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To derive exposure formulas of the valuation schedule type on 

the basis of the Balducci assumption Gershenson r21 and Batten [1] use 

algebraic elimination, Batten adding rules of thumb for quickly find­

ing the correct coefficients in specific cases. In the first portion 

of this paper we propose a shorter and, we hope, more elegant method 

of proof for formulas of this type as well as a short cut for the 

coefficients of the terms involving deaths. 

We then proceed to derive a general exposure formula of the valua­

tion-schedule type that may be used for all mortality studies with an 

observation period covering an integral number of consecutive years 

and give a general proof that this formula will lead to results identical 

Lo Lhose produced by an individual record l'Xposurc formula hns<·d on 

the same assumptions. 

Finally, the results obtained are extended by letting the assump­

tion of a uniform distribution of deaths replace Balducci's assumption. 

1. INTRODUCTION 

To determine estimates of the mortality rate 'lx, thc probnblllly 

that a member of a homogeneous group of lives attaining age X will die 

before age X+l, it is rarely practical to observe, during an appropri­

ately chosen period of time, all members in the group who attain age X 

and are either still alive in the group at age X+l or have died, under 

observation, before that age and then to divide the number of deaths 

by the total number observed. One reason is that any contribution to 

the accuracy of the estimate to be gained from members joining or 

leaving the group at ages between X and X+l is eliminated. 

Because of this, cxposuPe foY'mul-as have been developed, the ;"'.:r:pocu;•r> 

*Presented at the 1980 Actuarial Research Conference, August 
14-15, 1980, University of British Columbia, Vancouver, B.C., Canada. 
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being the quantity by which 0x, the total number of all deaths observed 

in the group between ages X and X+l is to be divided to obtain the 

estimated mortality rate qX, i.e. the exposure is the denominator of 

qx = 0x./Ex · 
For a mathematical derivation of formulas to calculate exposures 

it is necessary to make an assumption, or hypothesis, regarding the 

pattern of mortality at intermediate ages between X and X+l. Of such 

assumptions the one probably most commonly used by actuaries was proposed 

by Balducci in 1920(1). It has the advantage that the exposure can be 

obtained from the sum of all time segments actually spent under obser­

vation between ages X and X+l by the lives in the group by adding to 

this sum, for each death, the time remaining from the moment of death 

until exact age X+l would have been attained. Another way of stating 

this is that for the purpose of calculating exposures deaths must be 

considered to continue being "exposed" until they would have attained 

age X+l. 

Except for the last section of this paper, all exposure formulas 

in this paper will be developed on the basis of Balducci's assumption. 

Most exposure formulas in practical use can be divided in two 

families, that of individual record formulas, produced from data derived 

from individual records regarding entry, exit and deaths of the lives 

in the group, and the family of valuation schedule formulas based on 

death records and periodic censuses, or counts, of the membership. 

In actuarial work these censuses are often produced as a byproduct of 

the regular valuation process and this has led to the name for this 

family of formulas. The existence of the latter type of formulas depends 

on the condition that the average age of entrants to the group during 

age intervals in (X, X+l) can be assumed to be equal to the average 

age of those leaving the group during the same intervals. 

2. INDIVIDUAL RECORD FORMULAS 

On the basis of the individual records the lives in the group are 

partitioned, first, by mode of entry, in the two categories of starters 

(those already in the group when the observation period started) and of 

(!)The assumption is that 
1
_/lx+t is linear in t for 0 $ t :> 1. 
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rZCl.J entrants (joining the group during this period) and second, by 

mode of exit, in the three categories of enders (still in the group at 

the end of the period), of withdrawals (leaving the group during the 

period) and of deaths (those dying in the group while under observa­

tion). 

Each of these five categories is further subdivided by tabulating 

rules into deaks, labelled by successive integers x. The tabulating 

rules for deaths are chosen in such a manner that the deaths tabulated 

"at age x" actually occurred, or may be assumed to occur, at some age 

between X= x-a and X+l = x-a+l, 0 ~ a < 1. 

For the other four categories we shall assume that the tabulating 

rules have been constructed so that, for each category, the average 

age at which the events tabulated at age x occur falls in the age 

interval (X, X+l). The numbers of lives in the five categories tabulated 

at age x are denoted by sx, nx, ex, wx and ex for starters, new 

entrants, enders, withdrawals and deaths respectively. For each of 

these categories (except the deaths) an f-faator is defined which 

measures the difference between the average age at which the relevant 

age 1nLerval. The J'-j:t,·l"r' 

ef and wf for the other 

evc•nt occurs anJ the upper lim1 t X-1·1 or .tht· 

for starters is denoted by 8 f; we have nf, 
e 

categories. An f-faator for deaths, f, may be introduced, in which 

case we put 8f = 0 under the Balducci assumption. 

Two functions, the j-funation and the f-funation are defined: 

s 
X 

e + n - w - 8 
X X X X 

( 2. 1) 

(2.2) 

It can then be shown ([1], 71; [2], 61) that the formula becomes: 

E 
X 

( 2. 3) 

If, as must be the case if an exposure formula of the valuation 

schedule family is to be applicable, the f-faators rtf and wf are equal, 

W<' can define the net migration, mx 

mf = nf (= wf); we then have: 
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s 
X 

3. VALUATION SCHEDULE FORMULAS 

e + m 
X X 

e 
X 

(2.4) 

( 2. 5) 

In the two textbooks published on the subject of exposure theory, 

Gershenson ([3], Chapter 4) and Batten ([1], Chapter 5),valuation 

schedule formulas are derived,for a limited number of standard cases and 

instructive examples, by algebraic elimination of the migration terms. 

