
DATA BASES, MICROCOMPUTERS AND OFFICE AUTOMATION

by

Amir Bukhari

University of Manitoba

317

,wi,

318

Introduction

The microcomputer technology has now progressed to such s
state of development and cost effectiveness that it is
inevitable that microcomputers will become as common a
fixture in the office as the telephone. This new technology
hss its own peculiar set of problems which must be carefully
resolved before it can be effectively integrated in the
office envi·ronment. These problems, in large measure, are
related to the trend which appears to be developing in this
field. The office automation appears to be launched on a
trajectory which msy be described as an integration of local
network, dsta base and information management technologies.
Office automation systems are being designed to locally
inter-connect electronic machines by cables using, for
example, either net technology. Included among these inter­
connected machines are microcomputers which provide shared
access to commonly used data organized as a data base. The
data from these data bases is extracted and converted into
information for use for operational or decision making
purposes. This paper focuses on the role and design of data
bases in the environment described above.

Data Base Management System

A management information system may be modelled as a system
packaged together from various compatible hardware and
software components. A simple system frsmework for an
information system is to view it as a set of functional
levels which interact with each other by means of suitable
interfaces.

level 0
interface
level 1
interface
level 2
interface
level 3
interface
level 4
interface
level 5

·

·
·
·

. MIS

Hardware

Operating System

Data Base Managment System

Model Bank

Application Programs

Users

319

An operating system is a software component which manages
the hardware devices and other resources which are part of
the computerized system. These include functions such as
memory and device management and providing an environment in
which a user can communicate with the system. The essential
role of the operating system is to enable the user to
operate the system. Operating systems do not in any real
sense provide the management of data that reside on the
devices. The management of data stored in the system is
delegated to another software component. commonly known as
the data base management systems (DBMS). The primary role
of a DBMS is to manage data that resides in the system.
Kodel banks have resources which convert raw data into input
appropriate for application programs which produce
information for operational snd decision making purposes.

Data Base Design Problems

The development of a data base design must resolve three
major problems in any environment.

Problem of Time:

Problem of Detail:

Problem of Quality:

Data base design
consuming process
applications.

is
even

a
for

time
small

Quantum of detailed work necessary
to achieve a workable design is
overwhelming.

Quality in data base design is
difficult to achieve.

These problems are central to any data base environment.
including those which support automated offices using micro­
computers. The resolution of these problems is difficult
but can be greatly facilitated by adopting a rigorous design
approach. The ~r;erm rigorous is used here in the sense as
"scrupulously i~~urate. precise" rather than in the sense of
a mathematical proof. An approach to data base design is
illustrated here based on a modified example from Raver and
Hubbard [1).

320

Data Base Design Process

The data base designer rigorously establishes the following:

(a) user specifications
(b) an environment
(c) an architecture for the data base
(d) a strategy for verifying that the architecture

will in fact satisfy the user requirements
(e) an implementation plan
(f) a realization plan.

A rigorous approach to these steps uses a structured
methodology. All of the so-called structured methodologies
establish a formal discipline for the solution of the
problem. A form suitable for data base development consists
of repeated application of the principle:

"DECOMPOSE AND PROVE CO RRECTNE SS OF DECOMPOS IT ION" •

This principle requires that the designer decompose a given
data base application into precisely specified sub­
applications. Solve and prove each sub-application.
Finally, fit together the solved sub-applications in a
specified way to obtain an optimal solution to the original
application. This principle is most effectively elaborated
by Hoffmann [2]. Specific examples of this type of
methodology are Hoare's pre and post condition analysis [3];
Dijkstra's stepwise refinement method [4] or Blaauw's
Architecture - Implemention - Realization method [5].

Illustrative Example

Modifying the example given in [1], assume that a
feasibility analysis has identified A, B, C, D, E, F, G, H,
J, K, L, and M as distinct pieces of information which are
of interest to a user. The user would like to see these
items organized in five reports.

