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The Cauchy integral formula

_ 1 £(z)
W) = 37 Joz=w 92

is a powerful tool. It can be applied to elegantly
derive various results on divided differences ([9,§81.71,

[8, Vol II, §111, [1,§83.61).

It immediately follows from

Ay o1
x- Z-X z-y’ = (z-x) (z-y)

that

_ 1 f(z)
D) = 55 b T 2=y 9% -

By induction we have

n i £ (2)
A" E(x) = 5ic [ — _ a
XpreeerX, 0 2ri o Tz=xy) ... (z=x)

In this paper we shall assume that the contour C is a
circle centered at zero and large enough to contain all

the points XO’ xl,...,xn in its interior.
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That a divided difference is symmetrical in its
arguments {5, p. 105] is obvious from (2). Furthermore,

since

1 _ 1 .
(z-xo)...(z-xn) &-xo)(xo-xl)...(xo-xn)

1

+ (z—xn)(xn—xo)...(xn-x

) r

n-1

applying equation (1) n+l times we have [5, eguation (5.11)]:

n f(xo)
A fix,) = — — — + ...
Xy oK reee,x. O (xg=x)) (xg=%5) « o (xp=%)
1772 n
+ £ lxy) .
(xn—xo)(xn-xl)...(xn-xn_l)

To derive the Newton divided-difference formula

[5, (5.15)] note that

1 1 X‘xo 1
— = + r— ’
z-X z-x, zZ-X, z-X

1 B 1 X-Xl
z-x = z-x. T z- !

1

By repeated substitution for E%; we get the identity

1 1 x-x5 1 (x-x4) (x-x4) 1
_—= + +
zZ-X z-x, z-X, 27Xy (z-xo)(z—xl) z-x,
(x=-%,) (x=x,) ... (x-x_) 1
oL+ 0 1 n

(z—xo)(z-xl) .- (z—xn) z-x °
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Thus

2
£(x) = £(x,) +(x—xo)A§ Elxg) + (x-x4) (x=x) A £(x,)
X

1 X17%2
n+l
+ ...+ (x-xo)(x—xl) e (x—xn) A& f(x).

For m = 0, 1, 2, ..., let us compute
A&n m
X
using equation (2). By letting the radius of the contour
circle C tend to infinity, we see that for m < n,
Axnxm = 0.

For the cases where m 2 n, consider the generating function

g(t) = E AP xPHIYT
j=0(x1,...,xn 0 )

Let the radius of the contour circle be r. For [t| < 1l/r,

_ 1 2"
g(t) = 2wl IC (l-zt)(z—xo)...(z-x ) dz.
n
Put w = 1/z; then
(£) = o= -1 dw
g Znl JK Tw=t) (T=wxg) ... (T-wx ) ="'

where K is the circle centered at zero with radius 1/r and
clockwise orientation. Applying equation (1) we immediately
obtain

g(t) (3)

1
(l—txo)...(l—txn) :
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Expanding (3) we have

n n+j _ }Z ag_aj ap
AX X, = x Ot . X
yreenrX) aozo,...,anzo

a +a +... =3
0 al +an J

_—

Osblsb

X] X] ---X] L (4)
..<b.sn ’

5
J

Equation (3) has been derived by different methods in

(2, 8II1.81, [9,8§1.31] and [13,83]. For j = 1, equation (4)
is (5, p.121, #7) and (7, p.34, #33]. Equation (4) can also
be derived by means of determinants; see [12] or

[10, Theorem 2.51]. An alternative expression for (4) is

Cl C2 Cj
z 51 52 .5 i (5)
lclcl! 2°2c2! 3% e,
cl,cz,...,cjzo J
+2c, +...+jc.=]
<, 2c2 ch 3
where
k k k
= + “ee .
Sk x0 xl + + xn

Expression (5) is obtained using the identity

g(t) = eln 9(®)

For details, see [7, pp.91-92]; however, we remark that such a
technique has found applications in individual risk theory
[6,8II1].
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We now compute
An x-l

by contour integration. The following result is sometimes
called Cauchy's integral formufa forn an unbounded domain
[8, Vol. I, p.318, #14.14]:

Let L be a closed rectifiable Jordan curve,

traversed in the counter-clockwise direction.

If h is a function analytic in the exterior of

L, E(L), then for each w ¢ E(L)

1 h{z) _ .
7T z—a dz = <h(w) + lim h(z).
L Z >0
Consider
h(z) 1

(z—xo)(z—xl)...(z—xn)

Assume L contains the points KyrXyree X, in its interior but

not the origin. Thus by equation (2)

n_1=_1_f 1 dz
[ﬁ X 2mi L z(z—xo)...(z—xn)

-h(0) + 0

n
(-1) /xoxl...xn.

This result generalizes Example 5.2 on page 106 of [5] .
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An elegant application of formula (2) arises when two
or more of the points of collocation coincide. (Cf. [9, §1.81, [11]

and [4, p. 57].) Since

2) A e

X zZ-x (z-x)n+
we immediately have
(n)
AM fx) = £

n!
Xyoee,X

which is [5, (5.19)]. Similarly, it follows from

3 K 1 - ki
(ex ) (z-x.) (z-x,) (z=-x_) (z=x,) (z=-x )k+l(z—x ) (z-x_)
1 0 17 n 0 1 270 n

that

3 k n n+k

) A" fixg =k A £(xy) .
1 xl,...,xn xl,...,xl,xz,...,xn
N————s
k+1

Thus, problems such as No. 21 on page 122 of [5] become

trivial. The example considered in [3] is

5
A £(z)

X/ XoX0Yr Y

which simplifies to

2
1 3 ¢3 2
Tay Ga) A s

Divided differences can also be expressed as multiple
integrals. The following formula is due to Hermite ([ 9, p.l101],

[131 p'l; ])'
f(x ) = dt] dtz .. dt £ )(U) ’
A [ n

e X
Rpee-r%g

where = - - -
u (1 tl)x0 + (tl t2)xl + ..+ (tn_l tn)xn_l + tnxn.
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