An alternative method of derivation (the "method of undetermined coef­

ficients") is also presented ([2], 146; [1], 136). However, 

for a11 but the simplest cases, derivations by these methods, partic­

ularly the first, tend to be tedious and "rather troublesome to students" 

(Batten [1], p. 137) and this was our motivation in looking for an 

improved procedure. 

To In t rudut:l' LidH prucl'uure, let uB consluer Gen;henHon 's "Case ll" 

([3l, p. 125; this is the case which Gershenson considered "fairly 

difficult to reproduce under examination conditions" [2l, p. 144) as 

generalized by Batten([1], p. 142). Here we are studying the mortality 

in the age interval (x, x+l) during a single calendar year z. Standard 

demographic notation is used: E2 
denotes the number of lives attaining 

X z 
exact age x in the calendar year z, Px the number age x last birthday 

when the observation year z begins and D2 
the number of deaths occurring 

X 

during z between exact ages x and x+l, subdivided in D2 whose last 
Cl X> 

z 
birthday occurred in z and 

0
Dx, for whom the last birthday fell in the 

year z-1. 

The net migration m2 is similarly subdivided in m2 
and m2 

X Cl X 0 X • 

Haking Lhe (standard) assumption that birthdays in z occur on the average 

on July l, the middle of the year, we can construct a two-dlmcnslunal 

diagram, in which time runs horizontally and age vertically. Substitut­

ing .luly 1 for the nctual blrthdayB, we see (Figure 3.1) that all 

events will occur on two diagonal segments, with a-deaths and a-migration 

along the upper diagonal and a-deaths and e-migration along the lower 

diagonal. 
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z--~j 
Age X ---.,--------.,~----i :~-r 

_-1:-

1~--- Calendar Year 

x+l/2- P'! 
X 

_l 
x+l---

~+1 
Figure 3. 1 

It is further assumed that ex-migration occurs, on the average, .a frac­

tion of :1 year \, anu e-migration a fracllon of a yt•ur l6 aflc·r i)!',l' :x; 

is attained. 

Our proposed procedure for deriving valuation schPdule exposun• 

formulas will now be demonstrated by applying it to this example. 

Disregarding deaths, or, rather, assuming that ex- and a-deaths 

occurred on the average at the same ages as ex- and a-migration, 

the total number under observation between ages x and x + 'a would be 

constant and amount to Ez · similarly the number observed between ages 
x' 

a· + 1 and x + Jj:: would be p;+l 
et X _, between x + 1/2 and a: + \I we would 

have P; and, from age x + 'o to x+l, Ez lives under observation, X+l 

resulting in a sum of time segments lived in year z between ages x and 

x+l of 

years. 

However, because of Balducci's assumption we have to treat each 

death as if it occurred at age x+l instead of at ages x + 'ex and x + T 0 , 

so for each ex-death we have to add a fraction 1 - T and for each 
ex 
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a-death a fraction 1 - 'o J 

0 2 = D2 (1 - 1 ) + D2 (1 x ax a ox 

i.e. for all deaths together we have to add 

- T
0

) years of exposure, so that the correct 

exposure for the calendar year becomes: 

For an observation period starting with year z = a and ending with 

year z = k this expression must be summed over all values of z from a to 

k and the exposure is 

k ~ + ./l)}ZJ E =C + D =I:~ 
X X X a x X 

k [Ez., + pZ+l (1/2-•aJ + ~ (T 0-1/2) + ~+! I: u-,
6

J + 
a x a X 

Note that this result can immediately be written down, without any 

algebra at all, from the basic assumptions and that the entire procedure 

cunslsts of two simple steps, each of which carries its own justification 

so that no separate proof is necessary. 

I have used this procedure, or a slight variation thereof using 

l'Ssentially the same two steps, in my classes since the mid-sixties, 

with very good rcsul ts. 

Roach ([5], p. 6) has proposed a somewhat similar technique; how­

ever, because of the graph required, it is not quite as simple. 

4. GENERAL EXPOSURE FORMULAS OF THE VALUATION SCHEDULE FAMILY 

4.1 The great variety of exposure formulas of this family, caused by 

the many different assumptions that can be made about the average 

occurrence of birthdays, the tabulation rules for deaths determining 

the age interval being analysed, the ages at which migration may 

be assumed to occur and the number of censuses or valuations to be 

used made it desirable to see if perhaps a general approach would 
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be possible resulting in a single general valuation schedule 

formula representing the entire family. 

As we shall see below, the family is made up of two types 

of formulas which we shall call ~Jpe I, or singZe diagonal 

formulas and JYpe II, or double diagonal formulas. 

Although we shall see that Type I may be regarded as a special 

case of Type II, it will be less laborious to develop the Type I 

formula first and then to proceed to the more general Type II 

formula. The "generality" of our Type II formula will only be 

restricted to the extent that we shall only consider formulas 

applicable to obRPTVH t1on periods cover iug an in tegrn l mu.liH'T of 

consecutive years (but not necessarily calendar years). 

4.2 An important factor in our development of general exposure 

formulas appeared to be the notation used. The "demographic notation" 

(this is the notation we used in our example in the previous 

section) is ill suited for our purpose, particularly if the age 

X in qX, the mortality rate to be estimated, is not an integer. 

We have therefore developed a more suitable notation for our 

purposes, without, however, introducing very drastic changes in 

the general approach. 