1 • A re por t which uses items B, H, J, K
2. A report which uses items A, B, M
3. A report which uses items A, B, D, G, L
4. A report which uses items A, D, G, M
5. A report which uses items A, B, C, D, E, F,

J, K, L, M

321

In effect, a set of sub-applications of the original
applications (based on all the pieces of information) is
already available. This, however, may not be always the
case. Reports are normally structured entities where the
data bears identifiable relationship to one another. These
relationships could be functional (l-to-many) or many-many
in nature. Suppose further that these relationships have
been identified as represented in Figure I, where "1"
denotes a func tional relationship and "M" denotes a
many-many relationship. The design process would then
proceed to integrate all these sub-applications into a
single large application and then simplify again, possibly
by iterating via a different decomposition, which of course
must support the originally desired applications. The rules
used to integrate given sub-applications into a single
version and the rules used to simplify provide the basis for
formal approach. These rules, when stated explicitly,
provide a formal discipline structured methodology
which when applied rigorously will yield a number of
choices. The designer I s job is then to choose the most
optimal one of these which supports the intended
requirements in some "best" but verifiable way.

user
Thus,
five

The
Figure 2 is the integrated version of the
applications. Simplified version is shown in Figure 3.
rules used for integration and simplification are:

(a) Integrate by using each information item once and
showing relationships by labelled arrows.

(b) Simplify by removing all those arrows which are
labelled M, but such removal of arrows must not
leave any information item totally disconnected.

(c) Simplify by removing all transitive dependencies,
i.e. if

then simplify to

This is a sample list. There can be different
rules and the list can be expanded. For example:

322

1

3

4

1
5

FIGURE 1

323

FIGURE 2 INTEGRATION

W
N
V>

-_._. __ . ________ ~ _"""MOi_E£,.,. ... :::o:li!",""" =_

~--~------~1~--------------~

~---4------------~1r_------------------~

FIGURE 3 DATA BASE ARCHITECTURE

(d) Naming rule for organizing the environment: data
elements from which a functional or type i
relationship emanates is a candidate for a key.

As a result of application of such rules, one is forced into
obtaining a hierarchical organization of the data as shown
in Figure 4.

Graphical representation followed until now can be
transformed into matrix representation which is amenable to
formal algebraic analysis. The matrices corresponding to
Figures I 4 are shown below, where 1 signifies a
functional relationship of a many to many relationship and
an empty cell indicates a don't care condition.

The main point of all this discussion is that it is possible
to formalize the data base design process and furthermore,
it is possible to use a representation of data base problems
sultable for algebraic or other formal analysis. Finally,
the approach is amenable to verification and validation
analysis. Figure 5 illustrates this point. Raver-Hubbard
strategy of integration, simplification, and decomposition
has lead to a data organization which does not directly
support the user application Ill. Additional data indexes
must be provided before the application can be efficiently
supported. This does not imply that the method is without
value, rather it provides a designer a tool for analysis and
re-examlnatlon. In a manner of speaking, it forces the
designer to verify, validate and record reasons for design
choices.

326

DATA MODEL

IM1

I L l

l o . !

FIGURE 4

I M I ~ I H] J I K 1

i , I A 1

I ~ 1 . ~ ~ 1 ~..1 ~ !

,/....;.-

-l
W
0

EJ B B 0
:;:
<X
~

Il)

't--
0 ~

::::s
~
G:

328

GETTISG READY FOR ARALYSIS

(1) M

B • 1 1 1
M -.- T -1- T -1- T -1-

(3) L (4) G

_~ ____ L________ A

_ ~ -'_ ~ -' ______ L ~_
G

(5)

D

L

IliTEG RATIOS

A M

__ A _____________ 1 _________ 1 ______________ _

_ _ B _____________ '- _______ -' ___ '- ~ _'- _______ _

_ _ D __________ 1 ___ 1 _________ 1 ______________ _

_ _ G __________ '- ~ _'- ________ '- _____________ _

_ _ L __ ~ -'_ ~_L __ '- ~ _'- ________ '- __ '- ~ _'- ____ 1-' __ _
H

329

INITIAL DESIGN FRAMEWORK

algebraic representation:

data

"

