-3 . 08514 .09701 .09227 .09481 .09700 .09908 

-2 .09933 .10894 .09709 .10699 .10877 .11047 

-1 .10836 .11407 .09802 .11273 .11379 .11483 

0 .11146 .11227 .09540 .11178 .11195 .11215 

1 .10836 .10407 .08960 .10456 .10379 .10310 

2 .09933 .09059 .08103 .09201 . 09 04 2 .08893 

3 .08514 .07339 .07013 .07552 .07336 . 07131 

4 . 06708 .05436 . 05741 .05681 .05445 .05218 

5 .04696 . 03555 . 04341 .03785 .03570 .03363 

6 .02709 .01901 . 02872 .02070 .01917 .01767 

7 .01032 .00665 .01401 .00744 .00674 . 00604 
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TABLE 3 

AGE EXPOSURE DEATHS 
A 

jJ AGE EXPOSURE DEATHS 

30 10,000 9 .90041 -3 56 2,000 18 .90407 -2 

1 10,000 7 .70025 -3 7 2,000 18 .90407 -2 

2 10,000 10 .10005 -2 8 2,000 16 .80322 -2 

3 10,000 10 .10005 -2 9 2,000 22 .11061 -1 

4 10,000 17 .17014 -2 60 1,000 8 .80322 -2 

5 10,000 16 .16013 -2 1 1,000 23 .23269 -1 

6 10,000 14 .14010 -2 2 1,000 14 .14099 -1 

7 10,000 20 .20020 -2 3 1,000 13 .13085 -1 

8 10,000 13 .13008 -2 4 1,000 18 .18164 -1 

9 10,000 16 .16013 -2 5 1,000 22 .22246 -1 

40 5,000 11 .22024 -2 6 1,000 22 .22246 -1 

1 5,000 11 .22024 -2 7 1,000 32 .32523-1 

2 5,000 8 .16013 -2 8 1,000 29 .29429 -1 

3 5,000 16 .32051 -2 9 1,000 28 .28399 -1 

4 5,000 16 .32051 -2 70 500 18 .36664 -1 

5 5,000 19 .38072 -2 1 500 17 .34591 -1 

6 5,000 11 .22024 -2 2 500 15 .30459 -1 

7 5,000 17 .34058 -2 3 500 21 .42908 -1 

8 5,000 14 .28039 -2 4 500 22 .44997 -1 

9 5,000 25 .50125 -2 5 500 26 .53401 -1 

50 2,000 12 .60181 -2 6 500 28 .57629 -1 

1 2,000 11 .55152 -2 7 500 26 . 53401 -1 

2 2,000 15 .75283 -2 8 500 41 .85558 -1 

3 2,000 11 .55152 -2 9 500 39 .81210 -1 

4 2,000 16 .80322 -2 80 500 34 .70422 -1 

5 2,000 18 . 90407 -2 500 

Notation: • xyz - k means (. xyz) x ( 10-k) 
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TABLE 4 

SUMMARY STATISTICS 

MEASURES OF SMOOTHNESS 
FOR 

100 DATA SETS 

FoRMULA 

11~ li MINIMUM MAXIMUM f1.EAri 

70 
'"'3 l: Graduated ].!1 

37 

1st Degree ; 1'12 . 00117 .00245 .00184 

c = 1.10; 1'12 .00084 .00193 .00133 

c = 1.10; 
"' 

.00219 .00523 .00330 

c=l.08; li(E-1.08) .00091 .00201 . 00143 

c=l.10; li(E-1.10) .00085 .00193 . 00135 

c = 1.12; li(E-1.12) .00079 .00185 .00128 

70 
'"'3 Graduated ].!1

2 l: 
37 

1st Degree; 1'12 . 854 -7 .478 -6 .241 -6 

c = 1.10; 1'12 .426 -7 .275 -6 .128 -6 

c = 1.10; "' .272 -6 .186 -5 .765 -6 

c=l.08; ll(E-1.08) .538 -7 .298 -6 .146 -6 

c=l.10; li(E-1.10) .438 -7 . 277 -6 .130 -6 

c=l.12; ll(E -1.12) . 352 -7 .259 -6 .118 -6 

Notation: . xyz - k means -k ( . xyz) x ( 10 ) 
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.00030 

.00023 

. 00060 

.00024 

.00023 

.00022 

.908 -7 

.529 -7 

.327 -6 

.580 -7 

.533 -7 

.499 -7 



FoRMULA 

D . -' lL 

1st Degree; {1.2 

c = 1.10; {1.2 

c = 1.10; {1. 

c=l.08; fi.(E-1.08) 

c=l.10; /I.(E-1.10) 

c = 1.12; /1. (E -1.12) 

1st Degree; {1.2 

c = 1.10; {1.2 

c = 1.10; {1. 

c=l.08; /I.(E-1.08) 

c = 1.10; /1. (E - 1.10) 

c = 1.12; fi.(E-1.12) 

Notation: . xyz 
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TABLE 5 

SUMMARY STATISTICS 

MEASURES OF FIT TO TRUE ~ 

FOR 

100 DATA SETS 

NINIMUM MAXIMUM MEAN 

73 
I [True ~-Graduated[ 

37 

.01084 .08700 .03322 

. 00722 .06263 .02689 

.00683 .06154 .02513 

.00560 .06716 • 02704 

. 00722 .06261 .02686 

. 00720 .05828 .02708 

73 
~12 I [True ~-Graduated 

37 

.657 -5 • 428 -3 .866 -4 

.233 -5 .238 -3 .545 -4 

.207 -5 .227 -3 .482 -4 

.118 -5 .268 -3 .563 -4 

.233 -5 .238 -3 .544 -4 

.301 -5 .211 -3 .544 -4 

- k means .xyz X 10-k 
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.01608 

. 01192 

. 01181 

.01250 

• 01191 

• 01150 

.980 -4 

. 541 -4 

.504 -4 

.594 -4 

.540 -4 

.510 -4 
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