(i) Deaths. As in section 2 we shall assume that all deaths are 

tabulated by an integer variable x (the tabuZating age) in 

such a way that all deaths tabulated at age x have occurred 

(or may be assumed to have occurred) in a one year interval 

I X, X+l J, so that X= x-a, 0 :5 a < 1. This interval shall 

be referred to us the analysis year' of" age (x), ot- just simply 

the unulysis year'. 
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(ii) 

Events occurring in thP analysis year of age (x) during 

the observation year z (z being one of the consecutive integers 

from a to k, identifying the years in the observation period) 

will be said to occur in the ~ell (x, z). In a two-dimensional 

diagram this cell will appear as a square (we saw an example 

of this in Figure 3.1), the vertical sides of which represent 

the beginning and end of the observation year z and the 

horizontal sides indicating the ages X and X+l. For each life 

in the group there will be a diagonal segment in the diagram 

representing passage through the cell (x, z). These segments 

may start on the left vertical or the top horizontal boundary 

of the cell or in its interior and end in the interior or un 

the right vertical or lower boundary of the cell. 

The number of deaths occurring in the cell (x, z) will be 

denoted by e2
; 

k ez e = l: is the total number of deaths 
X X a X 

recorded in the analysis year (x). 

B-ir>thdays. For all observation years we shall assumP a 

common Jistribution of birthdays, resulting in an "average 

birthday" which, for each observation year, shall fall a 

fraction of a year a (0 ~ a < 1) after the start of the year, 

the fraction a being the same for all observation years. 

Replacing all birthdays by this average birthday will 

have the result that all diagonal segments referred to above 

will now be concentrated on one or two diagonal lines, depend­

ing on whether a= R or a I a. If a= a (sec Figure 4.2.l(a)) 

there is only one diagonal, the main diagonal of the square 

representing the cell (x, z); the resulting formula will be 

a Type I or single diagonal formula. If a I a we have two 

diagonal segments and the formula will be a Type II or double 
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X 

X-. 

X+1 

diagonal formula (Figure 4.2.1(])), 4.2.1(c)). 

If we introduce T (0 $ T < 1) to denote the fraction 

of a year between the attainment of exact age X and the end 

of tile observation year, we C<lll <.listlnguish two <.11 ffcrcnt 

cases in the Type II situation: if a< B (Figure 4.2.1(b)), 

T = 1 - (B - a) and the average birthday falls on the upper 

diagonal; if a> B (Figure 4.2.1(c)), T =a-Band the 

average birthday falls on the lower diagonal. In the single 

diagonal case (Type I) a = S and we take T = 1. 

(a) a = i3 (b) a < B (c) a > fl 

x-a 

r 
X 

i 
X 

"' 
T 

T=1 X . I; - - 1 I 
X e. 

.it X+1 X+l 
~--- 4 ----~ k- 4 -~1 " I I 

Figure 4.2.1 

We shall first (items (iii) to (v)) consider the Type I, 

or single diagonal case and then (item (vi)) return to the Type 

II or double diagonal case. 

(iii) We shall denote the numbers of lives observed in the successive 

valuations or censuses in the cell (x,4) by~ , ~ , ... 
x, 1 x, 2 

~ (n ~ 1); these valuations will divide the analysis year x,n 

(x) in subintervals and we shall divide the deaths 0
4 

in the 
X 

cell into subgroups accordingly: 

deaths between the valuations 

we let 04 
• 

X,J 

and ~ . 
X,J+l 

denote the 

(j=l, ... ,n-1}--

any deaths in (x,4) preceding ~ or following ~ will be 
x~ 1 x~ n 

denoted by 04 and 0
4 

respectively. 
x,o x,n 
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We use the same notational principle to divide the net 

migration m
2 

in the cell (x,z) into subgroups m2 

X X,O 

It will be convenient to introduce the symbol Hz o 

x,J 

miJ 
x,n 

m;,j - e:,j (j=O, o o. n) for the ne-t increase in numbers of 

lives observed during the subintervals, so that 

~ • - ~ o = Hz o (j=l, ... n-1) 
X,J+1 X,J X,J 

(4.2.1) 

(iv) If a valuation occurs on a cell boundary, i.e. in a 

(v) 

corner point at either end of the diagonal, it may be considered 

either as the last valuation of the previous cell or the 

first of the next one. .l.ccordingly, the symbols ~ and 
x,n 

yZ+ 1 may refer to a single valuation; ~ being the number 
x+1,1 x,n 

·of lives at the end of one year and vz+ 1 the same number 
x+!, 1 

at the start of the nexl une; neillwr m!gralJon nor dealhs 

can occur "in between", so the coincidence of ~ and .,z+1 

1 x,n x+1, 

implies that mz 
x,n 

d =+l are both zero, as are 03 and an mx+1,1 x,n 

0
z+J 
x+1, 1 

Z Z+1 
and, hence, H and H +

1 1 x3n x ~ 

Whether or not ~ and ~++ 1
1 

1 
coincide, we shall always x.,n x ., 

have: 

(4.2.2) 

We shall introduce T. (j=O, ••. n) to indicate that the 
J 

net migration mz . is assumed to occur, on the average, at 
X,J 

age X + Tj; for T 0 and Tn however we define separately T 
0
=0 

and Tn=l, thus implying that migration, if any, between the 

last valuation of a cell and the first one of the next cell 

will be assumed to occur on the cell boundary. 

Note that in each time segment between two successive 

migration points T 0 and To (j=l, ... n) we have a cZosed 
J-1 J 
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f71'0U[l, i.e. there is no in- or out-movement ext'ept by death. 

