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The Cauchy integral formula 

f (w) = 2 ; i fc ~~!) dz 

is a powerful tool. It can be applied to elegantly 

derive various results on divided differences ([9 1§1.7]1 

[ 8 I Vol II 1 § 11] I [ 1 I§ 3. 6 J) • 

It immediately follows from 

that 

By induction 

~n 

_1_ (-1- - _1_) 
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~ f(x) 1 fc 2rri y 

we have 
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0
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1 
(z-x) (z-y) 

f(z) dz (z-x) (z-y) 

f(z) 
(z-x0 ) ••. (z-xn) dz . 

In this paper we shall assume that the contour C is a 

circle centered at zero and large enough to contain all 

the points x 01 x 11 ••• 1xn in its interior. 
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That a divided difference is symmetrical in its 

arguments [5, p. 105] is obvious from (2). Furthermore, 

since 

1 1 + ••• 

applying equation (1) n+l times we have [5, equation (5.11)]: 
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To derive the Newton divided-difference formula 

[5, (5.15) J note that 
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By repeated substitution for z-x we get the identity 
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Thus 

f(x) 

For m 

f (x0 J + (x-x 0) Lt. f (x 0 J + (x-x 0 l (x-x1 l 
xl 

0, 1, 2, .•• , let us compute 

using equation (2). By letting the radius of the contour 

circle C tend to infinity, we see that for m < n, 

A\ n m 
.LU X = 0. 

For the cases where m ~ n, consider the generating function 

Let the radius of the contour circle be r. For JtJ < 1/r, 

g(t) = 2;i Jc (1-zt) (z-~:) .•• (z-xn) dz. 

Put w l/z1 then 

g(t) = 2!i JK (w-t) (1-wx~f ... (1-wxn) dw, 

where K is the circle centered at zero with radius 1/r and 

clockwise orientation. Applying equation (1) we immediately 

obtain 

g(t) 1 ( 3) 

15 



Expanding (3) we have 

Equation (3) has been derived by different methods in 

[2, §III.8], [9, §1.31] and [13, §3]. For j = 1, equation (4) 

is [5, p.l21, #7] and [7, p.34, #33]. Equation (4) can also 

be derived by means of determinants; see [12] or 

[10, Theorem 2.51]. An alternative expression for (4) is 

where 

c 1 ,c 2 , •.. ,cj<:O 

c 1+2c 2+ •.. +jcj=j 

Expression (5) is obtained using the identity 

g(t) = eln g(t) 

s:j 
J 

(4) 

(5) 

For details, see [7, pp.91-92]; however, we remark that such a 

technique has found applications in individual risk theory 

[ 6, §II J. 
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We now compute 

J:,n -1 
X 

by contour integration. The following result is sometimes 

called Cau~hy'a integ~al 6o~mula 6o~ an unbounded domain 

[8, Vol. I, p.318, #14.14]: 

Let L be a closed rectifiable Jordan curve, 

traversed in the counter-clockwise direction. 

If h is a function analytic in the exterior of 

L, E(L), then for each w £ E(L) 

Consider 

h(z) 

h (z) dz 
z-w 

-h(w) + lim h(z). 
z~oo 

1 

Assume L contains the points x 0 ,x1 , ... ,xn in its interior but 

not the origin. Thus by equation (2) 

n 

.1. 

-h(O) + 0 

This result generalizes Example 5.2 on page 106 of [5] . 
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An elegant application of formula (2) arises when two 

or more of the points of collocation coincide. 

and [ 4, p. 57].) Since 

1 n! 

z-x (z-x)n+l 

we immediately have 

_&.n f(x) 
f (n) (x) 

n! x, ... ,x 

(Cf. [9, §1.8}, [11] 

which is [5, (5.19)]. Similarly, it follows from 

k! 

that 

k! &_n+k 

xl, •.. ,xl,x2, .•• ,xn 
'-- • J 

k+l 

Thus, problems such as No. 21 on page 122 of [5] become 

trivial. The example considered in [3] is 

,.s 
ill f(z) 

x,x,x,y,y, 

which simplifies to 

i -}y C}x> 2 &.2 f < z > • 
x,y 

Divided differences can also be expressed as multiple 

integrals. The following formula is due to Hermite ([9, p.lOJ, 

ru, p.l7Jl: 

where 

~n f(x
0

> 

tn-1 .. J dtnf(n)(u), 

0 

u = (1-tl)xo + (tl-t2)xl + •• + (tn-1-tn)xn-l + tnxn. 
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