A

D

L

M

.odel/deco.position ache.a:

data .odel data deco.position

J Is It L M

B A

D C E F G

An exa.ination of the data model/data decomposition schema
above illustrates an e"tre.ely i .. portant data base
concept. Data model provides the fra.ework within which a
given data decomposition is to be synthesized into an
integrated wbole again. In tbe above case, the new
decomposition /~D818t8 of J, B, K; K, L. H; H, A; and D, C,
E, F, G. Theae new groupings of information or data items
are to hang together as a hierarchical structure organized
by using J, Band D. Data models provide the structure or
the .osaic into which individual data ite .. s are to be
organized. The major concern in data baae theory is to
find data models which are linear in algebraic sense. This
is i.portant because the essence of linearity in algebra is
the closure property. The closure property interpreted in
data base context tells the syste.. whether a data ite.
belongs or does not belong -- in effect, endows the data
base structure with the essential property of consistency.
Consistency is a .ajor design issue and it can be best
handled by adopting a formal approach to it.

330

M

Data Models

Why did one obtain a hierarchical data model in the previous
example? Are there other data models which are useful? The
answer to the first question is that the simplification
rules were designed to yield a hierarchy, if one existed.
If these rules were changed, then a network model of data
would result. A network model is a richer structure. It
maintains more connection among data than those maintained
by the hierarchical model. However, both hierachical and
network models are based on explicit representation of
relationships among data. The relationships among data need
not be explicitly recorded. They can be implicit. This is
the case with the relational data model which organizes data
tables. The implicit relationships encoded in the tables
serve to structure the data.

network data model:

~---------------------I----------------<

,----------I------------~

I~

<_I_~.< 1
L >-.,.. ______ --1

'----r-'

'--__ J---I--~} ~~:--I--B
~I-< >-10

relational data model:

D c E J! G

331

In a network data model, a new data entity SYSTEM is
introduced which provides an entry point to the system (in
the hierarchical model the root serves this purpose) and
furthermore the requirement of maintaining a minimal number
of relationships is relaxed. Thus, the network model
provides a richer and more efficient mechanism for accessing
data. However, the trade off is that the user must now
specify how to nsvigate in the system, i.e. specify how to
get to one data item from another. This introduces a degr~e
of complexity not present in the hierarchical model.

The relational model presents all data in tabular form. The
names of the data items serve as the headings of the columns
and entries in the columns are the values of the data
items. The early workers in the relational data model field
were surprised to find that it is not an easy matter to
organize data into tables and yet be able to easily access
them and maintain them consistently. This realization lead
to the theory of normalization which is an attempt to design
tables in such a way that consistency is always guaranteed
and yet data is easily accessible without having to specify
a lot of navigational information as required in the network
model. Normalization principles are in fact applicable to
all data models. For example, the rule to. remove
transitivities (used in obtaining the hierarchical data
model) is actually a principle supported by normalization
theory of relations.

Comparison of Data Models

There are several ways to compare the data model. For­
example, hierarchical models are costly to maintain,
relational models are costly to operate and network models
are costly to bring up. In the office environm~nt,
especiallY on the microcomputers where the many users will
be competent but technically naive, the most important
consideration is that of user friendliness. On this count
the relationar-model is the winner. Tables are eaSily
understood and do not require elaborate mechanism before
they can be used. In fact, this feature of relational model
is touted to be one of its most significant recommending
features.

332

Alternate Approachea to Deaign

The approach recommended by Raver and Hubbard [1] is to:

specify
integrate
simplify
iterate to optimize

There are other approaches to data base design which are
significant in context of implementation on the
microcomputer.

The approach based on Hoare's pre- and post-conditions is
based on the following procedure:

establish a set of relationships on or among the
input variables and call these the pre-conditions

establish a set of relstionships on or among input
and output variables and call them post-conditions

design algorithmically a procedure to start with
the input values subject to the pre-conditions and
obtain the values of output variables subject to
the post-conditions

verify that the proposed solution does indeed
satisfy the input or the pre-conditions.