Age X 

z 
m x,o 

~~--------Observation Year z 

0 x, 1 

v:. 
X,J 

)./ 

1 • 
J 

Age X+-r. 
J 

z m . 
X,J 

Age X+l 

Figure 4.2.2 Type I diagram 

J 
z 

m 
x,n 

(vi) For the Type II, or double diagonal case, we shall use 

the same symbols as introduced above for the Type I case but 

we shall use a bar above or below the symbol to indicate 

whether it refers to the upper or lower diagonal. For instance, 

the valuations along the upper diagonal will be 

-z - z z 
Vx, I, .•. Vx,n and those along the lower diagonal _!:: x, I, 

(note that, inconsistently, we use nand m rather than~ and n, 

the latter being too cumbersome for use in subscripts). 

Similarly we have 
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;nz . and mz . > ez . and Gz . > H . and H . etc. 
x,J -x,J X,J -x,J x,J -x,J 

In analogy to (4.2.1) we now have 

-z 
v . 
X,J+l 

j= 1, ... ,n-1 } 

(4.2.3) 
j~ 1, ... ,m-1 

~- Observation Year z ,... 
X---

'f 1 
-z vz ! 
m x, I 
x,o ' ' T. 

~· 
J 

I 

X+'T. - - - - ::S.J_ 1 T = 
J / -z a._V . -z x,,J+l 

m . ' 
X,J 

' 

X+T-- Jt ;nz .:::?1 -* 
x,n 

X+1 
Figure 4.2.3, Type II diagram 

Similarly, m;:; . and m2 
. will be assumed to occur, on the 

x,J -,x,J 

average, respectively at ages X+'T. and X+1 . ; we now define 
J -J 

separately 

TO = 0, T n T = 1._0 > T = 1. -n 

T 

For valuations falling on cell boundaries we use the same 

approach as in the Type I case; now 0 -x,m 
and Vz may refer 

x+I, l 

to a single valuation on a horizontal boundary, similarly 
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may refer to the same valuation on a vertical 

boundary. In these cases we will have, by the same reasoning 

as before, mz 
-x,m 

-z m x+1, o 
z+1 

m = 0, with 
-x, o 

corresponding relations for deaths and net increase. 

In analogy to (4.2.2) we now have 

vz v" Hz + Hz 

} 
X+1, 1 -x,m x+1, o -x,m 

z+1 vz 8
z+1 -Z v + H 

-x,1 x,n -x, 0 x,n 

(4.2.4) 

4.3 The general Type I formula can now be derived by following 

almost verbatim the steps used in our example of Section 3. If 

ez . (j=O, ... n) occurred at the same ages X+T. as the corresponding 
X,J J 

net migration mz ., the sum of all segments of lifetime observed 
X,J 

in the cell (x,z) would be 

n 
E J!" . (t .-1 . ) 

j=1 X,J J J-1 

However, under Balducci's assumption we have to add a time 

segment 1-1. for each death ez ., so that for all deaths together 
J X,J 

we must add 

n 
D2 

= E 8z . ( 1-T .) 
X 0 X,J J 

The correct exposure for the cell (x,z) now is the sum of the 

"census term" ~ 
X 

and the "Balducci correction" ]J}z : 
X 

n z n z 
E V • (t .-T. ) + E 8 . ( 1-T .) 
1 X,J J J-1 0 X,J J 

and, for the entire observation period, we obtain the general 

Type T formula: 

k [~ v" 
n 

ez (1-Tj)] E c +D l: (T.-T. ) + E 
X X X a x,j J J-1 0 x,j 
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or, if we write V . 
X,J 

k 
l: ;? . and e . 
a X,.] X,J 

n n 
l: V . (1: .-T . ) + l: 6 . ( 1-T .) 
1 X,J J J-1 0 X,.] J 

T = T = 1) 
n 

(4.3.1) 

(Note that, regardless of whether or not the deaths ez . occur 
X,J 

at age X+ Tj' as assumed, any error in the terms~~ will be 

exactly compensated by an equal but opposite error in the ~z terms.) 
X 

The reader will now have little difficulty in showing that 

the general Type II formula is obtained from a census term 

c 
X 

l: l: k ln -z - - m z 
V • ( T .- T . ) + l: V • ( T • - T • )] 

a 1 

nnd a correction term 

k ~n D = l: l: 
x a o 

x,J J J-1 1 -x,J -J -J-1 

m 
ez . r 1-'T .J + 1: ez . 
x,J J o -x,J 

(1-T .)] 
-J 

using the same notational device as in (4.3.1) above, resulting in 

the general Type II formula: 

E 
X 

n m 
l: v . (T .-T . ) + l: v . ( T • _T J"-1) 
1 x,J J J-1 1 -x,J -J 

(4.3.2) 
n m 

+ 1: 0 . r 1-'T .J + 1: e . r 1-T • J o x,J J o -x,J -J 

1) 

It is easy to see that (4.3.1) is a special case of (4.3.2) if we 

consider the Type I case as the limit of the Type II case as a '~. 

i.e. as T ~ 1. Since T = T < 
-o 

< :E.m = 1, in the limit we must 

have T -o = T -m 
1. Hence all factors T . 

-J 
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(4.3.2) become zero and, dropping the bars in the remaining terms 

we are left with formula (4.3.1). 

5. COUNTERPART EXPOSURE FORMULAS 

Two exposure formulas, one a valuation schedule formula and the other 

an individual record formula, are called c:ounterpart for•mulaa if they 

are based on the same assumptions (Gershenson [3], 129 (ex. 4.4.3); 

Batten [1], 172), 

Although it is obvious that such formulas, when applied to the same 

set of data, must produce identical results, proving this identity by 

algebraic methods for various pairs of counterpart formulas has been 

challenging. 

Batten, ([1], Chapter 6) gives various examples of pairs of counter­

part formulas, with proofs, but for single years of observation only 

(f1l, 178, 182, 186); one example with a three-year observation period 

f ,; d iHl'li>Hll'd but llll pron r j H r,iVt'n (f 11, 19ll), 

The fact that each of the various examples required its own proof 

posed the question whether it would not be possible to derive a single 

pair of counterpart formulas covering all special cases and then produce 

a single algebraic proof for the fact that these formulas will always 

produce identical results when applied to the same data. 

The general valuation schedule formula has been developed in section 

(4); for its counterpart we only have to modify the functions (2.4) and 

(2.5) appearing in (2.3) to recognize the partition of the analysis year 

As far as I know a proof of this type was first asked on the Part 
5 Examination of the Society of Actuaries in November 1966 ([6], 214) 
and I well remember, after finding what I considered a complete proof, 
that I was rather disappointed by the "illustrative solution" provided 
later, which proved the identity for one year of observation only and 
suggested that the proof for longer observation periods could be obtained 
from the one given "by addition". It seemed to me that the editors of 
the illustrative solutions had taken an easy way out - the stnrtt>rH 
and enders of any single year are not the starters and enders for the 
entire observation period and handling this appeared to me to be the more 
difficult part of a complete proof. 
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(x) by the successive valuations. 

The term mx in (2.4) is built up from if we put 

n z 
I. m • • 

k z 
m . ""I. m . ( 5. I) 

0 X,J X,J a X,J 

we can write 

m 
m 

X 

k m z 
I: I. m . 
a o x,J 

k z 
I: m 
a x 

I: m . 
0 X,J 

(5.2) 

for Type I and 

m 
X 

-z m . 
X,J 

m z l +I: m . = o -x,J 

n m 
I: m . + I:"' • o x,J o -x,J 

(5.3) 

for the Type II case. For deaths ez . (and net increases H2 
.) expressions 

X,J X,J 

of the same form will hold. 

Any of the expressions (5.2) or (5.3) or the corresponding expressions 

inez . and Hz . may be substituted in the j function of (2.4); for 
X,J X,J X 

<'x;unp h•, in the Type cnse: 

n 
jx "" sx - ex + I: (m . - 0 .) 

0 X,J X,J 
(5.4) 

For the [-function of (2.5) we note that, in the Type II case, 

8 
f "" e f = 1-T; mf has no direct equivalent since each migration term 

has its own [-factor 1-1. or 1-T . so (2.5) may now be written as, 
J -J 

for example (for Type II): 

f = (1-T)(s -e)+~ (1-1.) m . + ~ (1-T.) m . 
X X X 0 J X,J 0 -J -x J 

(5.5) 
( 

Since T 0, T T T, T = 1 the last two terms may be replaced 
0 n -o -m 

by 

n-I m-1 
m + I: ( 1-=f .J m + r1-TJ riii + m + l: (1-T . ) m (5.6) 

;r, ll 1 ,l x,,i x,n -x,o 1 -;, -x,.i 
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Using (5.2)-(5.6), and corresponding expressions for 0 and H of 

the same form, the reader may now write various forms of the general 

individual record formula by appropriate substitutions for jx and fx 

(2. 3): 

A convenient form for starting the algebraic proof that the general 

valuation schedule formulas (4.3.1) and (4.3.2) are equivalent to the 

corresponding individual record formulas is obtained when we write the 

latter as: 

n-1 
E = xE 

1 rs - e + ~ (m . 
x L r r o r,J 

0 .;] + s - e + m 
r,J X X X, 0 

+ l: m .(1-T .) (5. 7) 
1 X,J J 

in the single diagonal or Type I case, and 

x-1 
E = l: 

X 

+ 

+ 

(s -X 

rm 
x,n 

n-1 m 
l: rm . - e .; + E rm . o r,J r,J o -r,J 

n-1 

- 0 .)] -r,J 

e )(1 - T) +m + l: m .(1 - 1 .; 
X x,o 1 X,J J 

m-1 
+ Ill ) ( 1 - ,; + ); Ill .(1 - l .) 

-x,o 1 -x,J -J 

for the double diagonal, or Type II, case. 

For these proofs the two following pairs of relations, linking the 

starters and enders with the first and last valuation, will be required: 

Type I: s vP Ff e r)< +II< 

} 
X x, 1 x,o X x-1,n x-1,n 

=vfl a vk lik Type II: s - fix, o , e + X -x, 1 X x,n x,n 

(5.8) 

(5.9) 

They follow directly from a consideration of the diagrams in figures 

4.2.2 and 4.2.3 for z =a (starters) and z = k (enders). 
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A proof showing that the general Type II valuation schedule formula, 

when applied to the same set of data, will give results identical to 

those obtained from its counterpart individual record.formula consists, 

in principle, of the same steps as the corresponding proof for the Type 

I case. It is only slightly more complicated because the starters and 

enders appear as (1- T)(sx- ex) rather than just plain sx- ex and 

there is an extra term, (1 - T)(G + e ) to consider- otherwise x,n -x, o 
everything is the same except that, because of our upper and lower bar 

symbols, the expressions become about twice as long. 

For this reason we shall give the proof for the Type I case only 

(see Appendix), leaving the one for Type II to the interested reader. 

6. THE ASSU~WTION OF A UNIFORM DISTRIBUTION OF DEATHS (UDD) 

In recent years this assumption has attracted attention in connec­

tion with the construction of exposure formulas of the valuation schedule 

family. The treatment given earlier by Gershenson [3] has been extended 

by Greville [4] and Batten, [1] and [3]. 