An important feature of pre- and post-condition analysis is
that it forces the designer to cast the design problem into
a mathematical framework of equations and inequalities. As
usual the art of such a design procedure is to be able to
describe a design problem as a system of linear equations or
inequalities, if such a description exists. A solution of
such a linear system then produces a design choice. Once a
set of design choices has been generated, then a search for
an optimal design can be made.

A natural consequence
or systems developed
correct.

of this approach is that any programs
using this approach are verifiably

333

Blaauw's technique
requires that any
following steps.

[5] is again novel and very powerful.
system be realized by means of

It
the

1. Establish the architecture or the functional
specifications of WHAT system is required to do.

Write these specifications in a powerful and expressive
language such as APL.

Since APL is readily available, programs written in it
can be readily executed.

2. Establish the algorithms or HOW the architectured
system will be implemented. Thiit is describe, again
using APL, exactly how the architecture can be made to
work. This results in another APL program. Call this
the implementation.

3. Test the architecture (step 1) and implementation (step
2) by running the two programs simultaneously with the
same data. If the two programs yield the same results
then the architecture and its implementation are
equivalent in the sense that recipes provided by the
algorithms encoded in the implementation do indeed
satisfy the architectural requirements.

4. Use the implementation as a model to physically realize
the system. The consideration here is what actual
components to use and where to locate these components
in relation to one another in a physical environment.

The term realization is intended to focus on the actual
physical, concrete choices of components, their location and
inter-relationships within the system. Thus, steps 1 and 2
may be written in APL but the actual realization of the
system may call for using COBOL or PL/I and the language.

The novelty of Blaauw's approach lies in the fact that it
can be used ,,):_0 design complex systems and test them before
actually realizing them.

The'merit of the above approaches is that each outlines in a
formal manner what must be done in order to realize a
verifiably correct design. Blaauw [5] in particular has
applied his technique to the design of a very large
electronic system but is equally applicable to other
disciplines, especially to data base design in microcomputer
environment.

334

~ ..
"'I:::, '" .<, , .

'f:~' .

User Friendliness

The importance of user friendliness cannot be over
emphasized. Any design which does not take this important
system factor into account is not a good design. There is
much empirical evidence to support the thesis that a
suitable way to achieve user friendliness is to adopt a
formal approach, and design it right into the system.

Environment

It is ri ghtl y said tha t for a well des igned sys tem, a "good
environment is not a luxury but is a necessity". An
environment is created in a system when names are given to
objects in a system. Names and name spaces play an
important role in data base work. The choice of names
determines whether a system is user friendly or not. Again,
it is careful design of names and naming procedures which
contribute to developing a reliable system. Even the single
letter names used in the illustrative example can be
useful. A name of length greater than one is an error. On
the other hand, use of single letters is rather devoid of
semantic content and may be unfriendly for use by occasional
naive users; but again the technical users of a system may
be most comfortable using single letter names as opposed to
having to use longer names. In fact, the perilious
beginnings of a new system always start with the creation of
an environment.

The Future

It is a matter of time before automsted offices, electronic
fund transfer and other electronic marvels will become as
Common place and as easy to use as the telephone. The
office of the future will be a concrete management
information system where a large number of cooperating users
will share large amounts of common data. This is going to
impose very heavy design demands on organizing common data
into data bases, which can be shared by a wide variety of
users. The typical problems raised are those of integrity,
security and consistency of data. These problems are of
sufficient magnitude which warrant formal technique for
their solution.

335

REFERENCES

1 • Raver, N.
Design,
(1977).

and Hubbard,
IBM systems

G. U., Automated
Journal 16, 3,

Logical File
pp. 287-312

2. Hoffmann, B., On Gabriel Kron's Methods and

3.

Achievements, in Gabriel Kron snd Systems Theory,
edited by H.H. Happ, Union College Press (1973).

Hoare, C.A.R., The Axiomatic Basis of Computer
Programming, CACM, 12, la, pp. 576-583 (1969).

4. Dijkstra, E.W., A Discipline of Programming, Prentice
Hall (1976).

5. Blaauw, G.A., Digital System Implementation, prentice
Hall (1976).

336