The principal difficulty encountered in developing practical formulas 

from the UDD assumption appeared to arise from the necessity to consider 

"unobserved" deaths (i.e. deaths occurring after withdrawal) . 

Considering a closed group of lives between ages X + s and X + t 

(1 ~ s < t ~ 1) under the UDD assumption, we can obtain the correct 

exposure by allocating a full year of exposure to each "observed" death 

(i.e. those lives in the group dying before age X+ t); for the lives 

surviving to age X+ t however, the exposure depends on whether or not 

they will die after leaving the observed group at age X + t but before 

age X + 1- if they do, thus becoming "unobserved deaths", their con­

tribution is zero,but if they don't it is t- s for each such life 

(Greville [41, 45 or Gershenson [3], solution to ex. 6.5(c), p. 185). 

The problem is, of course, that the data collected for a mortality 

investigation do not normally include any information as to how many 

of the lives ceasing to be observed at age X + t will then die before 

age X + 1. 
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As a result, most formulas were developed under the assumption that 

there is no migration or, at best, migration is restricted to the boundaries 

of each cell (Batten [1], 154). 

In considering these closed groups, Greville [Ibid.] also notes 

an interesting duality between the treatment of deaths under the Balducci 

assumption (exposures to be extended after death to age X + 1) and the 

assumption of UDD (exposures to be extended backwards, positively for 

observed deaths, negatively for unobserved ones, to age X); however, 

his formulas are also restricted to situations with limited migration. 

Shlu r6J investigated this duality further; he found that the same 

y X+s X+J' X+t X+l X X+s X+r X+t X+l 
(a) UDD Exposure (b) Balducci Exposure 

Figure 6.1 

exposures determined for the closed groups between ages X + s and X + t 

by the rules given above could be reproduced by a modification of these 

rules which entirely avoids the problem of unobserved deaths and, more­

over, presents the duality involved even more clearly. 
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Adapted to our notation, this modification allocates an amount of 

exposure equal to the actual time spent under observation in the group, 

but for each (observed) death an adjustment is added: under the Balducci 

assumption this adjustment equals the length of time from the moment 

of death to age X+ 1, under the UDD assumption it is the length of 

time from age X to the moment of death (See Table 1). 

Table 1. Individual exposures for deaths at age X+ r in closed 
groups observed bciween ages X + o and X + t (O~o<t::'.l, :;~r·~tJ 

Assumption 
Actual Lifetime 

Adjustment Total Exposure 
in Closed Group 

Balducci r - s 1 - r 1 - s 

U.D.D. r - s r 2r - s 

Actually, Shiu's formulation was slightly different; an analysis year 

from birthday to birthday was considered, for which "the exposure of an 

observed death is equal to the time from the age of entry to his next 

birthday under the Balducci assumption but under the UDD assumption it is 

the time from his last birthd;;y to Lhe end of the observ<~tion period or 

the next migration point". It is easy to see that our present formulation 

in terms of individual adjustments is equivalent. The segments r- s in 

Figure 6.1 (a) are counted twice and the two triangles ABC and ABD are equal. 

To develop usable valuation schedule formulas based on the UDD 

!lssumption we have to divide the deaths e . between two successive 
X,.) 

valuations in those before migration and those after migration. Omitting 

the subscript x for simplicity, we have, foi.- the Type I case: 

o. no. + 
J J 

for the deaths between vj and vj+l'with denoting the number of deaths 

occurring before age X+ T. and ae. the number of deaths after age 
J J 

X+ 1. (j 1, ... n-1). lo.'e put be ae = 0; ae is the number of deaths 
,7 0 n 0 

between 10 0 and v 
l ' 

be is that between v and T 1. We will 
n n n 
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~ 
1 J r----··· . ·--~· ... ··--

~ '"'e.i 

J.- r---~'~· -----t. 

J-1 I 

T .. p.-'' ---Jo.·\~..l,;>..l'\\>c'-··.·--4--;--...;,~~~-i--

0 

• . 1\.,\·. .· "- e. 

"T r:· 
vj 

Pj 
T. 

J 

Figure 6.2 

1 0 

v. 
J 

Figure 6.3 

T • 
.7 

further define p. so that the valuation V. takes place at age X+ P .. 
J J J 

(i) Considering each closed group between ages X + Tj_ 1 and X + Tj as a 

whole (see Figure 6.2) we see that the exposure can be obtained by 

the addition of three rectangles, one with width T • - T. 
J J-1 

and 

b 
l::l. and finally 

J 
height Vj, one with width 'j- 1 and height one with 

width T. and height ae. 
J J-1 

summing for all these closed groups we 

obtain: 

uJ<.. 
X 

~ [v . (t.-T. 
1

; +ao . '·+be . ,_ 1] 1 X,J J J- X,J-1 J X,J J-
( 6. 1) 

(ii) Alternatively, we can consider the closed groups from X+ Tj_ 1 to 

with deaths ae. ' J-1 
and from X + P j to X + Tj, 
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b deaths 8., separately (see Figure 6.3). Now we have two rectangles 
J 

for each closed group; in the first group these have, respectively, 

width p.- T. and height V. for one and width P. and height ao. 
J J-1 J J J-1 

for the other, in the second group they have width T. - P. and 
J J 

b height V. for the one and width P. and height 0. for the other, 
J J J 

i.e. 

for first group: V.(P.-T. J + ae. ·P. 
J J J-1 J-1 J 

for second grou~ b V. ( T .- p . ) + (] . • p • 
J ,) J ,} ,! 

Totnl ; a b 
V. ( T .-T · ) + ( (] · 1+ 0 · ) • fl • 
J J J-1 J- J J 

This leads to a second form of the general UDD Type I formula: 

The corresponding Type II formula is, of course: 

ui£ ~ [v . ([ .-:r . 
1 

; + v . r, . -T . ; 
X 1 X,J J ,J- -X,J -J -J-1 

+ rae . ie . )p ·] -x,J-1 -x,J - J 

(6.2) 

(6. 3) 

Tn C'i th<'r cnse the> exposure can be written as the sum of a census term, 

C:r, which is the same as in the Balducci case, and a de nth term 

UD · for Type I formulas these are: 
.1:'' 

c 
X 

~ [V .(T .-T . )] 

1 X,J J J-1 

the extension to Type II being obvious. 
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To recapitulate: 

(i) we may consider each life as contributing an amount of exposure 

equal to the time interval in which it can actually be observed, while 

living, during the analysis year of age [X, X+l]; 

(ii) in addition, for each death observed during this interval 

a corrective adjustment is to be made under either the Balducci or the 

UDD assumption and these adjustments are complimentary; 

(iii) the Balducci adjustment is equal to the portion of the 

analysis year following the death, whereas the UDD adjustment equals 

the portion preceding the death (see Figure 6.4 - and note how this 

again brings out the duality between the two assumptions). 

*----Analysis Year of Age 

X 
I 

\JDD 

X+r 
.,!, 
I 

~ 

X+l 
I 

1-r·----~ 

B;il ducc i 

Figure 6.4. Complementarity of UDD and 
Balducci adjustments for death at age X+r 

lve can now write down UDD exposure formulas of the valua ti.on 

schedule type with the same ease as the corresponding Balducci formulas. 

Using either assumption, after the average-migration points have 

been chosen, we start with giving each life counted at any of the 

valuations an exposure equal to the time interval from the last preceding 

to the next following migration point; this gives us the ex-term. 

We then divide the analysis year [X, X+l] in segments each with 

a valuation or census point at one end and a migration point at the 

other: for the Balducci exposure the deaths in each of these segments 

ar,• <'<>nsid,•rl'd lo occur ;1t the nti:J1'<i[/on end and for UDD exposures <~l 

the ('('rlims or valuation end. The appropriate adjustments, as in (iii) 

above, then form the 1DJx-term, giving each death an additional exposure 

from the migration point to the X+l end of the analysis year of age 

in the Balducci cnse, and from the X end of the analysis year to the 

census-point in the UDD cnse. 
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Wl• sh;lll fllustrnte this hy ('llllHiderlng il)\ilfll the CXilln(lfl• of 

SPC't ion 3 (now generalized n little further by letting the a-period, 

i.e. the interval from the average birthday to the end of the observation 

year, be a fraction 1 of a year rather than ~ year, 

l'::+l occur nt age x+t). 
X 

so that l'z and 
X 

For the Cz term we obtain immediately, under either assumption: 
X 

Age X=x 

x+l 

( Observation year z ----~ 

z)' m , 
a x 

Figure 6.5 

_pz+l 
.x 

For the 02 term we divide the a-deaths in aDz and bDz the former 
x ax ax' 

denoting the deaths after and the latter those before the migration 

point: D2 = bDz +aDz and, similarly, D2 = bDz +aDz 
a X a X a X 0 X 0 X 6 X . 

(6. 5) 

Under the Balducci assumption the deaths are deemed to occur at ages 

x+<a and x+t
0 

, the migration points, and under the UDD at ages x,x+t 

and x+l , the census points, so we have: 
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and 

B z 
Adding (6.5) and 6.6) gives the Bnlducci exposure K:J.:, adding 

. U_z (6.5) and (6.7) gives the correspond~ng UDD exposure Kx. Note that 

BKz obtained here agrees with the last formula of Sec. 3 (p. 6). 
X 

If we let 'a ~ 0 and 'o ~ 1 we obtain the first pair of formulas 

in Batten's Table 5.6 ([1], p. 159), by letting 'a~ T and 'o ~ T 

the second set appears. 

The reader will have no trouble in writing down the formula's of 

Batten's Tables 5.7 and 5.8 ([1], pp. 160-161) with equal ease (see 

also [6], pp. 4-5). 

It is to be noted that UDD formulas obtained as described here are 

all of the form (6.2) or 6.3); to obtain formulas of the form (6.1) we• 

would have to "average" the deaths by letting ae . occur at the next 
X,J-I 

(6.6) 

(6. 7) 

b following migration point (age X+T .) and 0 . at the last preceding one 
J X,J 

(age X+T. , see Figure 6.6). Although, of course, there can be no doubt 
J-1 

as to the correctness of this procedure, it does, on the surface, appear 

rather far-fetched. 

.-----
ae ------..._~ 

mJ·--"1 ~ -j- _1 VJ. 
....-- -------.. m. 
~---------+----------------~·J 

e-.----~. 
J e. J 

/J 

Figure 6.6 

If we consider the difference between the Balducci adjustment 

n 
l: 0 .(1-T .) 
0 J J 

~ae. (1-,.
1
J+lbo.{l-T.) 

1 J-1 J- 1 J J 
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and the first form of the UDD adjustment in (6.4), i.e. the difference 

Blf)! 
X 

n a b 
L ( 0 . + 0 . ) ( T .+T • ) 
I J-1 J J J-1 

n 
E 0. 
0 ,) 

it is clear that adding this difference (or its Type II counterpart) 

to the Balducci formulas (5.7) and (5.8) will result in individual card 

formulas valid under the UDD assumption. For instance, ( 5. 7) becomes: 

VIC xE I Is -e + ~ (m .-0 .)l 
X I; I' I' 0 I',.) I',J-

n 
+ s -e + E m .(1-T .) 

X X 0 X,J J 

n b 
-0 +E (a0 . + 0 .)(T.+T.

1
• 

1
). 

X 1 X,J-1 X,.} ,J , -

7. CONCLUSION 

If we consider exposure formulas from a practical point of view, 

nnrhlng much nf what BattPn wrotP in thl' last paragraph of his l<J7!l 

paper ([2]) has changed. Assumptions with respect to average birthdays, 

migration points and issue dates will still be of much greater influence 

on LIIL' accuracy of the resulLs of morLnll Ly invesl lgnt Ions Lhan LIH· 

assumptions specifying the ins Lan t<llleuus behaviour of mortality during 

the analysis year. 

Balducci's assumption still appears to be the easier for developing 

exposure formulas and the formulas it produces are simpler. However, 

the assumption of a uniform distribution of deaths appears a more realistic 

one to make: not only is linearity of tqx or Lx+t, a more natural 

assumption than that of q t and 1/Z t , but it also leads to a 
1-t x+ x+ 

force of mortality which decreases over the analysis year of age, in 

agreement with the pattern in by far the larger part of the mortality 

tab 1 c and in contrast to Balduc-ci's assumption for which the opposite is 

the case. 

The main disadvantage of Lhc UDD assumption Jn contwction wilh l'Xposurl' 

formulas has always been the problem of "unobserved deaths", but now that 

this onus has been lifted by Shiu' s paper [6], it is gratifying to see 

that pairs of counterpart formulas of a very general form can also be 

constructed under this assumption and that they do not have to be limited 

to cases with restricted migration. 
48 



APPENDIX 

We shall write Ei for the exposure obtained by the general individual 
X 

card formula and EV for the Type I valuation schedule conterpart formula. 

For tlw prno f th;lt Kv = llii we liRl' (/1. 3. 1) for lliv: 
X X 

ll=c +D, 
X X X 

n 
C =E V .(T.-T. ), 

X I x,J J J-1 
l) 

X 

n 
l: 0 .(1-T .) 
0 X,.] ;} 

For Ei we substitute H . 
X X,J 

0 . in (5.7): 
X,J 

x-1 n 
E (s -e + E H .) + s 

P P 0 P,J X 
e + H 
X X,O 

n-1 
+ E H .(1-T .) 

1 X,J J 

Il-l 
+ 0 + l: 0 .(1-T .) 

x,o X,J .7 

The terms in the last line equal Dx, so the remaining terms can be 

written as 

Ei X-I [s - n-1 
- l) E e + H + H + E II ] X X 1' p P,O P,n I P,J 

+ s - e + H 
X X x,o 

n-1 n-1 
+ l: ll x,j E H .'{. 

1 I X,J J 
R + S 

with R f [qp - e +H + 
H P-1, n] 

p 
P, 0 

I'l-l ,1' n-1 
and S E l: ll . 

p~t7 
E /J ·' • X,.] ,J 

We first consider R. Substitution of sp and ep from (5.9) gives: 
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X jva vk - II a llk l R = E + ll + II 
_ r, 1 r-l,n r,o r,o r-l,n r-1, n_ 

11 (/ 
k 

IJ;J 11 a k-1 z+J 
llul 11 l: ); 11 ant!, :;lmllarly, 

r,o r,o a r,o r,o a r, o 

llk 
k-1 

ll z . H E 
r-1,n r-l,n a r-1,n 

so the last four terms in the summand become 

k-1 z+l 
E (V - V

2 
) 

a r,1 r-l,n 

the last expression being obtained from (4.2.2). Thus R becomes 

R = E Va + E (V
2 

- V z ) V X [ k-1 +1 k J 
r,l a r,l r-l,n - r-l,n 

X 
E (V - V ) 

r, 1 r-l,n 

Returning to S we can write 

X n-1 
s E E r -(H 

r,j H .JT ·l 1 r,j r-1,J J 

k 
Hz • From ( 4. 2. 1) : H 

r,j 
E vr,j+1 v so 
a r,J r,,j 

x n-1 
S = E E 

1 [
V . - V . - {(V . - V .) - (V . - V ) h l 
r,J+l r,J r,J+1 r,J r-J,J+l I'-1,.7 Jj 

x n-1 
E (V - V ) - E 

r,n r,l 1 
(V . - V J)T. 

X,J+1 X, J 

so 



Now, putting R and S together again: 

l/- D 
X X 

X 

=R+S 

X X = E (V - V ) + E (V - V ) -
r-1,n r,n r,1 r, 1 

x n 
E (V - V ) - E V . T • 

r,n r-1,n 2 x,J J-1 
n-1 

+ E 
1 

n-1 
E 
1 

(V • 
X,J+1 

V • T. 
X,J J 

- v .)T. 
X,J J 

But E (V v ) v v •T (since T 1) and, because 
r,n r-1,n x,n x,n n n 

n n 
f<lr .i 1, Tj-1 T 0, we have E v T . I. v 

Tj-1 0 2 x,j J-1 1 x,j 

we finally have 

lt-1 n-1 
E V .T.+V T 
1 x,J J x,n n 

E V . T. 
1 X,.] J-1 

n 
E V • (TJ. 
1 X,J 

T. J=C 
J-1 X 

, q.e.d. 
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